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Symmetry            Group Theory!



Next to the concept of a function, which

is the most important concept pervading

the whole of mathematics, the concept of

a group is of the greatest significance in the

various branches of mathematics and its

applications.

— P.S. Alexandroff



Groups

Definition. A group G is a set with a
binary operation g · h satisfying

• Associativity: g · (h · k) = (g · h) · k
• Identity: g · e = g = e · g
• Inverse: g · g−1 = e = g−1 · g

=⇒ not necessarily commutative: g · h ̸= h · g



The	integers
…,	-4,	-3,	-2,	-1,	0,	1,	2,	3,	4,	…

Group	operation:		addition			3	+	5	=	8
Identity:		zero				3	+	0	=	3	=	0	+	3

Inverse:		negative					7	+	(-7)	=	0	=	(-7)	+	7



The	rational	numbers	(fractions)

Group	operation:		addition			1/4	+	5/3	=	23/12
Identity:		zero				5/3	+	0	=	5/3	=	0	+	5/3

Inverse:		negative					7/2	+	(-7/2)	=	0	=	(-7/2)	+	7/2



The	positive	rational	numbers

Group	operation:		multiplication			1/4	x	5/3	=	5/12
Identity:		one				5/3	x	1	=	5/3	=	1	x	5/3

Inverse:		reciprocal					7/2	x	2/7	=	1	=	2/7	x	7/2



The	positive	real	numbers
Group	operation:		multiplication	

2� 	 x		𝜋	 = 2� 	𝜋 =		4.44288293815836624701588099006....
Identity:		one					 𝜋 x	1	=	𝜋 =	1	x	𝜋	

Inverse:		reciprocal					 𝜋 x	1/ 𝜋 =	1	=	1/ 𝜋 x	𝜋



g =

(

a b

c d

)

h =

(

x y

z w

)

ad− bc ̸= 0 ̸= xw − yz

Group operation:

g·h =

(

ax+ bz ay + bw

cx+ dz cy + dw

)

̸=

(

ax+ cy bx+ dy

az + cw bz + dw

)

= h·g

Identity: e =

(

1 0
0 1

)

, e · g = g = g · e

Inverse: g−1 =
1

ad− bc

(

d −b

−c a

)

, g · g−1 = e−1 = g · g

Non-singular		2	x	2	matrices



Symmetry  Groups

The	set	of	symmetries	of	a	geometric	object	forms	a	group

The	group	operation	is	composition:						g	·	h		=		first	do		h,		then	do		g

The	composition	of	two	symmetries	is	a	symmetry
The	identity	(do	nothing)	is	always	a	symmetry
The	inverse	of	a	symmetry	(undo	it)	is	a	symmetry

A	symmetry g	of	a	geometric	object	S	is	a	transformation	that	preserves	it:		g	·	S	=	S	



Symmetry

Definition. A symmetry of a set S is a transforma-
tion that preserves it:

g · S = S

⋆ ⋆ The set of symmetries forms a group GS, called
the symmetry group of the set S.



Discrete	Symmetry	Group

Rotations	by	90º,	180º,	270º	

and	0º				(identity)

…	and 4	reflections
(mirror	image)



Wallpaper	patterns

17	symmetry	types



Tiling	— The	Alhambra,	Spain



Tiling	— The	Alhambra,	Spain



Crystallography

❅  230	groups



The Koch snowflake  — a fractal curve

❅❅ Scaling	symmetry





Dome of the Sheikh Lotfollah Mosque — Isfahan, Iran



M.C. Escher  — Circle Limit IV

❅❅ Conformal	symmetry



Continuous	Symmetry	Group

Rotations	through	any	angle

and	reflections

and	conformal	inversions	

Continuous Symmetry Group

Rotations:

GS = SO(2)

Rotations + reflections:

GS = O(2)

Conformal Inversions:

x =
x

x2 + y2
y =

y

x2 + y2

⋆ A continuous group is known as a Lie group
— in honor of Sophus Lie.



Continuous	Symmetry	Group		=		Lie	Group

Rotations	through	any	angle

and	reflections

and	conformal	inversions	

A	continuous	symmetry	group	is	known	as	a	
Lie	group	in	honor	of	the	nineteenth	century	
Norwegian	mathematician	Sophus	Lie

Continuous Symmetry Group

Rotations:

GS = SO(2)

Rotations + reflections:

GS = O(2)

Conformal Inversions:

x =
x

x2 + y2
y =

y

x2 + y2

⋆ A continuous group is known as a Lie group
— in honor of Sophus Lie.



