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Why are humans so attuned to symmetry?



Mathematically …



Group TheorySymmetry

Mathematically …



Next to the concept of a function, which

is the most important concept pervading

the whole of mathematics, the concept of

a group is of the greatest significance in the

various branches of mathematics and its

applications.

— P.S. Alexandroff



History of Group Theory
Solution of polynomial equations  (exploiting symmetries of the roots)

• Quadratic formula  — Diophantus, Brahmagupta, Al Khwarizmi, etc.
• Cubic — Ferro, Tartaglia, Cardano (1545)
• Quartic — Ferrara , Cardano (1545)
• Quintic and higher degree — Lagrange (1770), Ruffini (1799), Abel (1824), Galois (1832)

— finite and discrete groups

Solution of differential equations

• Sophus Lie  (1876)
• Picard & Vessiot (1892)

— Lie groups and pseudo-groups
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Groups

Definition. A group G is a set with a
binary operation g · h satisfying

• Associativity: g · (h · k) = (g · h) · k
• Identity: g · e = g = e · g
• Inverse: g · g−1 = e = g−1 · g

=⇒ not necessarily commutative: g · h "= h · g



The integers
…, -4, -3, -2, -1, 0, 1, 2, 3, 4, …

Group operation:  addition   3 + 5 = 8
Identity:  zero    3 + 0 = 3 = 0 + 3

Inverse:  negative     7 + (-7) = 0 = (-7) + 7



The rational numbers (fractions)

Group operation:  addition   1/4 + 5/3 = 23/12
Identity:  zero    5/3 + 0 = 5/3 = 0 + 5/3

Inverse:  negative     7/2 + (-7/2) = 0 = (-7/2) + 7/2



The positive rational numbers

Group operation:  multiplication   1/4 x 5/3 = 5/12
Identity:  one    5/3 x 1 = 5/3 = 1 x 5/3

Inverse:  reciprocal     7/2 x 2/7 = 1 = 2/7 x 7/2



The positive real numbers
Group operation:  multiplication 

2 x  " = 2 " =  4.44288293815836624701588099006....
Identity:  one     " x 1 = " = 1 x "

Inverse:  reciprocal     " x 1/ " = 1 = 1/ " x "



g =

(

a b

c d

)

h =

(

x y

z w

)

ad− bc "= 0 "= xw − yz

Group operation:

g·h =

(

ax+ bz ay + bw

cx+ dz cy + dw

)

"=

(

ax+ cy bx+ dy

az + cw bz + dw

)

= h·g

Identity: e =

(

1 0
0 1

)

, e · g = g = g · e

Inverse: g−1 =
1

ad− bc

(

d −b

−c a

)

, g · g−1 = e−1 = g · g

Non-singular  2 x 2 matrices
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Symmetry  Groups

The set of symmetries of a geometric object forms a group

The group operation is composition:      g · h  =  first do  h,  then do  g

The composition of two symmetries is a symmetry
The identity (do nothing) is always a symmetry

The inverse of a symmetry (undo it) is a symmetry

A symmetry g of a geometric object S is 
an invertible transformation that preserves it:  g · S = S 



Symmetry

Definition. A symmetry of a set S is a transforma-
tion that preserves it:

g · S = S

! ! The set of symmetries forms a group GS, called
the symmetry group of the set S.



Discrete Symmetry Group



Discrete Symmetry Group

Rotations by 90º, 180º, 270º 



Discrete Symmetry Group

Rotations by 90º, 180º, 270º 

and 0º    (identity)



Discrete Symmetry Group

Rotations by 90º, 180º, 270º 

and 0º    (identity)

… and 4 reflections
(mirror image)



Wallpaper patterns

17 symmetry types



Tiling — The Alhambra, Spain



Tilings — Jameh Mosque, Esfahan, Iran



Crystallography

230 groups



The Koch snowflake  — a fractal curve



The Koch snowflake  — a fractal curve

Scaling symmetry





Dome of the Sheikh Lotfollah Mosque — Isfahan, Iran



M.C. Escher  — Circle Limit IV



M.C. Escher  — Circle Limit IV

Conformal symmetry



Continuous Symmetry Group
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Rotations through any angle
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Continuous Symmetry Group

Rotations through any angle

and reflections

and conformal inversions 

Continuous Symmetry Group

Rotations:

GS = SO(2)

Rotations + reflections:

GS = O(2)

Conformal Inversions:

x =
x

x2 + y2
y =

y

x2 + y2

! A continuous group is known as a Lie group
— in honor of Sophus Lie.



Continuous Symmetry Group  =  Lie Group

Rotations through any angle

and reflections

and conformal inversions 

A continuous symmetry group is known as a 
Lie group in honor of the nineteenth century 
Norwegian mathematician Sophus Lie

Continuous Symmetry Group

Rotations:

GS = SO(2)

Rotations + reflections:

GS = O(2)

Conformal Inversions:

x =
x

x2 + y2
y =

y

x2 + y2

! A continuous group is known as a Lie group
— in honor of Sophus Lie.



Continuous Symmetries of a Square

−→ −→R −→



Symmetry

! To define the set of symmetries requires a priori
specification of the allowable transformations

G — transformation group containing all allowable
transformations of the ambient space M

Definition. A symmetry of a subset S ⊂ M is an
allowable transformation g ∈ G that preserves it:

g · S = S



What is the Symmetry Group?

Allowable transformations:

Rigid motions

G = SE(2) = SO(2)! R2

GS = Z4 ! Z2



What is the Symmetry Group?

Allowable transformations:

Rigid motions

G = SE(2) = SO(2)! R2

GS = Z4 ! Z2

Translations + rotations through 90 degrees:



What is the Symmetry Group?

Allowable transformations:

Rigid motions

G = SE(2) = SO(2)! R2

GS = {e}

No symmetries!



Local Symmetries

Definition. g ∈ G is a local symmetry of S ⊂ M
based at a point z ∈ S if there is an
open neighborhood z ∈ U ⊂ M such that

g · (S ∩ U) = S ∩ (g · U)

! ! The set of all local symmetries forms a groupoid!

Definition. A groupoid is a small category such that
every morphism has an inverse.

! Groupoids form the appropriate framework for
studying objects with variable symmetry.

! Symmetry groupoids are not necessarily Lie groupoids
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g · (S ∩ U) = S ∩ (g · U)
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Groupoids

=⇒ In practice you are only allowed to multiply
groupoid elements g · h when

source (domain) of g = target (range) of h

Similarly for inverses g−1 and the identities e.

A groupoid is a “collection of arrows”:

hg

g · h



What is the Symmetry Groupoid?

G = SE(2)

Corners:

Gz = GS = Z4

Sides: Gz generated by

GS = Z4

some translations

180◦ rotation around z





Geometric transformation groups

Translations



Rotations

Geometric transformation groups



Noncommutativity of 3D rotations  — order matters!



Reflections

Geometric transformation groups



Scaling (similarity)

Geometric transformation groups



Projective and Equiaffine Transformations

Geometric transformation groups



Projective Transformation

?

