Symmetry and invariance in cognition a mathematical perspective

Peter J. Olver University of Minnesota http://www.math.umn.edu/~olver

Harvard, Apríl 2019

Sophus Líe (1842–1899)

Elíe Cartan (1869–1951)

Garrett Bírkhoff (1911–1996)

Symmetry

Why are humans so attuned to symmetry?

Mathematically ...

Mathematically ...

Group Theory

Next to the concept of a function, which is the most important concept pervading the whole of mathematics, the concept of a group is of the greatest significance in the various branches of mathematics and its applications.

— P.S. Alexandroff

Hístory of Group Theory

Solution of polynomial equations (exploiting symmetries of the roots)

- Quadratic formula Diophantus, Brahmagupta, Al Khwarizmi, etc.
- Cubic Ferro, Tartaglia, Cardano (1545)
- Quartic Ferrara , Cardano (1545)
- Quintic and higher degree Lagrange (1770), Ruffini (1799), Abel (1824), Galois (1832)

finite and discrete groups

Solution of differential equations

- Sophus Lie (1876)
- Picard & Vessiot (1892)

Lie groups and pseudo-groups

The Quadratic Formula

$$ax^2 + bx + c = 0$$

$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

The Quadratic Formula

$$ax^2 + bx + c = 0$$

$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$
$$= u \pm v$$

Groups

- **Definition.** A group G is a set with a binary operation $g \cdot h$ satisfying
 - Associativity: $g \cdot (h \cdot k) = (g \cdot h) \cdot k$
 - Identity: $g \cdot e = g = e \cdot g$
 - Inverse: $g \cdot g^{-1} = e = g^{-1} \cdot g$

 \implies not necessarily commutative: $g \cdot h \neq h \cdot g$

The integers

..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...

Group operation: addition 3 + 5 = 8Identity: zero 3 + 0 = 3 = 0 + 3Inverse: negative 7 + (-7) = 0 = (-7) + 7

The rational numbers (fractions)

Group operation: addition 1/4 + 5/3 = 23/12Identity: zero 5/3 + 0 = 5/3 = 0 + 5/3Inverse: negative 7/2 + (-7/2) = 0 = (-7/2) + 7/2

The positive rational numbers

Group operation: multiplication $1/4 \ge 5/3 = 5/12$ Identity: one $5/3 \ge 1 \ge 5/3 = 1 \ge 5/3$ Inverse: reciprocal $7/2 \ge 2/7 = 1 = 2/7 \ge 7/2$

The positive real numbers

Group operation: multiplication

Non-singular 2 x 2 matrices

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad h = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \qquad ad - bc \neq 0 \neq xw - yz$$

Group operation:

$$g \cdot h = \begin{pmatrix} ax + bz & ay + bw \\ cx + dz & cy + dw \end{pmatrix} \neq \begin{pmatrix} ax + cy & bx + dy \\ az + cw & bz + dw \end{pmatrix} = h \cdot g$$

Identity: $e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad e \cdot g = g = g \cdot e$
Inverse: $g^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \quad g \cdot g^{-1} = e^{-1} = g \cdot g$

Symmetry Groups

A symmetry g of a geometric object S is

an invertible transformation that preserves it: $g \cdot S = S$

Symmetry Groups

A symmetry g of a geometric object S is

an invertible transformation that preserves it: $g \cdot S = S$

The set of symmetries of a geometric object forms a group

Symmetry Groups

A symmetry g of a geometric object S is an invertible transformation that preserves it: $g \cdot S = S$

The set of symmetries of a geometric object forms a group

The group operation is composition: $g \cdot h = first do h$, then do g

Symmetry Groups

A symmetry g of a geometric object S is an invertible transformation that preserves it: $g \cdot S = S$ The set of symmetries of a geometric object forms a group The group operation is composition: $g \cdot h = first do h$, then do g The composition of two symmetries is a symmetry The identity (do nothing) is always a symmetry

The inverse of a symmetry (undo it) is a symmetry

Symmetry

Definition. A symmetry of a set S is a transformation that preserves it:

$$g \cdot S = S$$

★★ The set of symmetries forms a group G_S , called the symmetry group of the set S.

Discrete Symmetry Group

Discrete Symmetry Group

Rotations by 90°, 180°, 270°

Discrete Symmetry Group

Rotations by 90°, 180°, 270°

and 0^o (identity)

Wallpaper patterns

Tiling — The Alhambra, Spain

Tilings — Jameh Mosque, Esfahan, Iran

The Koch snowflake -a fractal curve

The Koch snowflake -a fractal curve

Dome of the Sheikh Lotfollah Mosque – Isfahan, Iran

M.C. Escher — Circle Limit IV

M.C. Escher — Circle Limit IV

† Conformal symmetry

Rotations through any angle

Rotations through any angle and reflections

Rotations through any angle and reflections

and conformal inversions

$$\overline{x} = \frac{x}{x^2 + y^2} \quad \overline{y} = \frac{y}{x^2 + y^2}$$

Continuous Symmetry Group = Lie Group

Rotations through any angle

and reflections

and conformal inversions

$$\overline{x} = \frac{x}{x^2 + y^2} \quad \overline{y} = \frac{y}{x^2 + y^2}$$

A continuous symmetry group is known as a Lie group in honor of the nineteenth century Norwegian mathematician Sophus Lie

Continuous Symmetries of a Square

Symmetry

- \star To define the set of symmetries requires a priori specification of the allowable transformations
- G transformation group containing all allowable transformations of the ambient space M

Definition. A symmetry of a subset $S \subset M$ is an allowable transformation $g \in G$ that preserves it:

$$g \cdot S = S$$

What is the Symmetry Group?

