Reassembl cf
Broken O jects

Peter J. Olver
University of Minnesota
http://www.math.umn.edu/~olver

Madrid, Se}otemﬁer, 2017



> Group “[heory!



Nezxt to the concept of a function, which

18 the most important concept pervading

the whole of mathematics, the concept of
a group 1s of the greatest significance in the
various branches of mathematics and ts

applications.

— P.S. Alexandroft




Groups

Definition. A group G is a set with a
binary operation ¢ - h satistying
e Associativity: g¢-(h-k)= (g -h) -k
o [dentity: g-e=g=e-g

e Inverse: g-g l=e= gl-g

—> not necessarily commutative: ¢g-h#h-g



The integers
.,-4,-3,-2,-1,0,1, 2, 3,4, ..

Group operation: addition 3+5=8
ldentity: zero 3+0=3=0+3

Inverse: negative 7+ (-7)=0=(-7)+7



The rational numbers (fractions)

Group operation: addition 1/4+5/3 =23/12
|dentity: zero 5/3+0=5/3=0+5/3
Inverse: negative 7/2+(-7/2)=0=(-7/2)+7/2



The positive rational numbers

Group operation: multiplication 1/4 x5/3 =5/12
ldentity: one 5/3x1=5/3=1x5/3
Inverse: reciprocal 7/2x2/7=1=2/7x7/2



The positive real numbers

Group operation: multiplication

V2 x m =27 = 4.44288293815836624701588099006....
Identity: one mxl=m=1xm

Inverse: reciprocal nxl/mt=1=1/ntxm



Non-singular 2 x 2 matrices

9:<a 2) h=<x y) ad — bc # 0 # 2w — yz

C < W

Group operation:

_(az+bz ay+bw ar+cy br+dy) _
gh_(cx+dz cy—l—dw>7£<az—|—cw bz—|—dw>_hg

Identity: e:<(1) (1)>, e-g=g=g-e€

1 _
Inverse: ¢ * ( d b), g-gl=el=g-g



Symmetry Ggroups
A symmetry g of a geometric object S is a transformation that preservesit: g:-S=S
The set of symmetries of a geometric object forms a
The group operation is composition: g-h = firstdo h, thendo g

The composition of two symmetries is a symmetry

The identity (do nothing) is always a symmetry

The inverse of a symmetry (undo it) is a symmetry



Symmetry

Definition. A symmetry of a set S is a transforma-
tion that preserves it:

g-S==95

* *x The set of symmetries forms a group Gg, called
the symmetry group of the set S.



Discrete Symmetry Group

Rotations by 902, 1802, 2702

and 02 (identity)

... and 4 reflections
(mirror image)




Wallpaper patterns

** 17 symmetry types **






Tiling — The Alhambra, Spain
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Crystallography

% 230 groups




The Koch snowflake — a fractal curve

% Scaling symmetry
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M.C. Escher — Circle Limit TV

## Conformal symmetry



Continuous Symmetry Group

Rotations through any angle

and reflections
and conformal inversions

_ z _ Y
i— =

$2—|—y2 Y x2_|_y2




Continuous Symmetry Group = Lie Group

Rotations through any angle

and reflections
and conformal inversions

_ z _ Y
i— =

$2_|_y2 Y x2_|_y2

A continuous symmetry group is known as a
Lie group in honor of the nineteenth century
Norwegian mathematician Sophus Lie




Continuous Symmetries of a Square
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Symmetry

* To define the set of symmetries requires a priori
specification of the allowable transformations

(G — transformation group containing all allowable
transformations of the ambient space M

Definition. A symmetry of a subset S C M is an
allowable transformation g € G that preserves it:

g-S=>=_5



What is the Symmetry Group?

Allowable transformations:

Rigid motions

G = SE(2) = SO(2) x R?

GS:Z4[><22




What is the Symmetry Group?

Allowable transformations:

Rigid motions

G = SE(2) = SO(2) x R?

Ggs = e}




Local Symmetries

Definition. ¢ € G is a local symmetry of § € M
based at a point z € S if there is an
open neighborhood z € U C M such that

g-(SNU)=5n(g-U)

*x % The set of all local symmetries forms a groupoid!



