Symmetry and invariance in cognition a mathematical perspective

Peter J. Olver
University of Minnesota http://www.math.umn.edu/~olver

$$
\text { Harvard, April } 2019
$$

Sophus Lie (1842-1899)

Elie Cartan
(1869-1951)

Garrett Birkhoff (1911-1996)

Symmetry

Why are humans so attuned to symmetry?

Mathematically .

Mathematically.

Symmetry
 Grouk Theary

Next to the concept of a function, which is the most important concept pervading the whole of mathematics, the concept of a group is of the greatest significance in the various branches of mathematics and its applications.

- P.S. Alexandroff

History of Group Theory

Solution of polynomial equations (exploiting symmetries of the roots)

- Quadratic formula - Diophantus, Brahmagupta, Al Khwarizmi, etc.
- Cubic - Ferro, Tartaglia, Cardano (1545)
- Quartic - Ferrara , Cardano (1545)
- Quintic and higher degree - Lagrange (1770), Ruffini (1799), Abel (1824), Galois (1832)
- finite and discrete groups

Solution of differential equations

- Sophus Lie (1876)
- Picard \& Vessiot (1892)
- Lie groups and pseudo-groups

The Quadratic Formula

$$
\begin{gathered}
a x^{2}+b x+c=0 \\
x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

The Quadratic Formula

$$
\begin{gathered}
a x^{2}+b x+c=0 \\
x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
=u \pm v
\end{gathered}
$$

The Quadratic Formula

$$
a x^{2}+b x+c=0
$$

$$
\begin{aligned}
x & =-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& =u \pm v
\end{aligned}
$$

Groups

Definition. A group G is a set with a binary operation $g \cdot h$ satisfying

- Associativity: $g \cdot(h \cdot k)=(g \cdot h) \cdot k$
- Identity: $\quad g \cdot e=g=e \cdot g$
- Inverse: $g \cdot g^{-1}=e=g^{-1} \cdot g$
\Longrightarrow not necessarily commutative: $g \cdot h \neq h \cdot g$

Examples of groups

The integers

$$
\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots
$$

Group operation: addition $3+5=8$
Identity: zero $3+0=3=0+3$
Inverse: negative $7+(-7)=0=(-7)+7$

Examples of groups

The rational numbers (fractions)

$$
\begin{aligned}
& \text { Group operation: addition } 1 / 4+5 / 3=23 / 12 \\
& \text { Identity: zero } 5 / 3+0=5 / 3=0+5 / 3 \\
& \text { Inverse: negative } 7 / 2+(-7 / 2)=0=(-7 / 2)+7 / 2
\end{aligned}
$$

Examples of groups

The positive rational numbers

Group operation: multiplication $1 / 4 \times 5 / 3=5 / 12$
Identity: one $5 / 3 \times 1=5 / 3=1 \times 5 / 3$
Inverse: reciprocal $7 / 2 \times 2 / 7=1=2 / 7 \times 7 / 2$

Examples of groups

The positive real numbers

Group operation: multiplication

$$
\begin{array}{cc}
\sqrt{2} \times \pi=\sqrt{2} \pi=4.44288293815836624701588099006 \ldots \\
\text { Identity: one } & \pi \times 1=\pi=1 \times \pi \\
\text { Inverse: reciprocal } & \pi \times 1 / \pi=1=1 / \pi \times \pi
\end{array}
$$

Examples of groups

Non-singular 2×2 matrices

$g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \quad h=\left(\begin{array}{cc}x & y \\ z & w\end{array}\right) \quad a d-b c \neq 0 \neq x w-y z$
Group operation:
$g \cdot h=\left(\begin{array}{ll}a x+b z & a y+b w \\ c x+d z & c y+d w\end{array}\right) \neq\left(\begin{array}{cc}a x+c y & b x+d y \\ a z+c w & b z+d w\end{array}\right)=h \cdot g$
Identity: $\quad e=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right), \quad e \cdot g=g=g \cdot e$
Inverse: $\quad g^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right), \quad g \cdot g^{-1}=e^{-1}=g \cdot g$

Symmetry Groups

A symmetry g of a geometric object S is
an invertible transformation that preserves it: $\mathrm{g} \cdot \mathrm{S}=\mathrm{S}$

Symmetry Groups

A symmetry g of a geometric object S is
an invertible transformation that preserves it: g•S = S
The set of symmetries of a geometric object forms a group

