Reassembly of Broken Objects

Peter J. Olver
University of Minnesota
http://www.math.umn.edu/~olver
Madrid, September, 2017

Symmetry
 Group Theary!

Next to the concept of a function, which is the most important concept pervading the whole of mathematics, the concept of a group is of the greatest significance in the various branches of mathematics and its applications.

\author{

- P.S. Alexandroff
}

Groups

Definition. A group G is a set with a binary operation $g \cdot h$ satisfying

- Associativity: $g \cdot(h \cdot k)=(g \cdot h) \cdot k$
- Identity: $\quad g \cdot e=g=e \cdot g$
- Inverse: $g \cdot g^{-1}=e=g^{-1} \cdot g$
$\Longrightarrow \quad$ not necessarily commutative: $\quad g \cdot h \neq h \cdot g$

Examples of groups

The integers

$$
\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots
$$

Group operation: addition $3+5=8$
Identity: zero $3+0=3=0+3$
Inverse: negative $7+(-7)=0=(-7)+7$

Examples of groups

The rational numbers (fractions)

$$
\begin{aligned}
& \text { Group operation: addition } 1 / 4+5 / 3=23 / 12 \\
& \text { Identity: zero } \quad 5 / 3+0=5 / 3=0+5 / 3 \\
& \text { Inverse: negative } 7 / 2+(-7 / 2)=0=(-7 / 2)+7 / 2
\end{aligned}
$$

Examples of groups

The positive rational numbers

Group operation: multiplication $1 / 4 \times 5 / 3=5 / 12$
Identity: one $5 / 3 \times 1=5 / 3=1 \times 5 / 3$
Inverse: reciprocal $7 / 2 \times 2 / 7=1=2 / 7 \times 7 / 2$

Examples of groups

The positive real numbers

Group operation: multiplication

$$
\begin{array}{cc}
\sqrt{2} \times \pi=\sqrt{2} \pi=4.44288293815836624701588099006 \ldots \\
\text { Identity: one } & \pi \times 1=\pi=1 \times \pi \\
\text { Inverse: reciprocal } & \pi \times 1 / \pi=1=1 / \pi \times \pi
\end{array}
$$

Examples of groups

Non-singular 2×2 matrices

$g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \quad h=\left(\begin{array}{cc}x & y \\ z & w\end{array}\right) \quad a d-b c \neq 0 \neq x w-y z$
Group operation:
$g \cdot h=\left(\begin{array}{ll}a x+b z & a y+b w \\ c x+d z & c y+d w\end{array}\right) \neq\left(\begin{array}{ll}a x+c y & b x+d y \\ a z+c w & b z+d w\end{array}\right)=h \cdot g$
Identity: $\quad e=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \quad e \cdot g=g=g \cdot e$
Inverse: $\quad g^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right), \quad g \cdot g^{-1}=e^{-1}=g \cdot g$

Symmetry Groups

A symmetry g of a geometric object S is a transformation that preserves it: $g \cdot S=S$

The set of symmetries of a geometric object forms a group
The group operation is composition: $\mathrm{g} \cdot \mathrm{h}=$ first do h , then do g

The composition of two symmetries is a symmetry
The identity (do nothing) is always a symmetry
The inverse of a symmetry (undo it) is a symmetry

Symmetry

Definition. A symmetry of a set S is a transformation that preserves it:

$$
g \cdot S=S
$$

$\star \star$ The set of symmetries forms a group G_{S}, called the symmetry group of the set S.

Discrete Symmetry Group

and 0 ㅇ (identity)
... and 4 reflections
(mirror image)

Wallpaper patterns

Tiling - The Alhambra, Spain

Tiling - The Alhambra, Spain

Crystallography

The Koch snowflake - a fractal curve

湶 Scaling symmetry

Dome of the Sheikh Lotfollah Mosque - Isfahan, Iran

来䫀 Conformal symmetry

Continuous Symmetry Group

Rotations through any angle and reflections and conformal inversions

$$
\bar{x}=\frac{x}{x^{2}+y^{2}} \quad \bar{y}=\frac{y}{x^{2}+y^{2}}
$$

Continuous Symmetry Group = Lie Group

Rotations through any angle and reflections
and conformal inversions

$$
\bar{x}=\frac{x}{x^{2}+y^{2}} \quad \bar{y}=\frac{y}{x^{2}+y^{2}}
$$

A continuous symmetry group is known as a Lie group in honor of the nineteenth century Norwegian mathematician Sophus Lie

Continuous Symmetries of a Square

Symmetry

* To define the set of symmetries requires a priori specification of the allowable transformations
G - transformation group containing all allowable transformations of the ambient space M

Definition. A symmetry of a subset $S \subset M$ is an allowable transformation $g \in G$ that preserves it:

$$
g \cdot S=S
$$

What is the Symmetry Group?