Geometric transformation groups



Projective Transformation

Geometric transformation groups



Projective transformations in art and photography

Albrecht Durer  — 1500



Musashino Art University

A simple camera



Geometry =  Group Theory

Felix Klein's Erlanger Programm (1872):

Each type of geometry is founded on a corresponding 
transformation group.



Geometry =  Group Theory

Felix Klein's Erlanger Programm (1872):

Each type of geometry is founded on a corresponding 
transformation group.

“Mirror” geometry:       translations, rotations, and reflections

Similarity geometry:      translations, rotations, reflections, and scalings

Projective geometry:     all projective transformations

Euclidean geometry:     rigid motions (translations and rotations)



The Equivalence Problem

When are two shapes related by a group transformation?

• Rigid (Euclidean) equivalence (translations, rotations, reflections)
• Similarity equivalence
• Projective equivalence
• etc.



The Equivalence Problem

When are two shapes related by a group transformation?

• Rigid (Euclidean) equivalence (translations, rotations, reflections)
• Similarity equivalence
• Projective equivalence
• etc.



Rigid equivalence
When are two shapes related by a rigid motion?

?



Tennis, anyone?

?



Tennis, anyone?

Projective (equiaffine) equivalence & symmetry

?



Duck = Rabbit?



Limitations of Projective Equivalence

=⇒ K. Åström (1995)
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Fig. 4 
(Si) yare placed around CO in the case m = 4. The curve rj is projected into 
an almost circular curve nj(rj) with a small ripple around Pj. This is illus- 
trated in the right figure. 

The left figure illustrates how the points (P,) :and the closed regions 

around P, smaller but at the same time the contractive properties of 
the inverse transformation on a region like U,,, S, is increased, cf. the 
discussion after (1 1). By the construction in the proof of Theorem 1 it 
is thus possible to select a transformation n,, and also to cut each 
curve r’ into two pieces r,,local, and r,,,,,, so that the following prop- 
erties are obtained: 

~, ( r ’ . l oco / )  = U, #, S, 
n,(r,,rev) c S, 
d(qr,),C,,) < 1 1 m. 
l(Z,(r, ,,,*)) < 3 1 m. 
q, = n,-’ shrinks all curves in U, +, S, of arclength less than 
a constant M = 3n + 2 into a curve with arclength less than 
d2. The reason for the choice of constant will become 
clear later. 

Let C be constructed by gluing the patches nj(rj,,,,s,) and the line 
segments obtained by radially connecting the endpoints of nj(rj,re,J 
Both C \ nj(rj.rcsr) and nf(rj./ocoJ are in U i  Si. Since C is a patch of 
m curves each with arclength less than 3 n lm, and of m radial line 
segments of length less than 2/m, the total arclength of C \ nj(T;,rpsr) is 
certainly less than M = 3x + 2. By the contractive properties of qj, 
this means that l(qj(C \ zj(rj,re.J)) < d2. The curve nj(rj,/oco/) also has 
arclength less than M, so l(r,,,,,,,)) < d2. Since these curves have the 
same endpoints, it follows that 

The remaining part of C is nj(rj,re.vr), which is mapped identically into 

Notice that the transformations qj are physically realisable in the 
pinhole camera model. The construction of C and qi in the proof can 
be done by explicit formulas. An algorithm based on the proof has 
been implemented in MATLAB. Fig. 3. has been constructed using 
this algorithm. Fig. 5. shows what the mixed curve C looks like from 
eight different viewpoints. Observe that these eight different views 
are all projectively equivalent. Notice the kind of extreme, but non- 
singular, projective transformations that are involved. 

rj,rtw by 4,. Hence d(qj(C),r,) < E. 

IV. IMPLICATIONS FOR INVARIANTS 
By an invariant under a set of transformations P on @ is meant a 

function $ on & with values in some set V such that $(C) = $@(C)) 
for every curve C E @ and every transformation p E P. If @ and V 
are metric spaces, we can talk about continuity of invariants. 

One consequence of Theorem 1 is that in every neighbourhood of 
the circle Ne,c8, = (C  I d(C,C,,) < E), $ attains every value that it at- 

__ 

tains on g. In particular if c$ is non-constant on 2, this means that c$ 
is discontinuous at Co. 

This is however not a very useful observation. Discontinuities of 
this kind appear for many of the most valuable invariants. For in- 
stance whenever the group of transformations contains the similarity 
group, each object can be contracted into an €-neighbourhood of the 
origin, where thus @ attains all its values and becomes discontinuous. 
Thus e.g. even the crossratio has discontinuities in this sense, which 

Fig. 5.  Eight projectively equivalent views of the same planar curve. The duck 
transforms into something that looks like a circle and then into a rabbit. A 
closer look at the fourth curve reveals that the north and south pole is slightly 
rippled, see the magnifications. 

tells us that the property of having a discontinuity at one point is not 
very informative. 

More interesting conclusions about invariants can be obtained 
from Theorem 3. 

CorolrcUy 4: Every projective invariant + from @ to a metric 
space V, e.g. the real line, maps all curves at which it is continuous 
onto the same value. 

Proof: 
Assume to the contrary that r l  = $(I-,) # r, = ~ r 2 ) ,  and that 4 is 

continuous both at rl and r2. It is possible to find disjoint open sets 
0, 3 r ,  and O2 3 r2. According to Theorem 3 the inverse images $’ (0,) and @‘ (O,), which are open sets around TI and r,, contain a 
projectively equivalent pair of curves, contradicting the assumption. 

a 

V. CONCLUSIONS 

Corollary 4 tells that for invariants the properties of being con- 
tinuous and discriminating are contradictory. Notice that the theorem 
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=⇒ Groupoid equivalence?
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=⇒ Groupoid equivalence?



Thatcher Illusion

=⇒ Groupoid equivalence?
Local equivalence and symmetry  — groupoids?

Probabilistic transformation group(oid)s?



Equivalence of puzzle pieces



Local equivalence of puzzle pieces



Local equivalence of puzzle pieces



Occlusions and equivalence of parts

Local equivalence of puzzle pieces



The Equivalence Problem
When are two shapes related by a group transformation?



The Equivalence Problem
When are two shapes related by a group transformation?

Invariants

Solving the equivalence problem requires knowing    
the (appropriate) invariants



Invariants are quantities that are unchanged by 
the group transformations

Invariants



If two shapes are equivalent, 
they must have the same invariants.

Invariants are quantities that are unchanged by 
the group transformations

Invariants



Invariants

The solution to an equivalence problem rests on understanding
its invariants.

Definition. If G is a group acting on M , then an invariant is a
real-valued function I : M → R that does not change under
the action of G:

I(g · z) = I(z) for all g ∈ G, z ∈ M

! If G acts transitively, there are no (non-constant) invariants.



Joint invariants

An invariant that depends on several points is known as a
joint invariant

Joint	invariants

An	invariant that	depends	on	several	points	is	known	as	a
joint	invariant

●

● ●

●

●



Joint invariants

Rigid motions:    distance between two points

Joint	invariants

Rigid	motions:				 distance	between	two	points

●

●d



Joint invariants

Similarity group:    
ratios of distances  R = d/e  and angles  q

Joint	invariants

Similarity	group:				
ratios	of	distances		R	=	d/e		and	angles		q

●

●d

●

eq



Joint Equi–Affine Invariants

Theorem. Every planar joint equi–affine invariant is
a function of the triangular areas

[ i j k ] = 1
2 (zi − zj) ∧ (zi − zk)

zi

zj

zk



A B

C

D

AB

C D

Joint invariants

Projective group:    ratios of 4 areas



Yes:

η = 1, 1, 1, 1,
√
2,

√
2.