Symmetry Groups

A symmetry g of a geometric object S is
an invertible transformation that preserves it: $\mathrm{g} \cdot \mathrm{S}=\mathrm{S}$
The set of symmetries of a geometric object forms a group
The group operation is composition: $\mathrm{g} \cdot \mathrm{h}=$ first do h , then do g

Symmetry Groups

A symmetry g of a geometric object S is
an invertible transformation that preserves it: $\mathrm{g} \cdot \mathrm{S}=\mathrm{S}$
The set of symmetries of a geometric object forms a group
The group operation is composition: $\mathrm{g} \cdot \mathrm{h}=$ first do h , then do g
The composition of two symmetries is a symmetry
The identity (do nothing) is always a symmetry
The inverse of a symmetry (undo it) is a symmetry

Symmetry

Definition. A symmetry of a set S is a transformation that preserves it:

$$
g \cdot S=S
$$

* * The set of symmetries forms a group G_{S}, called the symmetry group of the set S.

Discrete Symmetry Group

Discrete Symmetry Group

Rotations by 90°, 180ㅇ, 270응

Discrete Symmetry Group

Rotations by 90°, 1800°, 270 ${ }^{\circ}$
and 0 0 (identity)

Discrete Symmetry Group

Rotations by 90°, 180°, $270{ }^{\circ}$
and 0 0 (identity)
... and 4 reflections
(mirror image)

Wallpaper patterns

Tiling - The Alhambra, Spain

Tilings - Jameh Mosque, Esfahan, Iran

Crystallography

The Koch snowflake - a fractal curve

The Koch snowflake - a fractal curve

Dome of the Sheikh Lotfollah Mosque - Isfahan, Iran


```
M.C. Escher - Circle Limit \(\mathcal{I V}\)
```



```
M.C. Escher - Circle Limit IV
```


$\$$ Conformal symmetry

Continuous Symmetry Group

Continuous Symmetry Group

Rotations through any angle

Continuous Symmetry Group

Rotations through any angle and reflections

Continuous Symmetry Group

Rotations through any angle and reflections
and conformal inversions

$$
\bar{x}=\frac{x}{x^{2}+y^{2}} \quad \bar{y}=\frac{y}{x^{2}+y^{2}}
$$

Continuous Symmetry Group = Lie Group

Rotations through any angle and reflections
and conformal inversions

$$
\bar{x}=\frac{x}{x^{2}+y^{2}} \quad \bar{y}=\frac{y}{x^{2}+y^{2}}
$$

A continuous symmetry group is known as a Lie group in honor of the nineteenth century Norwegian mathematician Sophus Lie

Continuous Symmetries of a Square

Symmetry

* To define the set of symmetries requires a priori specification of the allowable transformations
G - transformation group containing all allowable transformations of the ambient space M

Definition. A symmetry of a subset $S \subset M$ is an allowable transformation $g \in G$ that preserves it:

$$
g \cdot S=S
$$

What is the Symmetry Group?

Allowable transformations:
Rigid motions
$G=\mathrm{SE}(2)=\mathrm{SO}(2) \ltimes \mathbb{R}^{2}$

What is the Symmetry Group?

Allowable transformations:

Rigid motions

$$
G=\mathrm{SE}(2)=\mathrm{SO}(2) \ltimes \mathbb{R}^{2}
$$

Translations + rotations through 90 degrees:

$$
G_{S}=\mathbb{Z}_{4} \ltimes \mathbb{Z}^{2}
$$

What is the Symmetry Group?

Allowable transformations:
Rigid motions

$$
G=\mathrm{SE}(2)=\mathrm{SO}(2) \ltimes \mathbb{R}^{2}
$$

No symmetries!

$$
G_{S}=\{e\}
$$

Local Symmetries

Definition. $g \in G$ is a local symmetry of $S \subset M$ based at a point $z \in S$ if there is an open neighborhood $z \in U \subset M$ such that

$$
g \cdot(S \cap U)=S \cap(g \cdot U)
$$

Local Symmetries

Definition. $g \in G$ is a local symmetry of $S \subset M$ based at a point $z \in S$ if there is an open neighborhood $z \in U \subset M$ such that

$$
g \cdot(S \cap U)=S \cap(g \cdot U)
$$

* \star The set of all local symmetries forms a groupoid!

Definition. A groupoid is a small category such that every morphism has an inverse.