Definition. A groupoid is a small category such that
every morphism has an inverse.

* Groupoids form the appropriate framework for
studying objects with variable symmetry.

*  Symmetry groupoids are not necessarily Lie groupoids



Groupoids

—> In practice you are only allowed to multiply
groupoid elements g - h when

source (domain) of g = target (range) of h

1

Similarly for inverses ¢~ and the identities e.

A groupoid is a “collection of arrows”:



Jet Groupoids
—> FEhresmann

The set of Taylor polynomials of degree < n, or
Taylor series (n = o00) of local diffeomorphisms
U: M — M forms a groupoid.

{ Algebraic composition of Taylor polynomials/series
is well-defined only when the source of the second
matches the target of the first.

—> Lie pseudo-groups



What is the Symmetry Groupoid?

G = SE(2)
Corners:
Gz — GS — Z4

Sides: G, generated by
Gg =124

some translations

180° rotation around 2z




Transformation groups

Translations

—



Transformation groups

Rotations

—



Noncommutativity of 3D rotations — order matters!

Physics e
(2) Rotated 90 (3) Rotated about
degrees about x. X, then y.

(1) The book in its

original orientation. %7 ‘/ >

L

(5) Rotated about
y, then x.

Physics

(4) Rotated 90
degrees about y.




Transformation groups

Reflections




Transformation groups

Scaling (similarity)

T —



Transformation groups

Projective Transformation

—



Transformation groups

Projective Transformation




Projective transformations in art and photography

Albrecht Durer — 1500



Geometry = Group Theory

Felix Klein's Erlanger Programm (1872):

Each type of geometry is founded on a corresponding

Euclidean geometry:

“Mirror” geometry:
Similarity geometry:

Projective geometry:

transformation group.

rigid motions (translations and rotations)

translations, rotations, and reflections
translations, rotations, reflections, and scalings

all projective transformations



The Equivalence Problem

When are two shapes related by a group transformation?

 Rigid (Euclidean) equivalence
* Similarity equivalence

* Projective equivalence

* etc.



Rigid equivalence

When are two shapes related by a rigid motion?



Tennis, anyone?

1= Projective equivalence & symmetry



Duck = Rabbit?




Limitations of Projective Equivalence

— K. Astrém (1995)



Thatcher Illusion




Thatcher Illusion




Local equivalence of puzzle pieces

S
L2

C



Local equivalence of puzzle pieces

C




The Equivalence Problem

When are two shapes related by a group transformation?

Invariants

* % Solving the equivalence problem requires knowing
enough invariants



Invariants

Invariants are quantities that are unchanged by
the group transformations

Y If two shapes are ,
they must have the same invariants.



Joint invariants

An invariant that depends on several points is known as a
joint invariant



Joint invariants

Rigid motions: distance between two points

/



Joint invariants

Similarity group:
ratios of distances R =d/e and angles 6




Joint invariants

Projective group: ratios of 4 areas

V

AB



Distances between multiple points




The Distance Histogram —
invariant under rigid motions




If two sets of points are equivalent up to rigid
motion, they have the same distance histogram

Does the distance histogram
uniquely determine a set of points
up to rigid motion?



Does the distance histogram
uniquely determine a set of points
up to rigid motion?

Answer: Yes for most sets of points, but there are some exceptions!

wyc  Mireille (Mimi) Boutin and Gregor Kemper (2004)



Yes:

Does the distance histogram
uniquely determine a set of points
up to rigid motion?




Does the distance histogram
uniquely determine a set of points
up to rigid motion?

No:
Kite Trapezoid

"

V2, V2, 2. V10, V10, 4.




‘Distance ﬁistogmm for ]ooints on a line

Does the distance histogram
uniquely determine a set of points
on a line up to translation?