Continuous Symmetries of a Square

−→ −→R −→



Symmetry

⋆ To define the set of symmetries requires a priori
specification of the allowable transformations

G — transformation group containing all allowable
transformations of the ambient space M

Definition. A symmetry of a subset S ⊂ M is an
allowable transformation g ∈ G that preserves it:

g · S = S



What is the Symmetry Group?

Allowable transformations:

Rigid motions

G = SE(2) = SO(2)! R2

GS = Z4 ! Z2



What is the Symmetry Group?

Allowable transformations:

Rigid motions

G = SE(2) = SO(2)! R2

GS = {e}



Local Symmetries

Definition. g ∈ G is a local symmetry of S ⊂ M
based at a point z ∈ S if there is an
open neighborhood z ∈ U ⊂ M such that

g · (S ∩ U) = S ∩ (g · U)

⋆ ⋆ The set of all local symmetries forms a groupoid!

Definition. A groupoid is a small category such that
every morphism has an inverse.

⋆ Groupoids form the appropriate framework for
studying objects with variable symmetry.

⋆ Symmetry groupoids are not necessarily Lie groupoids
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Groupoids

=⇒ In practice you are only allowed to multiply
groupoid elements g · h when

source (domain) of g = target (range) of h

Similarly for inverses g−1 and the identities e.

A groupoid is a “collection of arrows”:

hg

g · h



Jet Groupoids
=⇒ Ehresmann

The set of Taylor polynomials of degree ≤ n, or
Taylor series (n = ∞) of local diffeomorphisms
Ψ : M → M forms a groupoid.

♦ Algebraic composition of Taylor polynomials/series
is well-defined only when the source of the second
matches the target of the first.

=⇒ Lie pseudo-groups



What is the Symmetry Groupoid?

G = SE(2)

Corners:

Gz = GS = Z4

Sides: Gz generated by

GS = Z4

some translations

180◦ rotation around z



Transformation groups

Translations



Transformation groups

Rotations



Noncommutativity	of	3D	rotations		— order	matters!



Transformation groups

Reflections



Transformation groups

Scaling	(similarity)



Transformation groups

Projective	Transformation



Transformation groups

Projective	Transformation



Projective transformations in art and photography

Albrecht Durer  — 1500



Geometry =  Group Theory

Felix Klein's Erlanger Programm (1872):

Each type of geometry is founded on a corresponding 
transformation group.

“Mirror”	geometry:							translations,	rotations,	and	reflections

Similarity	geometry:						translations,	rotations,	reflections,	and	scalings

Projective	geometry:					all	projective	transformations

Euclidean	geometry:					rigid	motions	(translations	and	rotations)



The Equivalence Problem

When are two shapes related by a group transformation?

• Rigid	(Euclidean)	equivalence
• Similarity	equivalence
• Projective	equivalence
• etc.



Rigid equivalence
When are two shapes related by a rigid motion?

?



Tennis,	anyone?

☞ Projective	equivalence	&	symmetry

?



Duck = Rabbit?



Limitations of Projective Equivalence

=⇒ K. Åström (1995)
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Fig. 4 
(Si) yare placed around CO in the case m = 4. The curve rj is projected into 
an almost circular curve nj(rj) with a small ripple around Pj. This is illus- 
trated in the right figure. 

The left figure illustrates how the points (P,) :and the closed regions 

around P, smaller but at the same time the contractive properties of 
the inverse transformation on a region like U,,, S, is increased, cf. the 
discussion after (1 1). By the construction in the proof of Theorem 1 it 
is thus possible to select a transformation n,, and also to cut each 
curve r’ into two pieces r,,local, and r,,,,,, so that the following prop- 
erties are obtained: 

~, ( r ’ . l oco / )  = U, #, S, 
n,(r,,rev) c S, 
d(qr,),C,,) < 1 1 m. 
l(Z,(r, ,,,*)) < 3 1 m. 
q, = n,-’ shrinks all curves in U, +, S, of arclength less than 
a constant M = 3n + 2 into a curve with arclength less than 
d2. The reason for the choice of constant will become 
clear later. 