* Groupoids form the appropriate framework for studying objects with variable symmetry.
* Symmetry groupoids are not necessarily Lie groupoids

Groupoids

\Longrightarrow In practice you are only allowed to multiply groupoid elements $g \cdot h$ when

$$
\text { source (domain) of } g=\text { target (range) of } h
$$

Similarly for inverses g^{-1} and the identities e.
A groupoid is a "collection of arrows":

What is the Symmetry Groupoid?

$$
G=\mathrm{SE}(2)
$$

Corners:

$$
G_{z}=G_{S}=\mathbb{Z}_{4}
$$

Sides: G_{z} generated by

$$
G_{S}=\mathbb{Z}_{4}
$$

some translations
180° rotation around z

Geometric transformation groups

Translations

Geometric transformation groups

Noncommutativity of 3D rotations - order matters!

Geometric transformation groups

Geometric transformation groups
Scaling (similarity)

Geometric transformation groups
Projective and Equiaffine Transformations

Geometric transformation groups

Projective Transformation

Geometric transformation groups

Projective Transformation

Projective transformations in art and photography

\mathcal{A} fbrecht $\operatorname{Durer}-1500$

Musashino Art University

Geometry $=$ Group Theory

Felix Klein's Erlanger Programm (I872):
Each type of geometry is founded on a corresponding transformation group.

Geometry $=$ Group Theory

Felix Klein's Erlanger Programm (1872):

Each type of geometry is founded on a corresponding transformation group.

Euclidean geometry: rigid motions (translations and rotations)
"Mirror" geometry: translations, rotations, and reflections
Similarity geometry: translations, rotations, reflections, and scalings
Projective geometry: all projective transformations

The Equivalence Problem

When are two shapes related by a group transformation?

The Equivalence Problem

When are two shapes related by a group transformation?

- Rigid (Euclidean) equivalence (translations, rotations, reflections)
- Similarity equivalence
- Projective equivalence
- etc.

Rigid equivalence

When are two shapes related by a rigid motion?

Tennis, anyone?

Tennis, anyone?

Projective (equiaffine) equivalence \& symmetry

Duck $=$ Rabbit?

Limitations of Projective Equivalence

\Longrightarrow K. Åström (1995)

Limitations of Projective Equivalence

Fig. 3. The upper two curves are not projectively equivalent, but the lower two curves are. The lower curves are constructed by introducing small ripples along the convex hull, these are illustrated in the magnified pictures.
\Longrightarrow K. Åström (1995)

Thatcher Illusion

Thatcher Illusion

Thatcher Illusion

Local equivalence and symmetry - groupoids?
Probabilistic transformation group(oid)s?

Equivalence of puzzle pieces

Local equivalence of puzzle pieces

Local equivalence of puzzle pieces

Local equivalence of puzzle pieces

Occlusions and equivalence of parts

The Equivalence Problem

When are two shapes related by a group transformation?

The Equivalence Problem

When are two shapes related by a group transformation?

Invariants

Solving the equivalence problem requires knowing the (appropriate) invariants

Invariants

Invariants are quantities that are unchanged by
the group transformations

Invariants

Invariants are quantities that are unchanged by the group transformations

If two shapes are equivalent, they must have the same invariants.

Invariants

The solution to an equivalence problem rests on understanding its invariants.

Definition. If G is a group acting on M, then an invariant is a real-valued function $I: M \rightarrow \mathbb{R}$ that does not change under the action of G :

$$
I(g \cdot z)=I(z) \quad \text { for all } \quad g \in G, \quad z \in M
$$

Joint invariants

An invariant that depends on several points is known as a joint invariant

Joint invariants

Rigid motions: distance between two points

Joint invariants

Similarity group:
ratios of distances $R=d / e$ and angles θ

Joint Equi-Affine Invariants

Theorem. Every planar joint equi-affine invariant is a function of the triangular areas

$$
[i j k]=\frac{1}{2}\left(z_{i}-z_{j}\right) \wedge\left(z_{i}-z_{k}\right)
$$

Joint invariants

Projective group: ratios of 4 areas

$$
\frac{A B}{C D}
$$

Distances between multiple points

$$
1,1,1,1, \sqrt{2}, \quad \sqrt{2}
$$

The Distance Histogram invariant under rigid motions

$$
1,1,1,1, \quad \sqrt{2}, \quad \sqrt{2}
$$

Distance histograms

If two sets of points are equivalent up to rigid motion, they have the same distance histogram

If two sets of points are equivalent up to rigid motion, they have the same distance histogram

> Does the distance histogram uniquely determine a set of points up to rigid motion?