Allowable transformations: Rigid motions $G = SE(2) = SO(2) \ltimes \mathbb{R}^2$

What is the Symmetry Group?

Allowable transformations: Rigid motions $G = SE(2) = SO(2) \ltimes \mathbb{R}^2$

Translations + rotations through 90 degrees:

$$G_S = \mathbb{Z}_4 \ltimes \mathbb{Z}^2$$

What is the Symmetry Group?

Allowable transformations: Rigid motions $G = SE(2) = SO(2) \ltimes \mathbb{R}^2$

No symmetries!

$$G_S = \{e\}$$

Local Symmetries

Definition. $g \in G$ is a local symmetry of $S \subset M$ based at a point $z \in S$ if there is an open neighborhood $z \in U \subset M$ such that $g \cdot (S \cap U) = S \cap (g \cdot U)$

Local Symmetries

Definition. $g \in G$ is a local symmetry of $S \subset M$ based at a point $z \in S$ if there is an open neighborhood $z \in U \subset M$ such that $g \cdot (S \cap U) = S \cap (g \cdot U)$

 $\star \star$ The set of all local symmetries forms a groupoid!

Definition. A groupoid is a small category such that every morphism has an inverse.

★ Groupoids form the appropriate framework for studying objects with variable symmetry.

 \star Symmetry groupoids are not necessarily Lie groupoids

Groupoids

 $\implies \text{In practice you are only allowed to multiply} \\ \text{groupoid elements } g \cdot h \text{ when} \\ \text{source (domain) of } g = \text{target (range) of } h \\ \text{Similarly for inverses } g^{-1} \text{ and the identities } e. \end{cases}$

A groupoid is a "collection of arrows":

What is the Symmetry Groupoid?

G = SE(2)

Corners:

$$G_z = G_S = \mathbb{Z}_4$$

Sides: G_z generated by $G_S = \mathbb{Z}_4$ some translations

180° rotation around z

Translations

Rotations

Noncommutativity of 3D rotations — order matters!

Reflections

Scaling (similarity)

Projective and Equiaffine Transformations

Projective Transformation

Projective Transformation

Projective transformations in art and photography

Albrecht Durer – 1500

Musashino Art University

Geometry = Group Theory

Felix Klein's Erlanger Programm (1872):

Each type of geometry is founded on a corresponding transformation group.

Geometry = Group Theory

Felix Klein's Erlanger Programm (1872):

Each type of geometry is founded on a corresponding transformation group.

- Euclidean geometry: rigid motions (translations and rotations)
- "Mirror" geometry: translations, rotations, and reflections
- Similarity geometry: translations, rotations, reflections, and scalings
- Projective geometry: all projective transformations

The Equivalence Problem

When are two shapes related by a group transformation?

The Equivalence Problem

When are two shapes related by a group transformation?

- Rigid (Euclidean) equivalence (translations, rotations, reflections)
- Similarity equivalence
- Projective equivalence
- etc.

Rigid equivalence

When are two shapes related by a rigid motion?

Tennis, anyone?

Tennis, anyone?

The Pr

Projective (equiaffine) equivalence & symmetry

Duck = Rabbit?

Limitations of Projective Equivalence

Fig. 3. The upper two curves are not projectively equivalent, but the lower two curves are. The lower curves are constructed by introducing small ripples along the convex hull, these are illustrated in the magnified pictures.

$$\implies$$
 K. Åström (1995)

Thatcher Illusion

Thatcher Illusion

Thatcher Illusion

Local equivalence and symmetry — groupoids? Probabilistic transformation group(oid)s?

Equivalence of puzzle pieces

Local equivalence of puzzle pieces

Local equivalence of puzzle pieces

Local equivalence of puzzle pieces

 \uparrow Occlusions and equivalence of parts

The Equivalence Problem

When are two shapes related by a group transformation?

The Equivalence Problem

When are two shapes related by a group transformation?

Invariants

Solving the equivalence problem requires knowing the (appropriate) invariants

Invariants

Invariants are quantities that are unchanged by the group transformations

Invariants

Invariants are quantities that are unchanged by the group transformations

 \uparrow If two shapes are equivalent,

they must have the same invariants.

Invariants

The solution to an equivalence problem rests on understanding its invariants.

Definition. If G is a group acting on M, then an invariant is a real-valued function $I: M \to \mathbb{R}$ that does not change under the action of G:

 $I(g \cdot z) = I(z)$ for all $g \in G, z \in M$

An invariant that depends on several points is known as a joint invariant

Rigid motions: distance between two points

Joint Equi–Affine Invariants

Theorem. Every planar joint equi–affine invariant is a function of the triangular areas

$$\left[\begin{array}{cc} i \hspace{0.1cm} j \hspace{0.1cm} k \hspace{0.1cm} \right] = \frac{1}{2} \left(z_i - z_j \right) \wedge \left(z_i - z_k \right)$$

Projective group: ratios of 4 areas

AB \overline{CD}

Distances between multiple points

1, 1, 1, 1, $\sqrt{2}$, $\sqrt{2}$.

The Distance Histogram —

invariant under rigid motions

1, 1, 1, 1, $\sqrt{2}$, $\sqrt{2}$.

Distance histograms

If two sets of points are equivalent up to rigid motion, they have the same distance histogram

If two sets of points are equivalent up to rigid motion, they have the same distance histogram

Does the distance histogram uniquely determine a set of points up to rigid motion?