‘Distance ﬁistogmm for Jooints on a line

e e e P e 0 N

No:

P=1{0,1,4,10,12,17}
Q=1{0,1,8,11,13,17}

n=123,4,5,6,7,8,9,10,11,12,13,16, 17

—> G. Bloom, J. Comb. Theory, Ser. A 22 (1977) 378-379



Limiting Curve Histogram

IS SanesS =i

Brinkman, D., and Olver, P.J., Invariant histograms, Amer. Math. Monthly 119 (2012), 4-24



Distinguishing Moles from Melanomas

* Anna Grim and Cheri Shakiban, 2015



Distance Histogram

— Melanoma




Distance Histogram — Mole




CUMULATIVE HISTOGRAM:
Mole versus Melanoma
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TYPICAL MOLE
CUMULATIVE HISTOGRAM




TYPICAL MELANOMA
CUMULATIVE HISTOGRAM




CONCAVITY POINT ANALYSIS

1000 1500 2000 2500




CONCAVITY POINT FREQUENCY

LEVEL 1 LEVEL 2 LEVELS3 TOTAL

B MOLE B MELANOMA




For smooth objects — curves, surfaces, etc.,

we need to use calculus to find

Differential Invariants



A Differential Invariant

Curvature is a measure of “bendiness”.

bendy

'

flat \



Curvature = reciprocal of radius of osculating circle



Curvature is a measure of “bendiness”.

What everyday device can measure curvature?







left

-/\ time

right



Can you reconstruct the racetrack?

left

/\ (/\J\ = time

|

right



Can you reconstruct the racetrack?

left

/\ (/\J\ P— |

odometer

right



Can you reconstruct the racetrack?

K is (Euclidean) curvature

S is (Euclidean) arclength

K

/\/\J\/\

S




Racetrack comparison problem




Racetrack comparison problem

dk/ds

K = rate of change
(derivative)
of curvature




The Invariant Signature

The of a planar curve is the set
traced out by curvature and the rate of change of
curvature (its arclength derivative).

dk/ds

original curve Invariant signature



Theorem

Two regular curves are related by a group transformation
if and only if they have the same invariant signatures.

Proof idea

Theorem (Elie Cartan 1908)

Shapes are related if and only if they have the same
relationships among their differential invariants.

(Calabi, Haker, Olver, Shakiban, Tannenbaum 1998)




ﬂ\/loving Frames

The mathematical theory is all based on the new
, Which provides a

systematic and algorithmic calculus for constructing
complete systems of differential invariants,
jointinvariants, jointdifferentialinvariants,
invariant differential operators, invariant differential forms,
invariant variational problems, invariant conservation laws,
invariant numerical algorithms,

etc., etc.

’



A Acta Applicandae Mathematicae 55: 127-208, 1999. 127
“ © 1999 Kluwer Academic Publishers. Printed in the Netherlands.

Moving Coframes: II. Regularization and
Theoretical Foundations

MARK FELS* and PETER J. OLVER**
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, U.S.A.
e-mail: fels@math.umn.edu  olver@ima.umn.edu

(Received: 16 November 1998)

Abstract. The primary goal of this paper is to provide a rigorous theoretical justification of Car-
tan’s method of moving frames for arbitrary finite-dimensional Lie group actions on manifolds.
The general theorems are based a new regularized version of the moving frame algorithm, which
is of both theoretical and practical use. Applications include a new approach to the construction and
classification of differential invariants and invariant differential operators on jet bundles, as well as
equivalence, symmetry, and rigidity theorems for submanifolds under general transformation groups.
The method also leads to complete classifications of generating systems of differential invariants,
explicit commutation formulae for the associated invariant differential operators, and a general clas-
sification theorem for syzygies of the higher order differentiated differential invariants. A variety
of illustrative examples demonstrate how the method can be directly applied to practical problems
arising in geometry, invariant theory, and differential equations.

Mathematics Subject Classifications (1991): 53A55, 58D19, 58H05, 68U10.

Key words: moving frame, Lie group, jet bundle, prolongation, differential invariant, equivalence,
symmetry, rigidity, syzygy.

1. Introduction

This paper is the second in a series devoted to the analysis and applications of the
method of moving frames and its generalizations. In the first paper [9], we intro-
duced the method of moving coframes, which can be used to practically compute
moving frames and differential invariants, and is applicable to finite-dimensional
Lie transformation groups as well as infinite-dimensional pseudo-group actions.
In this paper, we introduce a second method, called regularization, that not only
provides, in a simple manner, the theoretical justification for the method of moving
frames in the case of finite-dimensional Lie group actions, but also gives an alterna-
tive, practical approach to their construction. The regularized method successfully
bypasses many of the complications inherent in traditional approaches by com-
pletely avoiding the usual process of normalization during the general computation.
In this way, the issues of branching and regularity do not arise. Once a moving

* Supported in part by an NSERC Postdoctoral Fellowship.
** Supported in part by NSF Grant DMS 95-00931.