Does the distance histogram uniquefy determine a set of points up to rigid motion?

Answer: Yes for most sets of points, but there are some exceptions!

Mireille (Mimi) Boutin and Gregor Kemper (2004)

Does the distance histogram uniquely determine a set of points up to rigid motion?

$1,1,1,1, \sqrt{2}, \sqrt{2}$.

Does the distance histogram uniquely determine a set of points up to rigid motion?

Yes:

1, $1,1,1, \sqrt{2}, \sqrt{2}$.

Does the distance histogram uniquely determine a set of points up to rigid motion?
No:
Kite

$$
\sqrt{2}, \quad \sqrt{2}, \quad 2, \quad \sqrt{10}, \quad \sqrt{10}, \quad 4 .
$$

Distance fistogram for points on a line

Does the distance histogram uniquefy determine a set of points on a line up to transfation?

Distance histogram for points on a line

No:

$$
\begin{gathered}
P=\{0,1,4,10,12,17\} \\
Q=\{0,1,8,11,13,17\} \\
\eta=1,2,3,4,5,6,7,8,9,10,11,12,13,16,17
\end{gathered}
$$

\Longrightarrow G. Bloom, J. Comb. Theory, Ser. A 22 (1977) 378-379

Joint Euclidean Signature

Joint signature map:

$$
\begin{aligned}
& \Sigma: \mathcal{C}^{\times 4} \longrightarrow \mathcal{S} \subset \mathbb{R}^{6} \\
a=\left\|z_{0}-z_{1}\right\| & b=\left\|z_{0}-z_{2}\right\| \quad c=\left\|z_{0}-z_{3}\right\| \\
d=\left\|z_{1}-z_{2}\right\| & e=\left\|z_{1}-z_{3}\right\| \quad f=\left\|z_{2}-z_{3}\right\| \\
& \Longrightarrow \text { six functions of four variables }
\end{aligned}
$$

Syzygies:

$$
\Phi_{1}(a, b, c, d, e, f)=0 \quad \Phi_{2}(a, b, c, d, e, f)=0
$$

Universal Cayley-Menger syzygy $\Longleftrightarrow \mathcal{C} \subset \mathbb{R}^{2}$

$$
\operatorname{det}\left|\begin{array}{ccc}
2 a^{2} & a^{2}+b^{2}-d^{2} & a^{2}+c^{2}-e^{2} \\
a^{2}+b^{2}-d^{2} & 2 b^{2} & b^{2}+c^{2}-f^{2} \\
a^{2}+c^{2}-e^{2} & b^{2}+c^{2}-f^{2} & 2 c^{2}
\end{array}\right|=0
$$

Joint Equi-Affine Signature

Requires 7 triangular areas:
$\left[\begin{array}{lll}0 & 1 & 2\end{array}\right],\left[\begin{array}{lll}0 & 1 & 3\end{array}\right],\left[\begin{array}{lll}0 & 1 & 4\end{array}\right],\left[\begin{array}{lll}0 & 1 & 5\end{array}\right],\left[\begin{array}{lll}0 & 2 & 3\end{array}\right],\left[\begin{array}{lll}0 & 2 & 4\end{array}\right],\left[\begin{array}{lll}0 & 2 & 5\end{array}\right]$

Limiting Curve Histogram

Limiting Curve Histogram

Integral Invariants

Limiting Curve Histogram

$$
\frac{1}{l(C)^{2}} \int_{C} l\left(C \cap D_{r}(z(s))\right) d s
$$

Brinkman, D., and Olver, P.J., Invariant histograms, Amer. Math. Monthly 119 (2012), 4-24

The Circular Area Invariant

Calder and Esedoglu (2012)

The Spherical Volume Invariant

Distinguishing Moles from Melanomas

- Anna Grim and Cheri Shakiban, 2015

Distance Histogram - Melanoma

Distance Histogram - Mole

CUMULATIVE HISTOGRAM: Mole versus Melanoma

TYPICAL MOLE CUMULATIVE HISTOGRAM

TYPICAL MELANOMA CUMULATIVE HISTOGRAM

CONCAVITY POINT ANALYSIS

CONCAVITY POINT FREQUENCY

For smooth objects - curves, surfaces, etc.,

we can use calculus to construct

Differential Invariants

A Differential Invariant

Curvature is a measure of "bendiness".