Answer: Yes for most sets of points, but there are some exceptions!

Mireille (Mimi) Boutin and Gregor Kemper (2004)

1, 1, 1, 1, $\sqrt{2}$, $\sqrt{2}$.

1, 1, 1, 1,
$$\sqrt{2}$$
, $\sqrt{2}$.

No:

Kite Trapezoid

 $\sqrt{2}, \quad \sqrt{2}, \quad 2, \quad \sqrt{10}, \quad \sqrt{10}, \quad 4.$

Distance histogram for points on a line

Does the distance histogram uniquely determine a set of points on a line up to translation? Dístance hístogram for points on a líne

No:

$$P = \{0, 1, 4, 10, 12, 17\}$$
$$Q = \{0, 1, 8, 11, 13, 17\}$$
$$\eta = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17$$

 \implies G. Bloom, J. Comb. Theory, Ser. A **22** (1977) 378–379

Joint signature map:

$$\Sigma: \mathcal{C}^{\times 4} \longrightarrow \mathcal{S} \subset \mathbb{R}^{6}$$

$$a = \|z_0 - z_1\| \qquad b = \|z_0 - z_2\| \qquad c = \|z_0 - z_3\|$$

$$d = \|z_1 - z_2\| \qquad e = \|z_1 - z_3\| \qquad f = \|z_2 - z_3\|$$

$$\implies \text{six functions of four variables}$$

Syzygies:

$$\Phi_1(a,b,c,d,e,f)=0 \qquad \quad \Phi_2(a,b,c,d,e,f)=0$$

Universal Cayley–Menger syzygy $\iff \mathcal{C} \subset \mathbb{R}^2$

$$\det \begin{vmatrix} 2a^2 & a^2 + b^2 - d^2 & a^2 + c^2 - e^2 \\ a^2 + b^2 - d^2 & 2b^2 & b^2 + c^2 - f^2 \\ a^2 + c^2 - e^2 & b^2 + c^2 - f^2 & 2c^2 \end{vmatrix} = 0$$
Joint Equi–Affine Signature

Requires 7 triangular areas:

 $[0\ 1\ 2],\ [0\ 1\ 3],\ [0\ 1\ 4],\ [0\ 1\ 5],\ [0\ 2\ 3],\ [0\ 2\ 4],\ [0\ 2\ 5]$

Limiting Curve Histogram

Limiting Curve Histogram

Integral Invariants

Limiting Curve Histogram

Brinkman, D., and Olver, P.J., Invariant histograms, Amer. Math. Monthly 119 (2012), 4-24

The Círcular Area Invariant

Calder and Esedoglu (2012)

The Spherical Volume Invariant

Distinguishing Moles from Melanomas

• Anna Grim and Cheri Shakiban, 2015

Distance Histogram – Melanoma

Distance Histogram — Mole

TYPICAL MOLE CUMULATIVE HISTOGRAM

TYPICAL MELANOMA CUMULATIVE HISTOGRAM

CONCAVITY POINT ANALYSIS

CONCAVITY POINT FREQUENCY

For smooth objects — curves, surfaces, etc.,

we can use calculus to construct

Differential Invariants

A Differential Invariant

Curvature is a measure of "bendiness".

Curvature = reciprocal of radius of osculating circle

Euclidean Plane Curves: G = SE(2)

Differentiation with respect to the Euclidean-invariant arc length element ds is an invariant differential operator, meaning that it maps differential invariants to differential invariants.

Thus, starting with curvature κ , we can generate an infinite collection of higher order Euclidean differential invariants:

$$\kappa$$
, $\frac{d\kappa}{ds}$, $\frac{d^2\kappa}{ds^2}$, $\frac{d^3\kappa}{ds^3}$, ...

Theorem. All Euclidean differential invariants are functions of the derivatives of curvature with respect to arc length: $\kappa, \kappa_s, \kappa_{ss}, \cdots$

Euclidean Plane Curves: G = SE(2)

Assume the curve $C \subset M$ is a graph: y = u(x)

Differential invariants:

$$\kappa = \frac{u_{xx}}{(1+u_x^2)^{3/2}}, \qquad \frac{d\kappa}{ds} = \frac{(1+u_x^2)u_{xxx} - 3u_x u_{xx}^2}{(1+u_x^2)^3}, \qquad \frac{d^2\kappa}{ds^2} = \cdots$$

Arc length (invariant one-form):

$$ds = \sqrt{1 + u_x^2} \, dx, \qquad \qquad \frac{d}{ds} = \frac{1}{\sqrt{1 + u_x^2}} \, \frac{d}{dx}$$

Similarity Plane Curves: $G = SE(2) \times \mathbb{R}$

Similarity "curvature":

$$\widehat{\kappa} = rac{\kappa_s}{\kappa^2} \qquad \widehat{\kappa}_{\widehat{s}} = \cdots$$

Similarity arc length:

$$d\,\hat{s} = \kappa\,ds$$
 $\frac{d}{d\hat{s}} = \frac{1}{\kappa}\,\frac{d}{ds}$

Theorem. All similarity differential invariants are functions of the derivatives of the similarity curvature with respect to similarity arc length: $\hat{\kappa}$, $\hat{\kappa}_{\hat{s}}$, $\hat{\kappa}_{\hat{s}\hat{s}}$, ...