Let C be constructed by gluing the patches nj(rj,,,,s,) and the line 
segments obtained by radially connecting the endpoints of nj(rj,re,J 
Both C \ nj(rj.rcsr) and nf(rj./ocoJ are in U i  Si. Since C is a patch of 
m curves each with arclength less than 3 n lm, and of m radial line 
segments of length less than 2/m, the total arclength of C \ nj(T;,rpsr) is 
certainly less than M = 3x + 2. By the contractive properties of qj, 
this means that l(qj(C \ zj(rj,re.J)) < d2. The curve nj(rj,/oco/) also has 
arclength less than M, so l(r,,,,,,,)) < d2. Since these curves have the 
same endpoints, it follows that 

The remaining part of C is nj(rj,re.vr), which is mapped identically into 

Notice that the transformations qj are physically realisable in the 
pinhole camera model. The construction of C and qi in the proof can 
be done by explicit formulas. An algorithm based on the proof has 
been implemented in MATLAB. Fig. 3. has been constructed using 
this algorithm. Fig. 5. shows what the mixed curve C looks like from 
eight different viewpoints. Observe that these eight different views 
are all projectively equivalent. Notice the kind of extreme, but non- 
singular, projective transformations that are involved. 

rj,rtw by 4,. Hence d(qj(C),r,) < E. 

IV. IMPLICATIONS FOR INVARIANTS 
By an invariant under a set of transformations P on @ is meant a 

function $ on & with values in some set V such that $(C) = $@(C)) 
for every curve C E @ and every transformation p E P. If @ and V 
are metric spaces, we can talk about continuity of invariants. 

One consequence of Theorem 1 is that in every neighbourhood of 
the circle Ne,c8, = (C  I d(C,C,,) < E), $ attains every value that it at- 

__ 

tains on g. In particular if c$ is non-constant on 2, this means that c$ 
is discontinuous at Co. 

This is however not a very useful observation. Discontinuities of 
this kind appear for many of the most valuable invariants. For in- 
stance whenever the group of transformations contains the similarity 
group, each object can be contracted into an €-neighbourhood of the 
origin, where thus @ attains all its values and becomes discontinuous. 
Thus e.g. even the crossratio has discontinuities in this sense, which 

Fig. 5.  Eight projectively equivalent views of the same planar curve. The duck 
transforms into something that looks like a circle and then into a rabbit. A 
closer look at the fourth curve reveals that the north and south pole is slightly 
rippled, see the magnifications. 

tells us that the property of having a discontinuity at one point is not 
very informative. 

More interesting conclusions about invariants can be obtained 
from Theorem 3. 

CorolrcUy 4: Every projective invariant + from @ to a metric 
space V, e.g. the real line, maps all curves at which it is continuous 
onto the same value. 

Proof: 
Assume to the contrary that r l  = $(I-,) # r, = ~ r 2 ) ,  and that 4 is 

continuous both at rl and r2. It is possible to find disjoint open sets 
0, 3 r ,  and O2 3 r2. According to Theorem 3 the inverse images $’ (0,) and @‘ (O,), which are open sets around TI and r,, contain a 
projectively equivalent pair of curves, contradicting the assumption. 

a 

V. CONCLUSIONS 

Corollary 4 tells that for invariants the properties of being con- 
tinuous and discriminating are contradictory. Notice that the theorem 
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Thatcher Illusion

=⇒ Groupoid equivalence?



Thatcher Illusion

=⇒ Groupoid equivalence?



Local equivalence of puzzle pieces



Local equivalence of puzzle pieces



The Equivalence Problem
When are two shapes related by a group transformation?

Invariants

✯✯  Solving the equivalence problem requires knowing    
enough invariants



If two shapes are equivalent, 
they must have the same invariants.

Invariants are quantities that are unchanged by 
the group transformations

Invariants



Joint	invariants

An	invariant that	depends	on	several	points	is	known	as	a
joint	invariant

●

● ●

●

●



Joint	invariants

Rigid	motions:				 distance	between	two	points

●

●d



Joint	invariants

Similarity	group:				
ratios	of	distances		R	=	d/e		and	angles		q

●

●d

●

eq



A B

C

D

AB

C D

Joint	invariants

Projective	group:				 ratios	of	4	areas



Yes:

η = 1, 1, 1, 1,
√
2,

√
2.