Curvature $=$ reciprocal of radius of osculating circle

Euclidean Plane Curves: $\quad G=\mathrm{SE}(2)$

Differentiation with respect to the Euclidean-invariant arc length element $d s$ is an invariant differential operator, meaning that it maps differential invariants to differential invariants.

Thus, starting with curvature κ, we can generate an infinite collection of higher order Euclidean differential invariants:

$$
\kappa, \quad \frac{d \kappa}{d s}, \quad \frac{d^{2} \kappa}{d s^{2}}, \quad \frac{d^{3} \kappa}{d s^{3}}, \quad \cdots
$$

Theorem. All Euclidean differential invariants are functions of the derivatives of curvature with respect to arc length: $\kappa, \kappa_{s}, \kappa_{s s}, \cdots$

Euclidean Plane Curves: $G=\mathrm{SE}(2)$

Assume the curve $C \subset M$ is a graph: $\quad y=u(x)$

Differential invariants:
$\kappa=\frac{u_{x x}}{\left(1+u_{x}^{2}\right)^{3 / 2}}, \quad \frac{d \kappa}{d s}=\frac{\left(1+u_{x}^{2}\right) u_{x x x}-3 u_{x} u_{x x}^{2}}{\left(1+u_{x}^{2}\right)^{3}}, \quad \frac{d^{2} \kappa}{d s^{2}}=\cdots$
Arc length (invariant one-form):

$$
d s=\sqrt{1+u_{x}^{2}} d x, \quad \frac{d}{d s}=\frac{1}{\sqrt{1+u_{x}^{2}}} \frac{d}{d x}
$$

Similarity Plane Curves: $G=\operatorname{SE}(2) \times \mathbb{R}$

Similarity "curvature":

$$
\widehat{\kappa}=\frac{\kappa_{s}}{\kappa^{2}} \quad \widehat{\kappa}_{\hat{s}}=\cdots
$$

Similarity arc length:

$$
d \hat{s}=\kappa d s \quad \frac{d}{d \hat{s}}=\frac{1}{\kappa} \frac{d}{d s}
$$

Theorem. All similarity differential invariants are functions of the derivatives of the similarity curvature with respect to similarity arc length: $\widehat{\kappa}, \quad \widehat{\kappa}_{\hat{s}}, \quad \widehat{\kappa}_{\hat{s} \hat{s}}, \ldots$

Equi-affine Plane Curves: $G=\mathrm{SA}(2)=\mathrm{SL}(2) \ltimes \mathbb{R}^{2}$

Equi-affine curvature:

$$
\kappa=\frac{5 u_{x x} u_{x x x x}-3 u_{x x x}^{2}}{9 u_{x x}^{8 / 3}} \quad \frac{d \kappa}{d s}=\cdots
$$

Equi-affine arc length:

$$
d s=\sqrt[3]{u_{x x}} d x \quad \frac{d}{d s}=\frac{1}{\sqrt[3]{u_{x x}}} \frac{d}{d x}
$$

Theorem. All equi-affine differential invariants are functions of the derivatives of equi-affine curvature with respect to equi-affine arc length: $\kappa, \quad \kappa_{s}, \quad \kappa_{s s}, \ldots$

Projective Plane Curves: $G=\operatorname{PSL}(2)$

Projective curvature:

$$
\kappa=K\left(u^{(7)}, \cdots\right) \quad \frac{d \kappa}{d s}=\cdots \quad \frac{d^{2} \kappa}{d s^{2}}=\cdots
$$

Projective arc length:

$$
d s=L\left(u^{(5)}, \cdots\right) d x \quad \frac{d}{d s}=\frac{1}{L} \frac{d}{d x}
$$

Theorem. All projective differential invariants are functions of the derivatives of projective curvature with respect to projective arc length:

$$
\kappa, \quad \kappa_{s}, \quad \kappa_{s s}, \quad \cdots
$$

Euclidean Curvature is a measure of "bendiness".

What everyday device can measure curvature?

$$
\infty
$$

$$
\underset{\sim}{\infty}
$$

Can you reconstruct the racetrack?

θ

Can you reconstruct the racetrack?

Can you reconstruct the racetrack?

κ is (Euclidean) curvature 0
S is (Euclidean) arclength

Racetrack comparison problem

Racetrack comparison problem

Racetrack comparison problem

The Invariant Signature

The invariant signature of a planar curve is the set traced out by curvature and the rate of change of curvature (its arclength derivative).

original curve

invariant signature

The invariant signature

Theorem

Two regular curves are related by a group transformation if and only if they have the same invariant signatures.