3D Differential Invariant Signatures

Euclidean space curves: C C R?3

={(r, ks, T)} C R’

e s — curvature, 7 — torsion

Euclidean surfaces: S C R3 (generic)

v={(H,K,H, ,H,, K, ,K,)} C R

oo »={(H,H,,H, Hy )} C R*

e H — mean curvature, K — Gauss curvature



The polar curve r =3 + % cos 36

The Original Curve  Euclidean Signature  Numerical Signature



The Curve = = cost + %cos2 t, y=sint + %sin%

The Original Curve  Euclidean Signature  Equi-affine Signature



The Curve x = cost + %COSQt, Yy = %az+sint+ %Osin%

g

The Original Curve  Euclidean Signature  Equi-affine Signature



Object Recognition

;

—> Steve Haker
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@iagnosing breast tumors

Anna Grim, Cheri Shakiban

Benign — cyst Malighant — cancerous



A BENIGN TUMOR

Contour Signature Curve

f m«ﬂ\




A MALIGNANT TUMOR

Contour Signature Curve







Automatic puzzle reassembly

S
L - C

Step 0. Digitally photograph and smooth the puzzle pieces.

Step 1. Numerically compute invariant signatures of (parts of) pieces.

Step 2. Compare signatures to find potential fits.
Step 3. Put them together, if they fit, as closely as possible.

Repeat steps 1-3 until puzzle is assembled....



Localization of Signatures

Bivertex arc: k, # 0 everywhere
except k, = 0 at the two endpoints

The signature >. of a bivertex arc is a single arc that
starts and ends on the k—axis.

Rg




Gravitational /Electrostatic Attraction

* Treat the two (signature) curves as masses or as oppositely
charged wires. The higher their mutual attraction, the
closer they are together.

* In practice, we are dealing with discrete data (pixels) and
so treat the curves and signatures as point masses/charges.

kg Rg




Piece Locking

* % Minimize force and torque based on gravitational
attraction of the two matching edges.
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——  Anna Grim, Ryan Slechta, Tim O’Connor, Rob Thompson, Cheri Shakiban, Peter Olver



A broken ostrich egg




A synthetic 3d jigsaw puzzile




Assembly of synthetic spherical puzzle

e Uses curvature and torsion invariants



An egg piece
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All the king’s horses and men

)



The elephant bird business plan



The elephant bird of Madagascar

Aepyornis maximus

M struthio camelus

(Image from wikipedia.org)

@ more than 3 meters tall

@ extinct by the 1700’s

@ one egg could make about 160 omelets



Elephant bird egg shells

(Extract from “Zoo Quest to Madagascar”, BBC 1961)



The elephant bird of Madagascar

(Image from Tennant’s Auctioneers)

@ pictured egg is 70% complete

@ complete egg recently sold for $100,000



Puzzles 1n archaeology
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Puzzles 1n archaeology
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Puzzles in surgery




Puzzles in antﬁro]oofo(gy




‘Bone fmgment




‘Mean curvature
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guardian

Could history of humans in North America be
rewritten by broken bones?

Smashed mastodon bones show humans arrived over 100,000 years earlier than previously
thought say researchers, although other experts are sceptical

Ian Sample Science editor
Wednesday 26 April 2017 13.00 EDT




Acknowledgments:

Thanks to Rob T ﬁom}oson and Cheri Shakiban for sﬁaring their slides!

Undergraduates: Dan Brinkman, Anna Grim, Dan Hoff, Tim O’Connor, Ryan Slechta

Ph.D. students (past and present): Mimi Boutin, Steve Haker, David Richter, Jessica Senou,
Rob Thompson, Katrina Yezzi-Woody

Collaborators: Eugene Calabi, Jeff Calder, Cheri Shakiban, Allen Tannenbaum