Allowable transformations:
Rigid motions
$G=\mathrm{SE}(2)=\mathrm{SO}(2) \ltimes \mathbb{R}^{2}$

$$
G_{S}=\mathbb{Z}_{4} \ltimes \mathbb{Z}^{2}
$$

What is the Symmetry Group?

Allowable transformations:

Rigid motions

$$
G=\mathrm{SE}(2)=\mathrm{SO}(2) \ltimes \mathbb{R}^{2}
$$

$$
G_{S}=\{e\}
$$

Local Symmetries

Definition. $g \in G$ is a local symmetry of $S \subset M$ based at a point $z \in S$ if there is an open neighborhood $z \in U \subset M$ such that

$$
g \cdot(S \cap U)=S \cap(g \cdot U)
$$

* * The set of all local symmetries forms a groupoid!

Definition. A groupoid is a small category such that every morphism has an inverse.

* Groupoids form the appropriate framework for studying objects with variable symmetry.
* Symmetry groupoids are not necessarily Lie groupoids

Groupoids

\Longrightarrow In practice you are only allowed to multiply groupoid elements $g \cdot h$ when

$$
\text { source (domain) of } g=\text { target (range) of } h
$$

Similarly for inverses g^{-1} and the identities e.
A groupoid is a "collection of arrows":

Jet Groupoids

\Longrightarrow Ehresmann
The set of Taylor polynomials of degree $\leq n$, or Taylor series $(n=\infty)$ of local diffeomorphisms $\Psi: M \rightarrow M$ forms a groupoid.
\diamond Algebraic composition of Taylor polynomials/series is well-defined only when the source of the second matches the target of the first.
\Longrightarrow Lie pseudo-groups

What is the Symmetry Groupoid?

$G=\operatorname{SE}(2)$
Corners:

$$
G_{z}=G_{S}=\mathbb{Z}_{4}
$$

Sides: G_{z} generated by

$$
G_{S}=\mathbb{Z}_{4}
$$

some translations
180° rotation around z

Transformation groups

Translations

Transformation groups

Noncommutativity of 3D rotations - order matters!

Transformation groups

Transformation groups
Scaling (similarity)

Transformation groups
Projective Transformation

Transformation groups

Projective Transformation

Projective transformations in art and photography

Albrecht Durer - 1500

Geometry $=$ Group Theory

Felix Klein's Erlanger Programm (1872):

Each type of geometry is founded on a corresponding transformation group.

Euclidean geometry: rigid motions (translations and rotations)
"Mirror" geometry: translations, rotations, and reflections
Similarity geometry: translations, rotations, reflections, and scalings
Projective geometry: all projective transformations

The Equivalence Problem

When are two shapes related by a group transformation?

- Rigid (Euclidean) equivalence
- Similarity equivalence
- Projective equivalence
- etc.

Rigid equivalence

When are two shapes related by a rigid motion?

Tennis, anyone?

Projective equivalence \& symmetry

Duck $=$ Rabbit?

Limitations of Projective Equivalence

\Longrightarrow K. Åström (1995)

Thatcher Illusion

Thatcher Illusion

Local equivalence of puzzle pieces

Local equivalence of puzzle pieces

The Equivalence Problem

When are two shapes related by a group transformation?

Invariants

次 Solving the equivalence problem requires knowing enough invariants

Invariants

Invariants are quantities that are unchanged by
the group transformations

If two shapes are equivalent, they must have the same invariants.

Joint invariants

Joint invariants

Rigid motions: distance between two points

Joint invariants

Similarity group:
ratios of distances $R=d / e$ and angles θ

Joint invariants

Projective group: ratios of 4 areas

$$
\frac{A B}{C D}
$$

Distances between multiple points

$$
1,1,1,1, \sqrt{2}, \sqrt{2} .
$$

The Distance Histogram invariant under rigid motions

$$
1,1,1,1, \sqrt{2}, \sqrt{2} .
$$

If two sets of points are equivalent up to rigid motion, they have the same distance histogram

Does the distance histogram uniquely determine a set of points up to rigid motion?

Does the distance histogram uniquefy determine a set of points up to rigid motion?

Answer: Yes for most sets of points, but there are some exceptions!

领 Mireille (Mimi) Boutin and Gregor Kemper (2004)

Does the distance histogram uniquely determine a set of points up to rigid motion?

$$
1,1,1,1, \quad \sqrt{2}, \quad \sqrt{2}
$$

Does the distance fistogram uniquely determine a set of points up to rigid motion?
No:

Distance fistogram for points on a líne

Does the distance histogram uniquefy determine a set of points on a line up to translation?