Distances between multiple points



Yes:

η = 1, 1, 1, 1,
√
2,

√
2.

The Distance Histogram —
invariant under rigid motions



Distance histograms



If two sets of points are equivalent up to rigid 
motion, they have the same distance histogram



Does the distance histogram 
uniquely determine a set of points

up to rigid motion?

If two sets of points are equivalent up to rigid 
motion, they have the same distance histogram



Does the distance histogram 
uniquely determine a set of points

up to rigid motion?

Answer:  Yes for most sets of points, but there are some exceptions!

Mireille (Mimi) Boutin and Gregor Kemper  (2004)
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η = 1, 1, 1, 1,
√
2,

√
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Does the distance histogram 
uniquely determine a set of points

up to rigid motion?



Yes:

η = 1, 1, 1, 1,
√
2,

√
2.

Does the distance histogram 
uniquely determine a set of points

up to rigid motion?



No:

Kite Trapezoid

η =
√
2,

√
2, 2,

√
10,

√
10, 4.

Does the distance histogram 
uniquely determine a set of points

up to rigid motion?



l ll lll

Distance histogram for points on a line

Does the distance histogram 
uniquely determine a set of points

on a line up to translation?



No:

P = {0, 1, 4, 10, 12, 17}

Q = {0, 1, 8, 11, 13, 17}
⊂ R

η = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17

=⇒ G. Bloom, J. Comb. Theory, Ser. A 22 (1977) 378–379

l ll lll

Distance histogram for points on a line



Joint Euclidean Signature

z0 z1

z2
z3

a

b

c d

e

f



Joint signature map:

Σ : C×4 −→ S ⊂ R
6

a = ‖ z0 − z1 ‖ b = ‖ z0 − z2 ‖ c = ‖ z0 − z3 ‖

d = ‖ z1 − z2 ‖ e = ‖ z1 − z3 ‖ f = ‖ z2 − z3 ‖

=⇒ six functions of four variables

Syzygies:

Φ1(a, b, c, d, e, f) = 0 Φ2(a, b, c, d, e, f) = 0

Universal Cayley–Menger syzygy ⇐⇒ C ⊂ R2

det

∣∣∣∣∣∣∣

2a2 a2 + b2 − d2 a2 + c2 − e2

a2 + b2 − d2 2b2 b2 + c2 − f2

a2 + c2 − e2 b2 + c2 − f2 2c2

∣∣∣∣∣∣∣
= 0



Joint Equi–Affine Signature

Requires 7 triangular areas:

[ 0 1 2 ] , [ 0 1 3 ] , [ 0 1 4 ] , [ 0 1 5 ] , [ 0 2 3 ] , [ 0 2 4 ] , [ 0 2 5 ]

z0

z1

z2

z3

z4

z5



Limiting Curve Histogram



Limiting Curve Histogram



Limiting Curve Histogram

Brinkman, D., and Olver, P.J., Invariant histograms, Amer. Math. Monthly 119 (2012), 4-24

Integral Invariants

2 COMPUTATION OF INTEGRAL INVARIANTS

This paper was motivated by an ongoing project to analyze and reassemble broken bone
fragments, a problem of significant interest in anthropology, paleontology, and surgery, build-
ing on earlier work of one of the authors on planar a surface jigsaw puzzle reassembly, [13,15].
A recent undergraduate REU project, [26], has successfully applied the circular area integral
invariant to planar jigsaw puzzle reassembly, following [15]. Indeed, one can easily envision
modifying the circular area invariant in order to incorporate designs (writing, pictures, tex-
ture) that may appear on the puzzle pieces, potentially relying on some form of digital
inpainting algorithm, [3, 7, 10, 11], to extend the design in the circular region on one side
of the curve to the other, after which it could be compared to other potential matches, or,
alternatively use of texture information to effect the reconstruction, as advocated in [22,23].

The distance histogram function and circular area invariant are particular cases of the
general theory of integral invariants, [14, 17, 20], which have also been successfully applied
to a variety of image processing problems. See [12] for applications of the moving frame
method to their classifications and signature construction under basic group actions, e.g.,
Euclidean and equi-affine geometries. There is as yet no general theorem that characterizes
which integral invariants are required to construct a full-fledged signature, meaning one
that completely distinguishes inequivalent objects. Nevertheless, if two integral invariants
differ, then one is assured that the objects cannot be equivalent, i.e., there is no group
transformation that maps one to the other, and this in itself is commonly applied to image-
based object classification and recognition.

Histograms based on geometric invariants (lengths, areas, etc.) play a fundamental role
throughout a broad range of modern image processing algorithms, including shape repre-
sentation and classification, [1, 25], image enhancement, [24, 25], the scale-invariant feature
transform (SIFT) [16, 19], and its affine-invariant counterpart (ASIFT), [27], and object-
based query methods, [8]. Distance histograms underly the widely used methods of shape
contexts, [2], and shape distributions, [18]. A striking result of Boutin and Kemper, [4, 5],
states that the histogram of distances among a finite collection of points in Euclidean space
generically uniquely determines the point configuration up to rigid motion. More precisely, if
n, the number of points, and m, the dimension of the space, satisfy n ≤ 3 or n ≥ m+2, then
the set of point configurations that cannot be uniquely reconstructed from their distance
histogram forms an algebraic subvariety.

The paper [6] introduced the cumulative distance histogram function of a plane curve C
of length l(C): the local distance histogram function based at a point z ∈ C is

hC(r, z) =
l(C ∩ Dr(z))

l(C)
, (1.3)

the total length of those parts of the curve contained within the disk Dr(z) of radius r
centered at z divided by the total length of the entire curve. The global distance histogram
function of C is obtained by averaging the local version over the curve:

H(r) =
1

l(C)2

∫

C

l(C ∩ Dr(z(s))) ds, (1.4)

where the integrand denotes the length of those parts of the curve contained within the
disk Dr(z(s)) of radius r centered at the point z(s) ∈ C, and s denotes arc length. For a
sufficiently regular plane curve, we proved convergence of suitably normalized cumulative
distance histograms based on discretizing the curve, by either uniformly spaced or randomly
chosen sample points, to the curve histogram function H(r). Robustness of the curve his-
togram function under noise and pixelization was also established. There is considerable of
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(a) Circular area signature (b) Cone area signature

Fig. 1.1. Depiction of some integral invariant signatures.

intersection of a ball of radius r > 0 centered on each boundary point with the interior
of the object while the cone area signature uses a cone with aperture " > 0 emanating
from a common point within the object’s interior and centered on each boundary
point. The vertex of the cone is commonly chosen to be the centroid of the object.
The cone area signature has been thoroughly studied by Fidler et al. [9]. They proved
that star-shaped regions are uniquely described by the cone area signature if and only
if "/⇡ is irrational. Furthermore, the inverse map, when it exists, is not continuous.