Distances	between	multiple	points



Yes:

η = 1, 1, 1, 1,
√
2,

√
2.

The	Distance	Histogram	—
invariant	under	rigid	motions



Does the distance histogram 
uniquely determine a set of points

up to rigid motion?

If	two	sets	of	points	are	equivalent	up	to	rigid	
motion,	they	have	the	same	distance	histogram



Does the distance histogram 
uniquely determine a set of points

up to rigid motion?

Answer:		Yes	for	most	sets	of	points,	but	there	are	some	exceptions!

✩✩ Mireille	(Mimi)	Boutin and	Gregor Kemper		(2004)



Yes:

η = 1, 1, 1, 1,
√
2,

√
2.

Does the distance histogram 
uniquely determine a set of points

up to rigid motion?



No:

Kite Trapezoid

η =
√
2,

√
2, 2,

√
10,

√
10, 4.

Does the distance histogram 
uniquely determine a set of points

up to rigid motion?



● ●● ●●●

Distance histogram for points on a line

Does the distance histogram 
uniquely determine a set of points

on a line up to translation?



No:

P = {0, 1, 4, 10, 12, 17}

Q = {0, 1, 8, 11, 13, 17}
⊂ R

η = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17

=⇒ G. Bloom, J. Comb. Theory, Ser. A 22 (1977) 378–379

● ●● ●●●

Distance histogram for points on a line



Limiting Curve Histogram

Brinkman,	D.,	and	Olver,	P.J.,	Invariant	histograms,	Amer.	Math.	Monthly	119	(2012),	4-24



Distinguishing Moles from Melanomas

• Anna	Grim	and	Cheri	Shakiban,	2015



Distance	Histogram			— Melanoma



Distance	Histogram			— Mole



CUMULATIVE HISTOGRAM:
Mole   versus   Melanoma



TYPICAL MOLE 
CUMULATIVE HISTOGRAM



TYPICAL MELANOMA 
CUMULATIVE HISTOGRAM



CONCAVITY POINT ANALYSIS



MOLE					 MELANOMA					



For	smooth	objects			— curves,	surfaces,	etc.,	

we	need	to	use	calculus to	find

Differential	Invariants



Curvature is a measure of “bendiness”.

bendy

flat

A Differential Invariant



Curvature

r = 1/κ

Curvature		=			reciprocal	of	radius	of	osculating	circle



What everyday device can measure curvature?

Curvature is a measure of “bendiness”.





time

left

right



left

right

time

Can you reconstruct the racetrack?



left

right

time
odometer

Can you reconstruct the racetrack?



Can you reconstruct the racetrack?

is (Euclidean) curvature

is (Euclidean) arclength



Racetrack comparison problem



Racetrack comparison problem

=	rate	of	change				
(derivative)	
of	curvature



The Invariant Signature
The invariant signature of a planar curve is the set 
traced out by curvature and the rate of change of 
curvature (its arclength derivative).

original curve invariant signature



The invariant signature
Theorem 
Two regular curves are related by a group transformation 
if and only if they have the same invariant signatures.

(Calabi, Haker, Olver, Shakiban, Tannenbaum 1998)

Proof idea 

Shapes are related if and only if they have the same 
relationships among their differential invariants.

Theorem (Élie Cartan 1908)



Themathematical theory is all based on the new
equivariantmethod ofmoving frames,which provides a
systematic and algorithmic calculus for constructing
complete systems of differential invariants,
joint invariants, joint differential invariants,
invariant differential operators, invariant differential forms,
invariant variational problems, invariant conservation laws,
invariant numerical algorithms, invariant signatures,
etc., etc.

Moving Frames
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Moving Coframes: II. Regularization and
Theoretical Foundations

MARK FELS⋆ and PETER J. OLVER⋆⋆
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, U.S.A.
e-mail: fels@math.umn.edu olver@ima.umn.edu

(Received: 16 November 1998)

Abstract. The primary goal of this paper is to provide a rigorous theoretical justification of Car-
tan’s method of moving frames for arbitrary finite-dimensional Lie group actions on manifolds.
The general theorems are based a new regularized version of the moving frame algorithm, which
is of both theoretical and practical use. Applications include a new approach to the construction and
classification of differential invariants and invariant differential operators on jet bundles, as well as
equivalence, symmetry, and rigidity theorems for submanifolds under general transformation groups.
The method also leads to complete classifications of generating systems of differential invariants,
explicit commutation formulae for the associated invariant differential operators, and a general clas-
sification theorem for syzygies of the higher order differentiated differential invariants. A variety
of illustrative examples demonstrate how the method can be directly applied to practical problems
arising in geometry, invariant theory, and differential equations.