Equi-affine Plane Curves: $G = SA(2) = SL(2) \ltimes \mathbb{R}^2$

Equi-affine curvature:

$$\kappa = \frac{5 u_{xx} u_{xxxx} - 3 u_{xxx}^2}{9 u_{xx}^{8/3}} \qquad \frac{d\kappa}{ds} = \cdots$$

Equi-affine arc length:

$$ds = \sqrt[3]{u_{xx}} dx \qquad \qquad \frac{d}{ds} = \frac{1}{\sqrt[3]{u_{xx}}} \frac{d}{dx}$$

Theorem. All equi-affine differential invariants are functions of the derivatives of equi-affine curvature with respect to equi-affine arc length: κ , κ_s , κ_{ss} , \cdots

Projective Plane Curves: G = PSL(2)

Projective curvature:

$$\kappa = K(u^{(7)}, \cdots) \qquad \frac{d\kappa}{ds} = \cdots \qquad \frac{d^2\kappa}{ds^2} = \cdots$$

Projective arc length:

$$ds = L(u^{(5)}, \cdots) dx$$
 $\frac{d}{ds} = \frac{1}{L} \frac{d}{dx}$

Theorem. All projective differential invariants are functions of the derivatives of projective curvature with respect to projective arc length:

 $\kappa, \kappa_s, \kappa_{ss}, \cdots$

Euclidean Curvature is a measure of "bendiness".

What everyday device can measure curvature?

Can you reconstruct the racetrack?

Can you reconstruct the racetrack?

Can you reconstruct the racetrack?

 κ is (Euclidean) curvature

s is (Euclidean) arclength

Racetrack comparison problem

Racetrack comparison problem

Racetrack comparison problem

The Invariant Signature

The invariant signature of a planar curve is the set traced out by curvature and the rate of change of curvature (its arclength derivative).

The invariant signature

Theorem

Two regular curves are related by a group transformation if and only if they have the same invariant signatures.

(Calabi, Haker, Olver, Shakiban, Tannenbaum 1998)

The invariant signature

Theorem

Two regular curves are related by a group transformation if and only if they have the same invariant signatures.

Proof idea

Theorem (Élie Cartan 1908)

Shapes are related if and only if they have the same relationships among their **differential invariants**.

3D Differential Invariant Signatures

Euclidean surfaces: $S \subset \mathbb{R}^3$ (generic)

$$\begin{split} \Sigma &= \left\{ \, \left(\, H \, , \, K \, , \, H_{,1} \, , \, H_{,2} \, , \, K_{,1} \, , \, K_{,2} \, \right) \, \right\} \ \subset \ \mathbb{R}^6 \\ \text{or} \quad \widehat{\Sigma} &= \left\{ \, \left(\, H \, , \, H_{,1} \, , \, H_{,2} \, , \, H_{,11} \, \right) \, \right\} \ \subset \ \mathbb{R}^4 \\ &\bullet \ H - \text{mean curvature}, \ K - \text{Gauss curvature} \end{split}$$
Movíng Frames

The mathematical theory is all based on the new equivariant method of moving frames (Fels+PJO, 1999) which provides a systematic and algorithmic calculus for constructing complete systems of differential invariants, joint invariants, joint differential invariants, invariant differential operators, invariant differential forms, invariant variational problems, invariant conservation laws, invariant numerical algorithms, invariant signatures, etc., etc.

Symmetry–Preserving Numerical Methods

- Invariant numerical approximations to differential invariants.
- Invariantization of numerical integration methods.

 \implies Structure-preserving algorithms

The Original Curve Euclidean Signature Numerical Signature

The Original Curve

Euclidean Signature

Equi-affine Signature

The Original Curve

Euclidean Signature

Equi-affine Signature

Object Recognition

Díagnosíng breast tumors

and and a

Benign – cyst

Malignant — cancerous

Anna Grim, Cheri Shakiban (2017)

A BENIGN TUMOR

A MALIGNANT TUMOR

Reassembly of Broken Objects

The Baffler Nonagon

The Baffler Nonagon — Solved

- **Step 0.** Digitally photograph and smooth the puzzle pieces.
- Step 1. Numerically compute invariant signatures of (parts of) pieces.
- Step 2. Compare signatures to find potential fits.
- Step 3. Put them together, if they fit, as closely as possible.

Repeat steps 1–3 until puzzle is assembled....

Localization of Signatures

Bivertex arc: $\kappa_s \neq 0$ everywhere except $\kappa_s = 0$ at the two endpoints

The signature Σ of a bivertex arc is a single arc that starts and ends on the κ -axis.

Bivertex Decomposition

v-regular curve — finitely many generalized vertices

$$C = \bigcup_{j=1}^{m} B_j \ \cup \ \bigcup_{k=1}^{n} V_k$$

$$B_1, \dots, B_m$$
 — bivertex arcs
 V_1, \dots, V_n — generalized vertices: $n \ge 4$

Main Idea: Compare individual bivertex arcs, and then decide whether the rigid equivalences are (approximately) the same.

D. Hoff & PJO, Extensions of invariant signatures for object recognition, J. Math. Imaging Vision 45 (2013), 176–185.

Signature Metrics

Used to compare signatures:

- Hausdorff
- Monge–Kantorovich transport
- Electrostatic/gravitational attraction
- Latent semantic analysis
- Histograms
- Geodesic distance
- Diffusion metric
- Gromov–Hausdorff & Gromov–Wasserstein

Gravitational/Electrostatic Attraction

★ Treat the two (signature) curves as masses or as oppositely charged wires. The higher their mutual attraction, the closer they are together.