The circular area signature is perhaps more interesting as it is asymptotically
related (as r ! 0) to the most popular di↵erential signature, curvature [12]. As
such, there is reason to believe that similar uniqueness results to those obtained for
curvature may hold for the circular area signature. In fact, recently it has been
shown that the circular area signature satisfies a local uniqueness result, weaker than
local injectivity, within neighborhoods of circles [2]. However, any kind of global
uniqueness result remains elusive. Such a result would be of great interest as it would
justify the prominence of the circular area signature in the computer vision literature
and advocate its use as a robust invariant signature.

In this work, we study the circular area signature for graphs of periodic functions.
Although this is a di↵erent problem, it is intimately related to the circular area
signature of closed curves. As such, the uniqueness results we prove in this work,
aside from being interesting in their own right, indicate that similar results may hold
for the case of closed curves.

1.1. Summary of main results. In this work, we study the uniqueness problem
for the circular area signature for graphs of periodic functions. To simplify the layout
of the paper, we present the main results in this section and postpone the proofs to
section 3 after a series of preliminary results.

Let us first fix some notation.
Definition 1.1. For M = (m1, . . . ,m4) 2 R4

+ we define

�M := {f 2 C
4(R) | f(x+ 2⇡) = f(x), 8x 2 R,

kf (k)kL1(R)  mk, k = 1, . . . , 4, f(0) = 0}. (1.1)

We will write C(m1, . . . ,mk) to denote a positive constant that depends on each of
m1, . . . ,mk in a nondecreasing way. Similarly, we will denote by R(m1, . . . ,mk) a
positive constant that depends on each of m1, . . . ,mk in a nonincreasing way. We will
often write Ck in place of C(m1, . . . ,mk) and Rk in place of R(m1, . . . ,mk). We will

The Circular Area Invariant

Calder and Esedoglu (2012)

COMPUTATION OF INTEGRAL INVARIANTS

AUTHORS TBD

Should the title be more specific, e.g., “Computation of Circular Area and Spherical
Volume Invariants”?

1. Introduction

The aim of this note is to facilitate the computation of certain integral invariants that
have been proposed for applications in digital image processing, namely, the circular area
and spherical volume invariants, as defined below. We show that both can be efficiently
evaluated by reducing them to, respectively, line or surface integrals (plus an additional
term), thus enabling them to be computed directly from the curve or surface image data.

More specifically, given a Jordan plane curve C ⊂ R2 with interior intC, at each point p
in the curve C, the value of the (local) circular area invariant of radius r > 0 at p is defined
as the area of the region given by the intersection of the interior of the curve with a disk of
radius r centered at the point p, denoted Dr(p):

AC,r(p) = A(int C ∩ Dr(p)). (1.1)

The circular area is clearly invariant under Euclidean motions of the curve, of course assum-
ing one related the base points p accordingly. A global invariant can be obtained by averaging
over the curve. The ability of the local circular area invariant to uniquely characterize the
curve up to Euclidean motion is discussed in detail in [9].

Similarly, given a closed surface S ⊂ R3 bounding a domain int S, we define the spher-
ical volume invariant at each point p ∈ S to be the volume of the solid region given by
intersecting the interior of the surface with a sphere of radius r > 0 centered at the point p:

VS,r(p) = V (int S ∩ Br(p)). (1.2)

Again, invariance under three-dimensional Euclidean motions is clear. Are there results on
unique reconstruction of surfaces?

These quantities clearly extend to the corresponding hyperspherical volume invariant of
closed hypersurfaces in S ⊂ Rn. Our main result is the general formula (3.12) that expresses
this integral invariant in terms of a hypersurface integral over S. When n = 2, it reduces to a
useful formula (2.5) or (3.14) for the circular area invariant AC,r(p) in terms of a suitable line
integral over the curve C and, respectively, formula (3.15) for the spherical volume invariant
VS,r(p) in terms of a surface integral over S. Our results apply to sufficiently smooth
codimension 1 submanifolds and also, with a suitable modification, at corner points and
cusps. Explain exactly when they work here? In practical applications, one approximates
the curve/surface by a set of sample points and or triangular mesh (in the case of surfaces)
and the area and volume invariants are similarly approximated. Should we state and or
prove some bounds on the approximation?) Similar ideas can be used to evaluate other
integral invariants, although a number of them (see below) are already expressed in terms
of integrals of the type sought after here.
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The Spherical Volume Invariant



Distinguishing Moles from Melanomas

• Anna Grim and Cheri Shakiban, 2015



Distance Histogram   — Melanoma



Distance Histogram   — Mole



CUMULATIVE HISTOGRAM:
Mole   versus   Melanoma



TYPICAL MOLE 
CUMULATIVE HISTOGRAM



TYPICAL MELANOMA 
CUMULATIVE HISTOGRAM



CONCAVITY POINT ANALYSIS



MOLE     MELANOMA     



For smooth objects   — curves, surfaces, etc., 

we can use calculus to construct

Differential Invariants



Curvature is a measure of “bendiness”.

bendy

flat

A Differential Invariant



Curvature

r = 1/κ

Curvature  =   reciprocal of radius of osculating circle



Euclidean Plane Curves: G = SE(2)

Differentiation with respect to the Euclidean-invariant arc
length element ds is an invariant differential operator,
meaning that it maps differential invariants to differential
invariants.

Thus, starting with curvature κ, we can generate an infinite
collection of higher order Euclidean differential invariants:

κ,
dκ

ds
,

d2κ

ds2
,

d3κ

ds3
, · · ·

Theorem. All Euclidean differential invariants are functions of
the derivatives of curvature with respect to arc length:
κ, κs, κss, · · ·



Euclidean Plane Curves: G = SE(2)

Assume the curve C ⊂ M is a graph: y = u(x)

Differential invariants:

κ =
uxx

(1 + u2
x)

3/2
,

dκ

ds
=

(1 + u2
x)uxxx − 3uxu

2
xx

(1 + u2
x)

3
,

d2κ

ds2
= · · ·

Arc length (invariant one-form):

ds =
√
1 + u2

x dx,
d

ds
=

1
√
1 + u2

x

d

dx



Similarity Plane Curves: G = SE(2)× R

Similarity “curvature”:

κ̂ =
κs

κ2
κ̂ŝ = · · ·

Similarity arc length:

d ŝ = κ ds
d

dŝ
=

1

κ

d

ds

Theorem. All similarity differential invariants are functions of
the derivatives of the similarity curvature with respect to
similarity arc length: κ̂, κ̂ŝ, κ̂ŝŝ, · · ·



Equi-affine Plane Curves: G = SA(2) = SL(2)! R2

Equi-affine curvature:

κ =
5uxxuxxxx − 3u2

xxx

9u8/3
xx

dκ

ds
= · · ·

Equi-affine arc length:

ds = 3

√
uxx dx

d

ds
=

1
3
√
uxx

d

dx

Theorem. All equi-affine differential invariants are functions
of the derivatives of equi-affine curvature with respect to
equi-affine arc length: κ, κs, κss, · · ·



Projective Plane Curves: G = PSL(2)

Projective curvature:

κ = K(u(7), · · · )
dκ

ds
= · · ·

d2κ

ds2
= · · ·

Projective arc length:

ds = L(u(5), · · · ) dx
d

ds
=

1

L

d

dx

Theorem. All projective differential invariants are functions
of the derivatives of projective curvature with respect to
projective arc length:

κ, κs, κss, · · ·



What everyday device can measure curvature?