Distance fistogram for points on a líne

No:

$$
\begin{gathered}
P=\{0,1,4,10,12,17\} \\
Q=\{0,1,8,11,13,17\} \\
\eta=1,2,3,4,5,6,7,8,9,10,11,12,13,16,17
\end{gathered}
$$

\Longrightarrow G. Bloom, J. Comb. Theory, Ser. A 22 (1977) 378-379

Limiting Curve Histogram

Brinkman, D., and Olver, P.J., Invariant histograms, Amer. Math. Monthly 119 (2012), 4-24

Distinguishing Moles from Melanomas

- Anna Grim and Cheri Shakiban, 2015

Distance Histogram - Melanoma

Distance Histogram - Mole

CUMULATIVE HISTOGRAM: Mole versus Melanoma

TYPICAL MOLE CUMULATIVE HISTOGRAM

TYPICAL MELANOMA CUMULATIVE HISTOGRAM

CONCAVITY POINT ANALYSIS

CONCAVITY POINT FREQUENCY

7

For smooth objects - curves, surfaces, etc., we need to use calculus to find

Differential Invariants

A Differential Invariant

Curvature is a measure of "bendiness".

Curvature $=$ reciprocal of radius of osculating circle

Curvature is a measure of "bendiness".

What everyday device can measure curvature?

$$
\underset{\otimes}{\infty}
$$

Can you reconstruct the racetrack?

0

Can you reconstruct the racetrack?

θ

Can you reconstruct the racetrack?

κ is (Euclidean) curvature
S is (Euclidean) arclength

Racetrack comparison problem

κ
κ

Racetrack comparison problem

The Invariant Signature

The invariant signature of a planar curve is the set traced out by curvature and the rate of change of curvature (its arclength derivative).

original curve

invariant signature

The invariant signature

Theorem

Two regular curves are related by a group transformation if and only if they have the same invariant signatures.

Proof idea

Theorem (Élie Cartan 1908)
Shapes are related if and only if they have the same relationships among their differential invariants.
(Calabi, Haker, Olver, Shakiban, Tannenbaum 1998)

Moving Frames

The mathematical theory is all based on the new
equivariant method of moving frames, which provides a systematic and algorithmic calculus for constructing complete systems of differential invariants, joint invariants, joint differential invariants, invariant differential operators, invariant differential forms, invariant variational problems, invariant conservation laws, invariant numerical algorithms, invariant signatures, etc., etc.

Acta Applicandae Mathematicae 55: 127-208, 1999.
© 1999 Kluwer Academic Publishers. Printed in the Netherlands.

Moving Coframes: II. Regularization and Theoretical Foundations

MARK FELS* and PETER J. OLVER**
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, U.S.A. e-mail: fels@math.umn.edu olver@ima.umn.edu
(Received: 16 November 1998)
Abstract. The primary goal of this paper is to provide a rigorous theoretical justification of Cartan's method of moving frames for arbitrary finite-dimensional Lie group actions on manifolds The general theorems are based a new regularized version of the moving frame algorithm, which is of both theoretical and practical use. Applications include a new approach to the construction and lequivalence, symmetry, and rigiditity theorems for submanifolds under general transformation groups
equal The method also leads to complete classifications of generating systems of differential invariants, explicit commutation formulae for the associated invariant differential operators, and a general clas sification theorem for syzygies of the higher order differentiated differential invariants. A variety of illustrative examples demonstrate how the method can be directly applied to practical problem arising in geometry, invariant theory, and differential equations.
Mathematics Subject Classifications (1991): 53A55, 58D19, 58H05, 68U10.
Key words: moving frame, Lie group, jet bundle, prolongation, differential invariant, equivalence, symmetry, rigidity, syzygy.

1. Introduction

This paper is the second in a series devoted to the analysis and applications of the method of moving frames and its generalizations. In the first paper [9], we introduced the method of moving coframes, which can be used to practically compute moving frames and differential invariants, and is applicable to finite-dimensional Lie transformation groups as well as infinite-dimensional pseudo-group actions In this paper, we introduce a second method, called regularization, that not only provides, in a simple manner, the theoretical justification for the method of moving frames in the case of finite-dimensional Lie group actions, but also gives an alternative, practical approach to their construction. The regularized method successfully bypasses many of the complications inherent in traditional approaches by completely avoiding the usual process of normalization during the general computation In this way, the issues of branching and regularity do not arise. Once a moving

\star Supported in part by an NSERC Postdoctoral Fellowship.