Gravitational/Electrostatic Attraction

- ★ Treat the two (signature) curves as masses or as oppositely charged wires. The higher their mutual attraction, the closer they are together.
- ★ In practice, we are dealing with discrete data (pixels) and so treat the curves and signatures as point masses/charges.

Piece Locking

 $\star \star$ Minimize force and torque based on gravitational attraction of the two matching edges.

Putting Humpty Dumpty Together Again

Anna Grim, Ryan Slechta, Tim O'Connor, Rob Thompson, Cheri Shakiban, Peter Olver

A broken ostrich egg

(Scanned by M. Bern, Xerox PARC)

A synthetic 3d jigsaw puzzle

Assembly of synthetic spherical puzzle

• Uses curvature and torsion invariants

An egg piece

All the king's horses and men

The elephant bird of Madagascar

(Image from wikipedia.org)

more than 3 meters tall

extinct by the 1700's

one egg could make about 160 omelets

Elephant bird egg shells

(Extract from "Zoo Quest to Madagascar", BBC 1961)

The elephant bird of Madagascar

(Image from Tennant's Auctioneers)

pictured egg is 70% complete

complete egg recently sold for \$100,000

Puzzles in archaeology

Puzzles in archaeology

Puzzles ín surgery

Puzzles in anthropology and paleontology

Could history of humans in North America be rewritten by broken bones?

Smashed mastodon bones show humans arrived over 100,000 years earlier than previously thought say researchers, although other experts are sceptical

Ian Sample Science editor Wednesday 26 April 2017 13.00 EDT

SCIENTIFIC AMERICAN.

Cart 0 Sign In | Stay Informed

THE SCIENCES MIND HEALTH TECH SUSTAINABILITY EDUCATION VIDEO PODCASTS BLOGS PUBLICATIONS Q

Busted Mastodon Is Ice Age Roadkill

A mastodon said to be pulverized by Ice Age humans was probably busted up by roadwork

By Brian Switek on April 10, 2019

LATEST NEWS

How Climate-Friendly Would Flying Cars Be?

Anthropologícal Implications

- Meat eater vs. vegetarian
- Brain development
- Scavenging vs. hunting
- Food sharing
- Social structures
- Cooperative behavior
- Home bases/central places
- Carcass transport
- Butchering behavior

Segmentation

xviii^e siècle Les débuts de la **cristallographie** moderne

J.-B. Romé de l'Isle (1736-1790) et R. J. Haüy (1743-1822) © Muséum national d'Histoire naturelle/ Bibliothèque centrale

Jean-Baptiste Romé de l'Isle et René Just Haűy sont les deux fondateurs de la cristallographie moderne dans la seconde moitié du xviii^e siècle. Ils ont utilisé ces gabarits, ce goniomètre et ces modèles en bois pour modéliser et démontrer leurs théories.

Fracture Angles — goniometer measurements

Fracture Angles: Methods

Carnivore Created Fragment

216

TRABAJOS DE PREHISTORIA 63, Nº 1, Enero-Junio 2006, pp. 37-45. ISSN 0082-5638

Fracture Angles

- Not fully tested
 - Limited experimental studies
 - Different taxa tested in each
 - Different results related to taxon and element
 - No independent testing of
 - the same taxon

DETERMINACIÓN DE PROCESOS DE FRACTURA SOBRE

R. COIL, $\overset{1,2}{\uparrow}$ M. TAPPEN 2 and K. YEZZI-WOODLEY 2

Fracture Angles: Methods

Vírtual Goníometer

Vírtual Goníometer Data

Hominins vs. Hyena via Break Angle (Humerus)

		No		Training	Training				Negative	Micc	Fall
Yes category	yes Size	category	no Size	percentage	Size	Sensitivity	Specificity	Precision	Predictive Rate	Rate	out
hominin humerus	779	hyena	512	75	195	0 959	0 152	0 53071	0 78756	0.041	0.85
		hominin		,,,	100	0.555	0.152	0.53071		0.041	0.03
nyena numerus	512	hyena	779	/5	128	0.959	0.094	0.51421	0.6963	0.041	0.91
hominin humerus	779	humerus	512	65	273	0.959	0.154	0.5313	0.78974	0.041	0.85
hyena humerus	512	humerus hyena	779	65	180	0.934	0.121	0.51517	0.64706	0.066	0.88
hominin humerus	779	humerus hominin	512	50	390	0.957	0.163	0.53344	0.79126	0.043	0.84
hyena humerus	512	humerus hyena	779	50	256	0.961	0.125	0.52342	0.7622	0.039	0.88
hominin humerus	779	humerus	512	40	468	0.958	0.139	0.52666	0.76796	0.042	0.86
hyena humerus	512	humerus	779	40	308	0.95	0.123	0.51998	0.71098	0.05	0.88

Hominins vs. Hyena via Break Angle (Femur)