Euclidean Curvature is a measure of “bendiness”.
bendy

flat







time

left

right



left

right

time

Can you reconstruct the racetrack?



left

right

time
odometer

Can you reconstruct the racetrack?



Can you reconstruct the racetrack?

is (Euclidean) curvature

is (Euclidean) arclength



Racetrack comparison problem



Racetrack comparison problem



Racetrack comparison problem

= rate of change    
(derivative) 
of curvature



The Invariant Signature
The invariant signature of a planar curve is the set 
traced out by curvature and the rate of change of 
curvature (its arclength derivative).

original curve invariant signature



The invariant signature
Theorem 
Two regular curves are related by a group transformation 
if and only if they have the same invariant signatures.

(Calabi, Haker, Olver, Shakiban, Tannenbaum 1998)



The invariant signature
Theorem 
Two regular curves are related by a group transformation 
if and only if they have the same invariant signatures.

Proof idea 

Shapes are related if and only if they have the same 
relationships among their differential invariants.

Theorem (Élie Cartan 1908)



3DDifferential Invariant Signatures

Euclidean space curves: C ⊂ R3

Σ = { (κ , κs , τ ) } ⊂ R
3

• κ — curvature, τ — torsion

Euclidean surfaces: S ⊂ R3 (generic)

Σ =
{ (

H , K , H,1 , H,2 , K,1 , K,2

) }
⊂ R

6

or Σ̂ =
{ (

H , H,1 , H,2 , H,11

) }
⊂ R

4

• H — mean curvature, K — Gauss curvature

Equi–affine surfaces: S ⊂ R3 (generic)

Σ =
{ (

P , P,1 , P,2, P,11

) }
⊂ R

4

• P — Pick invariant



Themathematical theory is all basedon thenew
equivariantmethodofmoving frames (Fels+PJO, 1999) 
whichprovides a systematic andalgorithmic calculus for
constructing complete systemsof differential invariants,
joint invariants, joint differential invariants,
invariant differential operators, invariant differential
forms, invariant variational problems, invariant
conservation laws, invariant numerical algorithms,
invariant signatures, etc., etc.

Moving Frames



Symmetry–Preserving Numerical Methods

• Invariant numerical approximations to differential
invariants.

• Invariantization of numerical integration methods.

=⇒ Structure-preserving algorithms



Numerical approximation to curvature

a
b

cA

B

C

Heron’s formula

κ̃(A, B,C) = 4
∆

abc
= 4

√
s(s − a)(s − b)(s − c)

abc

s =
a + b + c

2
— semi-perimeter



The polar curve r = 3 + 1
10 cos 3θ
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Numerical Signature

Bivertex Arcs

The signature Σ of a bivertex arc is a single arc that
starts and ends on the κ–axis.

κ

κs

Bivertex Arcs

The signature Σ of a bivertex arc is a single arc that
starts and ends on the κ–axis.

κ

κs



The Curve x = cos t+ 1
5 cos

2 t, y = sin t+ 1
10 sin

2 t
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Equi-affine Signature

Bivertex Arcs

The signature Σ of a bivertex arc is a single arc that
starts and ends on the κ–axis.
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Bivertex Arcs

The signature Σ of a bivertex arc is a single arc that
starts and ends on the κ–axis.
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The Curve x = cos t+ 1
5 cos

2 t, y = 1
2 x+ sin t+ 1

10 sin
2 t
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The signature Σ of a bivertex arc is a single arc that
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Object Recognition

=⇒ Steve Haker
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Diagnosing breast tumors

Benign   — cyst Malignant   — cancerous

Anna Grim, Cheri Shakiban (2017)



A BENIGN TUMOR

Contour Signature Curve



A MALIGNANT TUMOR

Contour Signature Curve



Reassembly of 
Broken Objects







The Baffler Nonagon



The Baffler Nonagon  — Solved





Step 1. Numerically compute invariant signatures of (parts of) pieces.
Step 2. Compare signatures to find potential fits.

Automatic puzzle reassembly

Step 3. Put them together, if they fit, as closely as possible.
Repeat steps 1–3 until puzzle is assembled….

Step 0. Digitally photograph and smooth the puzzle pieces.



Localization of Signatures

Generalized vertex: κs ≡ 0
=⇒ critical point; circular arc; straight line segment

Bivertex arc: κs #= 0 everywhere
except κs = 0 at the two endpoints

Localization of Signatures

Generalized vertex: κs ≡ 0
=⇒ critical point; circular arc; straight line segment

Bivertex arc: κs #= 0 everywhere
except κs = 0 at the two endpoints

Bivertex Arcs

The signature Σ of a bivertex arc is a single arc that
starts and ends on the κ–axis.

κ

κs

Bivertex Arcs

The signature Σ of a bivertex arc is a single arc that
starts and ends on the κ–axis.

κ

κs



Bivertex Decomposition
v-regular curve — finitely many generalized vertices

C =
m⋃

j=1
Bj ∪

n⋃

k=1
Vk

B1, . . . , Bm — bivertex arcs

V1, . . . , Vn — generalized vertices: n ≥ 4

Main Idea: Compare individual bivertex arcs, and then decide
whether the rigid equivalences are (approximately) the same.

D. Hoff & PJO, Extensions of invariant signatures for object recognition,
J. Math. Imaging Vision 45 (2013), 176–185.



Signature Metrics

Used to compare signatures:

• Hausdorff

• Monge–Kantorovich transport

• Electrostatic/gravitational attraction

• Latent semantic analysis

• Histograms

• Geodesic distance

• Diffusion metric

• Gromov–Hausdorff & Gromov–Wasserstein



Gravitational/Electrostatic Attraction

! Treat the two (signature) curves as masses or as oppositely
charged wires. The higher their mutual attraction, the
closer they are together.

! In practice, we are dealing with discrete data (pixels) and
so treat the curves and signatures as point masses/charges.

κ

κs

κ

κs



Gravitational/Electrostatic Attraction

! Treat the two (signature) curves as masses or as oppositely
charged wires. The higher their mutual attraction, the
closer they are together.

! In practice, we are dealing with discrete data (pixels) and
so treat the curves and signatures as point masses/charges.

κ

κs

κ

κs



Assembling the puzzle…



Piece Locking

! ! Minimize force and torque based on gravitational
attraction of the two matching edges.