Mathematics Subject Classifications (1991): 53A55, 58D19, 58H05, 68U10.

Key words: moving frame, Lie group, jet bundle, prolongation, differential invariant, equivalence,
symmetry, rigidity, syzygy.

1. Introduction

This paper is the second in a series devoted to the analysis and applications of the
method of moving frames and its generalizations. In the first paper [9], we intro-
duced the method of moving coframes, which can be used to practically compute
moving frames and differential invariants, and is applicable to finite-dimensional
Lie transformation groups as well as infinite-dimensional pseudo-group actions.
In this paper, we introduce a second method, called regularization, that not only
provides, in a simple manner, the theoretical justification for the method of moving
frames in the case of finite-dimensional Lie group actions, but also gives an alterna-
tive, practical approach to their construction. The regularized method successfully
bypasses many of the complications inherent in traditional approaches by com-
pletely avoiding the usual process of normalization during the general computation.
In this way, the issues of branching and regularity do not arise. Once a moving
⋆ Supported in part by an NSERC Postdoctoral Fellowship.
⋆⋆ Supported in part by NSF Grant DMS 95-00931.

ACAP1384.tex; 9/02/1999; 8:05; p.1
VTEX(EL) PIPS No.: 200457 (acapkap:mathfam) v.1.15



3DDifferential Invariant Signatures

Euclidean space curves: C ⊂ R3

Σ = { (κ , κs , τ ) } ⊂ R
3

• κ — curvature, τ — torsion

Euclidean surfaces: S ⊂ R3 (generic)

Σ =
{ (

H , K , H,1 , H,2 , K,1 , K,2

) }
⊂ R

6

or Σ̂ =
{ (

H , H,1 , H,2 , H,11

) }
⊂ R

4

• H — mean curvature, K — Gauss curvature

Equi–affine surfaces: S ⊂ R3 (generic)

Σ =
{ (

P , P,1 , P,2, P,11

) }
⊂ R

4

• P — Pick invariant



The polar curve r = 3 + 1
10 cos 3θ
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Numerical Signature

Bivertex Arcs

The signature Σ of a bivertex arc is a single arc that
starts and ends on the κ–axis.

κ
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Bivertex Arcs

The signature Σ of a bivertex arc is a single arc that
starts and ends on the κ–axis.

κ

κs



The Curve x = cos t+ 1
5 cos

2 t, y = sin t+ 1
10 sin

2 t
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The Curve x = cos t+ 1
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Object Recognition

=⇒ Steve Haker
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Diagnosing breast tumors

Benign			— cyst Malignant			— cancerous

Anna	Grim,	Cheri	Shakiban



A BENIGN TUMOR

Contour Signature Curve



A MALIGNANT TUMOR

Contour Signature Curve



Applications to
Jigsaw Puzzles

and Broken Objects



Step 1. Numerically compute invariant signatures of (parts of) pieces.
Step 2. Compare signatures to find potential fits.

Automatic puzzle reassembly

Step 3. Put them together, if they fit, as closely as possible.

Repeat steps 1–3 until puzzle is assembled….

Step 0. Digitally photograph and smooth the puzzle pieces.



Localization of Signatures

Generalized vertex: κs ≡ 0
=⇒ critical point; circular arc; straight line segment

Bivertex arc: κs ̸= 0 everywhere
except κs = 0 at the two endpoints

Localization of Signatures

Generalized vertex: κs ≡ 0
=⇒ critical point; circular arc; straight line segment

Bivertex arc: κs ̸= 0 everywhere
except κs = 0 at the two endpoints

Bivertex Arcs

The signature Σ of a bivertex arc is a single arc that
starts and ends on the κ–axis.
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Gravitational/Electrostatic Attraction

⋆ Treat the two (signature) curves as masses or as oppositely
charged wires. The higher their mutual attraction, the
closer they are together.

⋆ In practice, we are dealing with discrete data (pixels) and
so treat the curves and signatures as point masses/charges.