Vos catogony	vos Sizo	No	no Sizo	Training	Training	Soncitivity	Specificity	Procision	Negative Predictive	Miss	Fall
res category	yes size		110 3120	percentage	SIZE	Sensitivity	Specificity	FIELISION	Rale	паце	out
hominin femur	1565	hyena femur	897	75	392	0.941	0.268	0.56246	0.81957	0.059	0.73
hyena femur	897	hominin femur	1565	5 75	5 225	0.959	0.139	0.52692	0.77222	2 0.041	. 0.86
hominin femur	1565	hyena femur	897	65	548	0.958	0.365	0.60138	0.89681	0.042	2 0.64
hvena femur	897	hominin femur	1565	65	314	0.949	0.197	0.54167	0.79435	0.051	0.8
hominin femur	1565	hyena	897	50	783	0.949	0.428	0.62393	0.89353	0.051	0.57
hvena femur	897	hominin femur	1565	50) 449	0.942	0.233	0.5512	0.80069	0.058	0.7
hominin femur	1565	hyena femur	897	40	897	0.96	0.371	0.60415	0.90268	3 0.04	0.63
hyena femur	897	hominin femur	1565	40) 539	0.958	0.198	0.54432	0.825	0.042	. 0.8

Príncípal Curvatures

Surface Curvatures

- Principal curvatures: κ_1, κ_2
- Gauss curvature: $K = \kappa_1 \kappa_2$ intrinsic
- Mean curvature: $H = \frac{1}{2}(\kappa_1 + \kappa_2)$ extrinsic
- Curvature difference: $\Delta = |\kappa_1 \kappa_2|$

Sample Size (Manual Data)

Number of breaks per element and actor of breakage

	Femur	Humerus	Radius-Ulna	Tibia	Total
Crocuta	411	120	0	64	595
Hominin	363	291	287	333	1274
Rockfall	0	85	105	0	190
Total	774	496	392	397	2059

Number of breaks per element and method of breakage

	Femur	Humerus	Radius- Ulna	Tibia	Total
Batting	159	144	130	186	619
Crocuta	411	120	-	64	595
Rockfall	-	85	105	-	190
Hammerstone & Anvil	175	137	122	147	581
Hammerstone only	-	10	-	-	10
Hominin mixed method	29	-	35	-	64
Total	774	496	392	397	2059

Number of breaks per element and actor for which no goniometer measurement could be taken

	Femur	Humerus	Radius-Ulna	Tibia	Total
Crocuta	234 (57%)	32 (27%)	-	13 (20%)	279 (47%)
Hominin	102 (28%)	51 (18%)	64 (22%)	153 (46%)	370 (29%)
Rockfall	-	21 (25%)	31 (30%)	-	52 (27%)
Total	336 (43%)	104 (21%)	95 (24%)	166 (42%)	701 (34%)

Number of breaks per element and method for which no goniometer measurement could be taken

	Femur	Humerus	Radius- Ulna	Tibia	Total
Batting	41 (26%)	29 (20%)	22 (17%)	95 (51%)	187 (30%)
Crocuta	234 (57%)	32 (27%)	-	13 (20%)	279 (47%)
Rockfall	-	21 (25%)	31 (30%)	-	52 (27%)
Hammerstone & Anvil	57 (33%)	19 (14%)	35 (29%)	58 (39%)	169 (29%)
Hammerstone only	-	3 (30%)	-	-	3 (30%)
Hominin mixed method	4 (14%)	-	7 (20%)	-	11 (17%)
Total	336 (43%)	104 (21%)	95 (24%)	166 (42%)	701 (34%)

Sample Size (Digital Data)

Manual Data

- 457 fragments
- 2,059 breaks
- 1,358 measurements

Digital Data

- 82 fragments
- 1,376,900 measurements
- 1% = 13,769

	Femur	Humerus	Tibia	Radius- Ulna	Total	
Batting	1,758	606	1,878	1,531	5,773	
Crocuta	1,824	780	-	-	2,604	
Hammerstone & Anvil	1,485	1,003	1,291	1,613	5,392	City in an and
Total	5,067	2,389	3,169	3,144	13,769	and the second s

Hominins vs. hyena (femur) – principal curvature differences

Yes category	yes Size	No category	no Size	Training percentage	Training Size	Sensitiv ity	Specific ity	Precisi on	Negative Predictive Rate	Miss Rate	Fall out
hominin (femur)	3243	hyena (femur)	1824	75	811	0.942	1	1	0.94518	0.058	0
hyena (femur)	1824	hominin (femur)	3243	75	456	0.95	1	1	0.95238	0.05	0
hominin (femur)	3243	hyena (femur)	1824	65	1136	0.947	1	1	0.94967	0.053	0
hyena (femur)	1824	hominin (femur)	3243	65	639	0.939	1	1	0.94251	0.061	0
hominin (femur)	3243	hyena (femur)	1824	50	1622	0.949	1	1	0.95147	0.051	0
hyena (femur)	1824	hominin (femur)	3243	50	912	0.946	1	1	0.94877	0.054	0
hominin (femur)	3243	hyena (femur)	1824	40	1824	0.946	1	1	0.94877	0.054	0
hyena (femur)	1824	hominin (femur)	3243	40	1095	0.938	1	1	0.94162	0.062	0

Hominins vs. hyena (humerus) – principal curvature differences

Yes category	yes Size	No category	no Size	Training percentage	Training Size	Sensitiv ity	Specific ity	Precisi on	Negative Predictive Rate	Miss Rate	Fall out
hominin (humerus)	1609	hyena (humerus)	780	75	403	0.954	1	1	0.95602	0.046	0
hyena (humerus)	780	hominin (humerus)	1609	75	195	0.941	1	1	0.94429	0.059	0
hominin (humerus)	1609	hyena (humerus)	780	65	564	0.947	1	1	0.94967	0.053	0
hyena (humerus)	780	hominin (humerus)	1609	65	273	0.933	1	1	0.93721	0.067	0
hominin (humerus)	1609	hyena (humerus)	780	50	780	0.96	1	1	0.96154	0.04	0
hyena (humerus)	780	hominin (humerus)	1609	50	390	0.95	1	1	0.95238	0.05	0
hominin (humerus)	1609	hyena (humerus)	780	40	780	0.95	1	1	0.95238	0.05	0
hyena (humerus)	780	hominin (humerus)	1609	40	468	0.949	1	1	0.95147	0.051	0