Putting Humpty Dumpty Together Again

Anna Grim, Ryan Slechta, Tim O’Connor, Rob Thompson, Cheri Shakiban, Peter Olver



A broken ostrich egg

(Scanned by M. Bern, Xerox PARC)



A synthetic 3d jigsaw puzzle



Assembly of synthetic spherical puzzle

• Uses curvature and torsion invariants



An egg piece



All the king’s horses and men



The elephant bird of Madagascar

more than 3 meters tall

extinct by the 1700’s

one egg could make about 160 omelets

(Image from wikipedia.org)

http://wikipedia.org/


(Extract from “Zoo Quest to Madagascar”, BBC 1961)

Elephant bird egg shells



The elephant bird of Madagascar

pictured egg is 70% complete

complete egg recently sold for $100,000

(Image from Tennant’s Auctioneers)



Puzzles in archaeology



Puzzles in archaeology



Puzzles in surgery



Puzzles in anthropology and paleontology



4/27/17, 10:33 PMCould history of humans in North America be rewritten by broken bones? | Science | The Guardian

Page 1 of 6https://www.theguardian.com/science/2017/apr/26/could-history-of-humans-in-north-america-be-rewritten-by-broken-mastodon-bones

 

Could history of humans in North America be
rewritten by broken bones?
Smashed mastodon bones show humans arrived over 100,000 years earlier than previously
thought say researchers, although other experts are sceptical

Ian Sample Science editor
Wednesday 26 April 2017 13.00 EDT

The history of the people of America, a story that dates back to the last ice age, has been
upended by the battered bones of a mastodon found under a freeway construction site in
California.

Archaeological sites in North America have led most researchers to believe that the continent
was first reached by humans like us, Homo sapiens, about 15,000 years ago. But inspection of
the broken mastodon bones, and large stones lying with them, point to a radical new date for
the arrival of ancient humans. If the claim stands up, humans arrived in the New World
130,000 years ago.

Thomas Deméré, curator of palaeontology at the San Diego Natural History Museum which led
the project, said: “Of course extraordinary claims like this require extraordinary evidence,”
adding that the team believed “the site preserves such evidence”. Anticipating the disbelief of
many experts in the field, Steven Holen, another project scientist at the Center for Paleolithic
Research, said: “I know people will be sceptical about this.” That caution was summed up by
one scientist who preferred not to be named: “They are going to face a shitstorm,” he said.

The partial remains of the American mastodon, a long gone relative of the modern elephant,
were discovered in San Diego in the winter of 1992 during a freeway expansion project. When
researchers moved in they found layers of fine sediments deposited by streams, bearing shells,
rodent teeth, and wolf and horse bones. In one layer they found the mastodon, a beast that
could reach a height of three metres and weighed eight tonnes when fully grown. The animals
had roamed North America for millions of years.

The bones posed an immediate puzzle. The pattern of the fossilised limbs, the obvious
damage, and stones found alongside them raised enough questions that the scientists brought
in other experts and launched a detailed analysis of the remains and surrounding site.

5/31/17, 10:12 PMCould history of humans in North America be rewritten by broken bones? | Science | The Guardian

Page 2 of 6https://www.theguardian.com/science/2017/apr/26/could-history-of-humans-in-north-america-be-rewritten-by-broken-mastodon-bones

The results of the investigation, reported in the journal Nature, build a case for the mastodon
bones being “processed”, a term that translates into more frank terms such as smashed,
cracked and snapped. Unlike the wolf and horse bones found in other layers at the site, the
ends of some of the mastodon bones had been broken off, as if to extract nutritious bone
marrow. Others had been battered. One of the animal’s tusks poked upright in the ground,
perhaps by chance, or perhaps to serve as a marker for the remains.

Intriguingly, the bones were found in two rough piles, each with two or three large rocks
measuring 10 to 30cm across. The scientists believe the stones are too heavy to have been
carried there in the flow of a stream, and instead suspect they were carried by humans for use
as hammerstones and anvils to break the bones apart. “What is truly remarkable about this site
is that you can identify particular hammers that were smacked on particular anvils,” said
Richard Fullagar, a stone tools expert on the team from the University of Wollongong in New
South Wales. Pieces knocked off the stones and bones were found too.

“We have no evidence that this is a kill or butchery site, but we do have evidence that people

Using leg bone used from an elephant that had recently died of
natural causes, a breakage experiment was carried out in an
attempt to determine the kinds of breakage patterns that might
result from hammerstone percussion. Photograph: Kate Johnson,
San Diego Natural History MuseumCMS-Figure-2





● Meat eater vs. vegetarian
● Brain development
● Scavenging vs. hunting
● Food sharing
● Social structures
● Cooperative behavior
● Home bases/central places
● Carcass transport
● Butchering behavior

OR
?

Anthropological Implications



Bone fragment



Segmentation









Fracture Angles  — goniometer measurements

214

Alcantara-García et al. (2006). 



Fracture Angles: Methods

215

“Midpoint measurements were the 
chosen standard because the 

fracture angle of a plane often varies 
along its full length.”

(Pickering et al., 2015:251)



216

< 80° = hominin
80° and 110° = carnivore

> 110° = hominin

C C C HC HH H H

Carnivore Created Fragment Average =  66°



Fracture Angles

● Not fully tested

○ Limited experimental  studies

○ Different taxa tested in each

■ Different results related to 

taxon and element

■ No independent testing of 

the same taxon

217



Fracture Angles: Methods

218



219



220

Virtual Goniometer
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Hominins vs. Hyena via Break Angle (Humerus)

Yes category yes Size
No 
category no Size

Training 
percentage

Training 
Size Sensitivity Specificity Precision

Negative 
Predictive Rate

Miss 
Rate

Fall 
out

hominin humerus 779
hyena 
humerus 512 75 195 0.959 0.152 0.53071 0.78756 0.041 0.85

hyena humerus 512
hominin 
humerus 779 75 128 0.959 0.094 0.51421 0.6963 0.041 0.91

hominin humerus 779
hyena 
humerus 512 65 273 0.959 0.154 0.5313 0.78974 0.041 0.85

hyena humerus 512
hominin 
humerus 779 65 180 0.934 0.121 0.51517 0.64706 0.066 0.88

hominin humerus 779
hyena 
humerus 512 50 390 0.957 0.163 0.53344 0.79126 0.043 0.84

hyena humerus 512
hominin 
humerus 779 50 256 0.961 0.125 0.52342 0.7622 0.039 0.88

hominin humerus 779
hyena 
humerus 512 40 468 0.958 0.139 0.52666 0.76796 0.042 0.86

hyena humerus 512
hominin 
humerus 779 40 308 0.95 0.123 0.51998 0.71098 0.05 0.88

Virtual Goniometer Data



Hominins vs. Hyena via Break Angle (Femur)

Yes category yes Size
No 
category no Size

Training 
percentage

Training 
Size Sensitivity Specificity Precision

Negative 
Predictive 
Rate

Miss 
Rate

Fall 
out

hominin femur 1565
hyena 
femur 897 75 392 0.941 0.268 0.56246 0.81957 0.059 0.73

hyena femur 897
hominin 
femur 1565 75 225 0.959 0.139 0.52692 0.77222 0.041 0.86

hominin femur 1565
hyena 
femur 897 65 548 0.958 0.365 0.60138 0.89681 0.042 0.64

hyena femur 897
hominin 
femur 1565 65 314 0.949 0.197 0.54167 0.79435 0.051 0.8

hominin femur 1565
hyena 
femur 897 50 783 0.949 0.428 0.62393 0.89353 0.051 0.57

hyena femur 897
hominin 
femur 1565 50 449 0.942 0.233 0.5512 0.80069 0.058 0.77

hominin femur 1565
hyena 
femur 897 40 897 0.96 0.371 0.60415 0.90268 0.04 0.63

hyena femur 897
hominin 
femur 1565 40 539 0.958 0.198 0.54432 0.825 0.042 0.8
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Principal Curvatures
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Surface Curvatures