Supported in part by NSF Grant DMS 95-00931

A Practical Guide to the Invariant Calculus

Elirabeth toulse Masafield

3D Differential Invariant Signatures

Euclidean space curves: $\quad C \subset \mathbb{R}^{3}$

$$
\Sigma=\left\{\left(\kappa, \kappa_{s}, \tau\right)\right\} \subset \mathbb{R}^{3}
$$

- κ - curvature, τ - torsion

Euclidean surfaces: $S \subset \mathbb{R}^{3}$ (generic)

$$
\begin{aligned}
\Sigma & =\left\{\left(H, K, H_{, 1}, H_{, 2}, K_{, 1}, K_{, 2}\right)\right\} \subset \mathbb{R}^{6} \\
\text { or } \quad \widehat{\Sigma} & =\left\{\left(H, H_{, 1}, H_{, 2}, H_{, 11}\right)\right\} \subset \mathbb{R}^{4}
\end{aligned}
$$

- H - mean curvature, K - Gauss curvature

The polar curve $r=3+\frac{1}{10} \cos 3 \theta$

The Original Curve

Euclidean Signature

Numerical Signature

The Curve $x=\cos t+\frac{1}{5} \cos ^{2} t, y=\sin t+\frac{1}{10} \sin ^{2} t$

The Original Curve

Euclidean Signature

Equi-affine Signature

The Curve $x=\cos t+\frac{1}{5} \cos ^{2} t, \quad y=\frac{1}{2} x+\sin t+\frac{1}{10} \sin ^{2} t$

The Original Curve

Euclidean Signature

Equi-affine Signature

Object Recognition

Closeness: 0.031217

Signature Curve Hook 1

Diagnosing breast tumors

Anna Grim, Cheri Shakiban

Benign - cyst

Malignant - cancerous

A BENIGN TUMOR

Contour

Signature Curve

A MALIGNANT TUMOR

Contour

Signature Curve

Applications to
Jigsaw Puzzles
and Broken Objects

Automatic puzzle reassembly

Step 0. Digitally photograph and smooth the puzzle pieces.
Step 1. Numerically compute invariant signatures of (parts of) pieces.
Step 2. Compare signatures to find potential fits.
Step 3. Put them together, if they fit, as closely as possible.
Repeat steps $1-3$ until puzzle is assembled....

Localization of Signatures

Bivertex arc: $\kappa_{s} \neq 0$ everywhere except $\kappa_{s}=0$ at the two endpoints

The signature Σ of a bivertex arc is a single arc that starts and ends on the κ-axis.

Gravitational/Electrostatic Attraction

* Treat the two (signature) curves as masses or as oppositely charged wires. The higher their mutual attraction, the closer they are together.
* In practice, we are dealing with discrete data (pixels) and so treat the curves and signatures as point masses/charges.

Piece Locking

* \star Minimize force and torque based on gravitational attraction of the two matching edges.

The Baffler Nonagon
䫆

The Baffler Nonagon - Solved

Putting Humpty Dumpty Together Again

\longrightarrow Anna Grim, Ryan Slechta, Tim O'Connor, Rob Thompson, Cheri Shakiban, Peter Olver

A broken ostrich egg

(Scanned by M. Bern, Xerox PARC)

A synthetic 3d jigsaw puzzle

Assembly of synthetic spherical puzzle

- Uses curvature and torsion invariants

An egg piece

All the king's horses and men

The elephant bird business plan

The elephant bird of Madagascar

(Image from wikipedia.org)
more than 3 meters tall
extinct by the 1700's
one egg could make about 160 omelets

Elephant loird egg shells

(Extract from "Zoo Quest to Madagascar", BBC 1961)

The elephant bird of Madagascar

(Image from Tennant's Auctioneers)
pictured egg is 70% complete
complete egg recently sold for \$100,000

Puzzles in archaeology

Puzzles in surgery

Puzzles in anthropology

Bone fragment

Mean curvature

Segmentation

theguardian

Could history of humans in North America be rewritten by broken bones?

Smashed mastodon bones show humans arrived over 100,000 years earlier than previously thought say researchers, although other experts are sceptical

Ian Sample Science editor
Wednesday 26 April 2017 13.00 EDT

Acknowledgments:

Thanks to Rob Thompson and Cheri Shakiban for sharing their slides!

Undergraduates: Dan Brinkman, Anna Grim, Dan Hoff, Tim O'Connor, Ryan Slechta
Ph.D. students (past and present): Mimi Boutin, Steve Haker, David Richter, Jessica Senou, Rob Thompson, Katrina Yezzi-Woody

Collaborators: Eugene Calabi, Jeff Calder, Cheri Shakiban, Allen Tannenbaum