Hammerstone vs. batting (femur) – principal curvature differences

Yes category	yes Size	No category	no Size	Training percentage	Training Size	Sensiti vity	Specific ity	Precisi on	Negative Predictive Rate	Miss Rate	Fall out
Batting femur	1758	HS & Anv femur	1485	75	440	0.951	1	1	0.95329	0.049	0
HS & Anv femur	1485	Batting femur	1758	75	372	0.956	1	1	0.95785	0.044	0
Batting femur	1758	HS & Anv femur	1485	65	616	0.938	1	1	0.94162	0.062	0
HS & Anv femur	1485	Batting femur	1758	65	520	0.948	1	1	0.95057	0.052	0
Batting femur	1758	HS & Anv femur	1485	50	879	0.942	1	1	0.94518	0.058	0
HS & Anv femur	1485	Batting femur	1758	50	743	0.957	1	1	0.95877	0.043	0
Batting femur	1758	HS & Anv femur	1485	40	1055	0.954	1	1	0.95602	0.046	0
HS & Anv femur	1485	Batting femur	1758	40	891	0.951	1	1	0.95329	0.049	0

HS & Anv vs. batting (humerus) – surface curvature

	yes		no	Training	Training				Negative	Miss	Fall
Yes category	Size	No category	Size	percentage	Size	Sensitivity	Specificity	Precision	Predictive Rate	Rate	out
		hsanv									
anv humerus	606	humerus	1003	75	152	0.947	1	1	0.94967	0.053	0
hsanv											
humerus	1003	anv humerus	606	75	251	0.952	1	1	0.9542	0.048	0
		hsanv									
anv humerus	606	humerus	1003	65	213	0.948	1	1	0.95057	0.052	0
hsanv											
humerus	1003	anv humerus	606	65	352	0.951	1	1	0.95329	0.049	0
		hsanv									
anv humerus	606	humerus	1003	50	303	0.965	1	1	0.96618	0.035	0
hsanv											
humerus	1003	anv humerus	606	50	502	0.961	1	1	0.96246	0.039	0
		hsanv									
anv humerus	606	humerus	1003	40	364	0.941	1	1	0.94429	0.059	0
hsanv											
humerus	1003	anv humerus	606	40	602	0.946	1	1	0.94877	0.054	0

HS & Anv vs. batting (tibia) – surface curvature

	yes		no	Training	Training	Sensitivit	Specificit	Precisio	Negative Predictive	Miss	Fall
Yes category	Size	No category	Size	percentage	Size	у	у	n	Rate	Rate	out
anv tibia	1878	hsanv tibia	1291	75	470	0.945	1	1	0.94787	0.055	0
hsanv tibia	1291	anv tibia	1878	75	323	0.943	1	1	0.94607	0.057	0
anv tibia	1878	hsanv tibia	1291	65	658	0.94	1	1	0.9434	0.06	0
hsanv tibia	1291	anv tibia	1878	65	452	0.954	1	1	0.95602	0.046	0
anv tibia	1878	hsanv tibia	1291	50	939	0.946	1	1	0.94877	0.054	0
hsanv tibia	1291	anv tibia	1878	50	646	0.947	1	1	0.94967	0.053	0
anv tibia	1878	hsanv tibia	1291	40	1127	0.941	1	1	0.94429	0.059	0
hsanv tibia	1291	anv tibia	1878	40	775	0.945	1	1	0.94787	0.055	0

HS & Anv vs. batting (rad-uln) – surface curvature

	yes			Training					Negative Predictive	Miss	Fall
Yes category	Size	No category	no Size	percentage	Training Size	Sensitivity	Specificity	Precision	Rate	Rate	out
		HS & Anv									
Batting raduln	1878	raduln	1291	75	470	0.962	1	1	0.96339	0.038	0
HS & Anv											
raduln	1291	Batting raduln	1878	75	323	0.957	1	1	0.95877	0.043	0
		HS & Anv									
Batting raduln	1878	raduln	1291	65	658	0.948	1	1	0.95057	0.052	0
HS & Anv											
raduln	1291	Batting raduln	1878	65	452	0.95	1	1	0.95238	0.05	0
		HS & Anv									
Batting raduln	1878	raduln	1291	50	939	0.954	1	1	0.95602	0.046	0
HS & Anv											
raduln	1291	Batting raduln	1878	50	646	0.953	1	1	0.95511	0.047	0
		HS & Anv									
Batting raduln	1878	raduln	1291	40	1127	0.946	1	1	0.94877	0.054	0
HS & Anv											
raduln	1291	Batting raduln	1878	40	775	0.956	1	1	0.95785	0.044	0