• Principal curvatures: κ
1
,κ

2

• Gauss curvature: K = κ
1
κ
2

— intrinsic

• Mean curvature: H = 1

2
(κ

1
+ κ

2
) — extrinsic

• Curvature difference: ∆ = |κ
1
− κ

2
|



Sample Size (Manual Data)

Number of breaks per element and method of breakage

Number of breaks per element and actor of breakage Number of breaks per element and actor for which no 
goniometer measurement could be taken

Number of breaks per element and method for which no 
goniometer measurement could be taken



Sample Size (Digital Data)
Manual Data Digital Data

● 457 fragments

● 2,059 breaks

● 1,358 measurements

● 82 fragments

● 1,376,900 
measurements

● 1% = 13,769



First Stages

Kolmogorov-Smirnov test



Hominins vs. hyena (femur) – principal curvature differences
Yes 
category

yes 
Size

No 
category

no 
Size

Training 
percentage

Training 
Size

Sensitiv
ity

Specific
ity

Precisi
on

Negative Predictive 
Rate

Miss 
Rate

Fall 
out

hominin 
(femur) 3243

hyena 
(femur) 1824 75 811 0.942 1 1 0.94518 0.058 0

hyena 
(femur) 1824

hominin 
(femur) 3243 75 456 0.95 1 1 0.95238 0.05 0

hominin 
(femur) 3243

hyena 
(femur) 1824 65 1136 0.947 1 1 0.94967 0.053 0

hyena 
(femur) 1824

hominin 
(femur) 3243 65 639 0.939 1 1 0.94251 0.061 0

hominin 
(femur) 3243

hyena 
(femur) 1824 50 1622 0.949 1 1 0.95147 0.051 0

hyena 
(femur) 1824

hominin 
(femur) 3243 50 912 0.946 1 1 0.94877 0.054 0

hominin 
(femur) 3243

hyena 
(femur) 1824 40 1824 0.946 1 1 0.94877 0.054 0

hyena 
(femur) 1824

hominin 
(femur) 3243 40 1095 0.938 1 1 0.94162 0.062 0



Yes category
yes 
Size No category

no 
Size

Training 
percentage

Training 
Size

Sensitiv
ity

Specific
ity

Precisi
on

Negative Predictive 
Rate

Miss 
Rate

Fall 
out

hominin 
(humerus) 1609

hyena 
(humerus) 780 75 403 0.954 1 1 0.95602 0.046 0

hyena 
(humerus) 780

hominin 
(humerus) 1609 75 195 0.941 1 1 0.94429 0.059 0

hominin 
(humerus) 1609

hyena 
(humerus) 780 65 564 0.947 1 1 0.94967 0.053 0

hyena 
(humerus) 780

hominin 
(humerus) 1609 65 273 0.933 1 1 0.93721 0.067 0

hominin 
(humerus) 1609

hyena 
(humerus) 780 50 780 0.96 1 1 0.96154 0.04 0

hyena 
(humerus) 780

hominin 
(humerus) 1609 50 390 0.95 1 1 0.95238 0.05 0

hominin 
(humerus) 1609

hyena 
(humerus) 780 40 780 0.95 1 1 0.95238 0.05 0

hyena 
(humerus) 780

hominin 
(humerus) 1609 40 468 0.949 1 1 0.95147 0.051 0

Hominins vs. hyena (humerus) – principal curvature differences



Yes category
yes 
Size No category

no 
Size

Training 
percentage

Training 
Size

Sensiti
vity

Specific
ity

Precisi
on

Negative Predictive 
Rate

Miss 
Rate

Fall 
out

Batting 
femur 1758

HS & Anv 
femur 1485 75 440 0.951 1 1 0.95329 0.049 0

HS & Anv 
femur 1485

Batting 
femur 1758 75 372 0.956 1 1 0.95785 0.044 0

Batting 
femur 1758

HS & Anv 
femur 1485 65 616 0.938 1 1 0.94162 0.062 0

HS & Anv 
femur 1485

Batting 
femur 1758 65 520 0.948 1 1 0.95057 0.052 0

Batting 
femur 1758

HS & Anv 
femur 1485 50 879 0.942 1 1 0.94518 0.058 0

HS & Anv 
femur 1485

Batting 
femur 1758 50 743 0.957 1 1 0.95877 0.043 0

Batting 
femur 1758

HS & Anv 
femur 1485 40 1055 0.954 1 1 0.95602 0.046 0

HS & Anv 
femur 1485

Batting 
femur 1758 40 891 0.951 1 1 0.95329 0.049 0

Hammerstone vs. batting (femur) – principal curvature differences



Yes category
yes 
Size No category

no 
Size

Training 
percentage

Training 
Size Sensitivity Specificity Precision

Negative 
Predictive Rate

Miss 
Rate

Fall 
out

anv humerus 606
hsanv 
humerus 1003 75 152 0.947 1 1 0.94967 0.053 0

hsanv 
humerus 1003 anv humerus 606 75 251 0.952 1 1 0.9542 0.048 0

anv humerus 606
hsanv 
humerus 1003 65 213 0.948 1 1 0.95057 0.052 0

hsanv 
humerus 1003 anv humerus 606 65 352 0.951 1 1 0.95329 0.049 0

anv humerus 606
hsanv 
humerus 1003 50 303 0.965 1 1 0.96618 0.035 0

hsanv 
humerus 1003 anv humerus 606 50 502 0.961 1 1 0.96246 0.039 0

anv humerus 606
hsanv 
humerus 1003 40 364 0.941 1 1 0.94429 0.059 0

hsanv 
humerus 1003 anv humerus 606 40 602 0.946 1 1 0.94877 0.054 0

HS & Anv vs. batting (humerus) – surface curvature



Yes category
yes 
Size No category

no 
Size

Training 
percentage

Training 
Size

Sensitivit
y

Specificit
y

Precisio
n

Negative Predictive 
Rate

Miss 
Rate

Fall 
out

anv tibia 1878 hsanv tibia 1291 75 470 0.945 1 1 0.94787 0.055 0
hsanv tibia 1291 anv tibia 1878 75 323 0.943 1 1 0.94607 0.057 0
anv tibia 1878 hsanv tibia 1291 65 658 0.94 1 1 0.9434 0.06 0
hsanv tibia 1291 anv tibia 1878 65 452 0.954 1 1 0.95602 0.046 0
anv tibia 1878 hsanv tibia 1291 50 939 0.946 1 1 0.94877 0.054 0
hsanv tibia 1291 anv tibia 1878 50 646 0.947 1 1 0.94967 0.053 0
anv tibia 1878 hsanv tibia 1291 40 1127 0.941 1 1 0.94429 0.059 0
hsanv tibia 1291 anv tibia 1878 40 775 0.945 1 1 0.94787 0.055 0