κ

κs

κ

κs



Piece Locking

⋆ ⋆ Minimize force and torque based on gravitational
attraction of the two matching edges.





The	Baffler	Nonagon



The	Baffler	Nonagon		— Solved





Putting Humpty Dumpty Together Again

Anna	Grim,	Ryan	Slechta,	Tim	O’Connor,	Rob	Thompson,	Cheri	Shakiban,	Peter	Olver



A broken ostrich egg

(Scanned by M. Bern, Xerox PARC)



A synthetic 3d jigsaw puzzle



Assembly	of	synthetic	spherical	puzzle

• Uses	curvature	and	torsion	invariants



An egg piece



All the king’s horses and men



The elephant bird business plan



The elephant bird of Madagascar

more than 3 meters tall

extinct by the 1700’s

one egg could make about 160 omelets

(Image	from	wikipedia.org)



(Extract from “Zoo Quest to Madagascar”, BBC 1961)

Elephant bird egg shells



The elephant bird of Madagascar

pictured egg is 70% complete

complete egg recently sold for $100,000

(Image	from	Tennant’s	Auctioneers)



Puzzles in archaeology



Puzzles in archaeology



Puzzles in surgery



Puzzles in anthropology



Bone fragment



Mean curvature



Segmentation
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Could history of humans in North America be
rewritten by broken bones?
Smashed mastodon bones show humans arrived over 100,000 years earlier than previously
thought say researchers, although other experts are sceptical

Ian Sample Science editor
Wednesday 26 April 2017 13.00 EDT

The history of the people of America, a story that dates back to the last ice age, has been
upended by the battered bones of a mastodon found under a freeway construction site in
California.

Archaeological sites in North America have led most researchers to believe that the continent
was first reached by humans like us, Homo sapiens, about 15,000 years ago. But inspection of
the broken mastodon bones, and large stones lying with them, point to a radical new date for
the arrival of ancient humans. If the claim stands up, humans arrived in the New World
130,000 years ago.

Thomas Deméré, curator of palaeontology at the San Diego Natural History Museum which led
the project, said: “Of course extraordinary claims like this require extraordinary evidence,”
adding that the team believed “the site preserves such evidence”. Anticipating the disbelief of
many experts in the field, Steven Holen, another project scientist at the Center for Paleolithic
Research, said: “I know people will be sceptical about this.” That caution was summed up by
one scientist who preferred not to be named: “They are going to face a shitstorm,” he said.

The partial remains of the American mastodon, a long gone relative of the modern elephant,
were discovered in San Diego in the winter of 1992 during a freeway expansion project. When
researchers moved in they found layers of fine sediments deposited by streams, bearing shells,
rodent teeth, and wolf and horse bones. In one layer they found the mastodon, a beast that
could reach a height of three metres and weighed eight tonnes when fully grown. The animals
had roamed North America for millions of years.

The bones posed an immediate puzzle. The pattern of the fossilised limbs, the obvious
damage, and stones found alongside them raised enough questions that the scientists brought
in other experts and launched a detailed analysis of the remains and surrounding site.
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The results of the investigation, reported in the journal Nature, build a case for the mastodon

bones being “processed”, a term that translates into more frank terms such as smashed,

cracked and snapped. Unlike the wolf and horse bones found in other layers at the site, the

ends of some of the mastodon bones had been broken off, as if to extract nutritious bone

marrow. Others had been battered. One of the animal’s tusks poked upright in the ground,

perhaps by chance, or perhaps to serve as a marker for the remains.

Intriguingly, the bones were found in two rough piles, each with two or three large rocks

measuring 10 to 30cm across. The scientists believe the stones are too heavy to have been

carried there in the flow of a stream, and instead suspect they were carried by humans for use

as hammerstones and anvils to break the bones apart. “What is truly remarkable about this site

is that you can identify particular hammers that were smacked on particular anvils,” said

Richard Fullagar, a stone tools expert on the team from the University of Wollongong in New

South Wales. Pieces knocked off the stones and bones were found too.

“We have no evidence that this is a kill or butchery site, but we do have evidence that people

Using leg bone used from an elephant that had recently died of

natural causes, a breakage experiment was carried out in an

attempt to determine the kinds of breakage patterns that might

result from hammerstone percussion. Photograph: Kate Johnson,

San Diego Natural History MuseumCMS-Figure-2
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