Hominins vs. hyena (femur) – manual goniometer data

Voc		No		Training	Training				Negative Predictive		
category	yes Size	category	no Size	percentage	Size	Sensitivity	Specificity	Precision	Rate	Miss Rate	Fall out
hominin		hyena									
femur	261	femur	177	75	66	0.956	0.368	0.60202	0.8932	0.044	0.632
hyena		hominin									
femur	177	femur	261	75	45	0.957	0.222	0.55159	0.83774	0.043	0.778
hominin		hyena									
femur	261	femur	177	65	92	0.959	0.502	0.6582	0.92449	0.041	0.498
hyena		hominin									
femur	177	femur	261	65	62	0.966	0.294	0.57775	0.89634	0.034	0.706
hominin		hyena									
femur	261	femur	177	50	131	0.963	0.561	0.68688	0.93813	0.037	0.439
hyena		hominin									
femur	177	femur	261	50	89	0.966	0.299	0.57948	0.8979	0.034	0.701
hominin		hyena									
femur	261	femur	177	40	157	0.949	0.494	0.65223	0.90642	0.051	0.506
hyena		hominin									
femur	177	femur	261	40	107	0.956	0.327	0.58686	0.8814	0.044	0.673

Hominins vs. hyena (humerus) — virtual goniometer

Yes category	yes Size	No category	no Size	Training %	Training Size	Sensitivity	Specificity	Precision	Negative Predictive Rate	Miss Rate	Fall out
hominin humerus	779	hyena humerus	512	. 75	5 195	0.959	0.152	0.53071	0.78756	0.041	. 0.85
hyena humerus	512	hominin humerus	779	75	5 128	0.959	0.094	0.51421	0.69630	0.041	0.91
hominin humerus	779	hyena humerus	512	65	5 273	0.959	0.154	0.53130	0.78974	0.041	. 0.85
hyena humerus	512	hominin humerus	779	65	5 180	0.934	0.121	0.51517	0.64706	0.066	0.88
hominin humerus	779	hyena humerus	512	. 50) 390	0.957	0.163	0.53344	0.79126	0.043	0.84
hyena humerus	512	hominin humerus	779	50) 256	0.961	. 0.125	0.52342	0.76220	0.039	0.88
hominin humerus	779	hyena humerus	512	40) 468	0.958	0.139	0.52666	0.76796	0.042	0.86
hyena humerus	512	hominin 2 humerus	779	40) 308	0.950	0.123	0.51998	0.71098	0.05	0.88

Hominins vs. hyena (femur) — virtual goniometer

Yes category	ves Size	No	no Size	Training %	Training Size	Sensitivity	Specificity	Precision	Negative Predictive Rate	Miss Rate	Fall
ies category	yes 512e	hyena	110 5120	indining /o	0120	Schlarty	opeenery	1 recision		nate	out
hominin femur	1565	femur	897	75	392	0.941	0.268	0.56246	0.81957	0.059	0.73
		hominin									
hyena femur	897	temur	1565	75	225	0.959	0.139	0.52692	0.77222	0.041	0.86
hominin femur	1565	hyena femur	897	65	548	0.958	0.365	0.60138	0.89681	0.042	0.64
hvena femur	897	hominin femur	1565	65	314	0.949	0.197	0.54167	0.79435	0.051	0.80
		hyena									
hominin femur	1565	femur	897	50	783	0.949	0.428	0.62393	0.89353	0.051	0.57
hyena femur	897	hominin femur	1565	50	449	0.942	0.233	0.55120	0.80069	0.058	0.77
hominin femur	1565	hyena femur	897	40	897	0.960	0.371	0.60415	0.90268	0.04	0.63
hyena femur	897	hominin femur	1565	40	539	0.958	0.198	0.54432	0.82500	0.042	0.80

Hominins vs. hyena (humerus) – manual data

	yes		no	Training	Training	Sensitivi	Specifici	Precisio	Negative Predictive	Miss	Fall
Yes category	Size	No category	Size	percentage	Size	ty	ty	n	Rate	Rate	out
hominin		hyena						0.5071			
humerus	240	humerus	88	75	60	0.958	0.069	5	0.62162	0.042	0.931
hyena		hominin						0.5028			
humerus	88	humerus	240	75	22	0.956	0.055	9	0.55556	0.044	0.945
hominin		hyena						0.4927			
humerus	240	humerus	88	65	84	0.953	0.019	6	0.28788	0.047	0.981
hyena		hominin						0.5063			
humerus	88	humerus	240	65	31	0.955	0.069	6	0.60526	0.045	0.931
hominin		hyena									
humerus	240	humerus	88	50	88	0.96	0.035	0.4987	0.46667	0.04	0.965
hyena		hominin									
humerus	88	humerus	240	50	44	0.964	0.066	0.5079	0.64706	0.036	0.934
hominin		hyena						0.5023			
humerus	240	humerus	88	40	88	0.954	0.055	7	0.54455	0.046	0.945
hyena		hominin						0.5066			
humerus	88	humerus	240	40	53	0.958	0.067	1	0.61468	0.042	0.933

Moving forward

- More taxa
 - **Bos**
 - Ovis/Capra
 - Equus
- All appendicular long bones
- Archaeological collections
- Factor in rock fall
- More geometric methods
 - Volume, surface areas (total/faces)
 - Mean, variance, PCA
 - Higher moments
 - Digital measures of break angles at break curves using surface normals
 - Break curve geometric invariants: curvature, torsion, etc.
 - Surface curvatures (principal, Gauss, mean, total)

Acknowledgments:

Thanks to Rob Thompson and Cherí Shakíban for sharing their slídes!

Undergraduates: Dan Brinkman, Anna Grim, Dan Hoff, Tim O'Connor, Ryan Slechta

Ph.D. students (past and present): Mimi Boutin, Steve Haker, David Richter, Jessica Senou, Rob Thompson, Katrina Yezzi-Woody

Collaborators: Eugene Calabi, Jeff Calder, Cheri Shakiban, Allen Tannenbaum