HS & Anv vs. batting (tibia) – surface curvature



Yes category
yes 
Size No category no Size

Training 
percentage Training Size SensitivitySpecificity Precision

Negative Predictive 
Rate

Miss 
Rate

Fall 
out

Batting raduln 1878
HS & Anv 
raduln 1291 75 470 0.962 1 1 0.96339 0.038 0

HS & Anv 
raduln 1291 Batting raduln 1878 75 323 0.957 1 1 0.95877 0.043 0

Batting raduln 1878
HS & Anv 
raduln 1291 65 658 0.948 1 1 0.95057 0.052 0

HS & Anv 
raduln 1291 Batting raduln 1878 65 452 0.95 1 1 0.95238 0.05 0

Batting raduln 1878
HS & Anv 
raduln 1291 50 939 0.954 1 1 0.95602 0.046 0

HS & Anv 
raduln 1291 Batting raduln 1878 50 646 0.953 1 1 0.95511 0.047 0

Batting raduln 1878
HS & Anv 
raduln 1291 40 1127 0.946 1 1 0.94877 0.054 0

HS & Anv 
raduln 1291 Batting raduln 1878 40 775 0.956 1 1 0.95785 0.044 0

HS & Anv vs. batting (rad-uln) – surface curvature



Yes 
category yes Size

No 
category no Size

Training 
percentage

Training 
Size Sensitivity Specificity Precision

Negative 
Predictive 
Rate Miss Rate Fall out

hominin 
femur 261

hyena 
femur 177 75 66 0.956 0.368 0.60202 0.8932 0.044 0.632

hyena 
femur 177

hominin 
femur 261 75 45 0.957 0.222 0.55159 0.83774 0.043 0.778

hominin 
femur 261

hyena 
femur 177 65 92 0.959 0.502 0.6582 0.92449 0.041 0.498

hyena 
femur 177

hominin 
femur 261 65 62 0.966 0.294 0.57775 0.89634 0.034 0.706

hominin 
femur 261

hyena 
femur 177 50 131 0.963 0.561 0.68688 0.93813 0.037 0.439

hyena 
femur 177

hominin 
femur 261 50 89 0.966 0.299 0.57948 0.8979 0.034 0.701

hominin 
femur 261

hyena 
femur 177 40 157 0.949 0.494 0.65223 0.90642 0.051 0.506

hyena 
femur 177

hominin 
femur 261 40 107 0.956 0.327 0.58686 0.8814 0.044 0.673

Hominins vs. hyena (femur) – manual goniometer data
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Hominins vs. hyena (humerus) — virtual goniometer

Yes category yes Size No category no Size Training %
Training 
Size Sensitivity Specificity Precision

Negative 
Predictive Rate

Miss 
Rate

Fall 
out

hominin humerus 779
hyena 
humerus 512 75 195 0.959 0.152 0.53071 0.78756 0.041 0.85

hyena humerus 512
hominin 
humerus 779 75 128 0.959 0.094 0.51421 0.69630 0.041 0.91

hominin humerus 779
hyena 
humerus 512 65 273 0.959 0.154 0.53130 0.78974 0.041 0.85

hyena humerus 512
hominin 
humerus 779 65 180 0.934 0.121 0.51517 0.64706 0.066 0.88

hominin humerus 779
hyena 
humerus 512 50 390 0.957 0.163 0.53344 0.79126 0.043 0.84

hyena humerus 512
hominin 
humerus 779 50 256 0.961 0.125 0.52342 0.76220 0.039 0.88

hominin humerus 779
hyena 
humerus 512 40 468 0.958 0.139 0.52666 0.76796 0.042 0.86

hyena humerus 512
hominin 
humerus 779 40 308 0.950 0.123 0.51998 0.71098 0.05 0.88



Yes category yes Size

No 

category no Size Training %

Training 

Size Sensitivity Specificity Precision

Negative 

Predictive Rate

Miss 

Rate

Fall 

out

hominin femur 1565

hyena 

femur 897 75 392 0.941 0.268 0.56246 0.81957 0.059 0.73

hyena femur 897

hominin 

femur 1565 75 225 0.959 0.139 0.52692 0.77222 0.041 0.86

hominin femur 1565

hyena 

femur 897 65 548 0.958 0.365 0.60138 0.89681 0.042 0.64

hyena femur 897

hominin 

femur 1565 65 314 0.949 0.197 0.54167 0.79435 0.051 0.80

hominin femur 1565

hyena 

femur 897 50 783 0.949 0.428 0.62393 0.89353 0.051 0.57

hyena femur 897

hominin 

femur 1565 50 449 0.942 0.233 0.55120 0.80069 0.058 0.77

hominin femur 1565

hyena 

femur 897 40 897 0.960 0.371 0.60415 0.90268 0.04 0.63

hyena femur 897

hominin 

femur 1565 40 539 0.958 0.198 0.54432 0.82500 0.042 0.80

Hominins vs. hyena (femur) — virtual goniometer



Yes category
yes 
Size No category

no 
Size

Training 
percentage

Training 
Size

Sensitivi
ty

Specifici
ty

Precisio
n

Negative Predictive 
Rate

Miss 
Rate

Fall 
out

hominin 
humerus 240

hyena 
humerus 88 75 60 0.958 0.069

0.5071
5 0.62162 0.042 0.931

hyena 
humerus 88

hominin 
humerus 240 75 22 0.956 0.055

0.5028
9 0.55556 0.044 0.945

hominin 
humerus 240

hyena 
humerus 88 65 84 0.953 0.019

0.4927
6 0.28788 0.047 0.981

hyena 
humerus 88

hominin 
humerus 240 65 31 0.955 0.069

0.5063
6 0.60526 0.045 0.931

hominin 
humerus 240

hyena 
humerus 88 50 88 0.96 0.035 0.4987 0.46667 0.04 0.965

hyena 
humerus 88

hominin 
humerus 240 50 44 0.964 0.066 0.5079 0.64706 0.036 0.934

hominin 
humerus 240

hyena 
humerus 88 40 88 0.954 0.055

0.5023
7 0.54455 0.046 0.945

hyena 
humerus 88

hominin 
humerus 240 40 53 0.958 0.067

0.5066
1 0.61468 0.042 0.933

Hominins vs. hyena (humerus) – manual data



Moving forward
● More taxa

○ Bos
○ Ovis/Capra
○ Equus

● All appendicular long bones
● Archaeological collections
● Factor in rock fall
● More geometric methods

● Volume, surface areas (total/faces)
● Mean, variance, PCA
● Higher moments
● Digital measures of break angles at break 

curves using surface normals
● Break curve geometric invariants: curvature, 

torsion, etc.
● Surface curvatures (principal, Gauss, mean, 

total)
● More advanced ML protocols



Acknowledgments:

Thanks to Rob Thompson and Cheri Shakiban for sharing their slides!

Undergraduates:  Dan Brinkman, Anna Grim, Dan Hoff, Tim O’Connor, Ryan Slechta

Ph.D. students (past and present):  Mimi Boutin, Steve Haker, David Richter, Jessica Senou, 
Rob Thompson, Katrina Yezzi-Woody 

Collaborators:  Eugene Calabi, Jeff Calder, Cheri Shakiban, Allen Tannenbaum  