(Calabi, Haker, Olver, Shakiban, Tannenbaum 1998)

The invariant signature

Theorem

Two regular curves are related by a group transformation if and only if they have the same invariant signatures.

Proof idea

Theorem (Élie Cartan 1908)

Shapes are related if and only if they have the same relationships among their differential invariants.

3D Differential Invariant Signatures

Euclidean space curves: $\quad C \subset \mathbb{R}^{3}$

$$
\Sigma=\left\{\left(\kappa, \kappa_{s}, \tau\right)\right\} \subset \mathbb{R}^{3}
$$

- κ - curvature, τ - torsion

Euclidean surfaces: $S \subset \mathbb{R}^{3}$ (generic)

$$
\begin{aligned}
\Sigma & =\left\{\left(H, K, H_{, 1}, H_{, 2}, K_{, 1}, K_{, 2}\right)\right\} \subset \mathbb{R}^{6} \\
\text { or } \quad \widehat{\Sigma} & =\left\{\left(H, H_{, 1}, H_{, 2}, H_{, 11}\right)\right\} \subset \mathbb{R}^{4}
\end{aligned}
$$

- H - mean curvature, K - Gauss curvature

Moving Frames

The mathematical theory is all based on the new equivariant method of moving frames (Fels $+\mathrm{PJO}, 1999$) which provides a systematic and algorithmic calculus for constructing complete systems of differential invariants, joint invariants, joint differential invariants, invariant differential operators, invariant differential forms, invariant variational problems, invariant conservation laws, invariant numerical algorithms, invariant signatures, etc., etc.

Symmetry-Preserving Numerical Methods

- Invariant numerical approximations to differential invariants.
- Invariantization of numerical integration methods.
\Longrightarrow Structure-preserving algorithms

Numerical approximation to curvature

Heron's formula

$$
\begin{aligned}
\widetilde{\kappa}(A, B, C)=4 \frac{\Delta}{a b c} & =4 \frac{\sqrt{s(s-a)(s-b)(s-c)}}{a b c} \\
s & =\frac{a+b+c}{2} \quad-\quad \text { semi-perimeter }
\end{aligned}
$$

The polar curve $r=3+\frac{1}{10} \cos 3 \theta$

The Original Curve

Euclidean Signature

Numerical Signature

The Curve $x=\cos t+\frac{1}{5} \cos ^{2} t, y=\sin t+\frac{1}{10} \sin ^{2} t$

The Original Curve

Euclidean Signature

Equi-affine Signature

The Curve $x=\cos t+\frac{1}{5} \cos ^{2} t, \quad y=\frac{1}{2} x+\sin t+\frac{1}{10} \sin ^{2} t$

The Original Curve

Euclidean Signature

Equi-affine Signature

Object Recognition

Closeness: 0.137673

Díagnosing breast tumors

Benign - cyst

Malignant - cancerous

A BENIGN TUMOR

Contour

Signature Curve

A MALIGNANT TUMOR

Contour

Signature Curve

Reassembly of Broken Objects

The Baffler Nonagon
䫆

The Baffler Nonagon - Solved

Automatic puzzle reassembly

Step 0. Digitally photograph and smooth the puzzle pieces.
Step 1. Numerically compute invariant signatures of (parts of) pieces.
Step 2. Compare signatures to find potential fits.
Step 3. Put them together, if they fit, as closely as possible.
Repeat steps $1-3$ until puzzle is assembled....

Localization of Signatures

Bivertex arc: $\kappa_{s} \neq 0$ everywhere

$$
\text { except } \kappa_{s}=0 \text { at the two endpoints }
$$

The signature Σ of a bivertex arc is a single arc that starts and ends on the κ-axis.

Bivertex Decomposition

v-regular curve - finitely many generalized vertices

$$
C=\bigcup_{j=1}^{m} B_{j} \cup \bigcup_{k=1}^{n} V_{k}
$$

B_{1}, \ldots, B_{m} - bivertex arcs
V_{1}, \ldots, V_{n} - generalized vertices: $n \geq 4$
Main Idea: Compare individual bivertex arcs, and then decide whether the rigid equivalences are (approximately) the same.
D. Hoff \& PJO, Extensions of invariant signatures for object recognition, J. Math. Imaging Vision 45 (2013), 176-185.

Signature Metrics

Used to compare signatures:

- Hausdorff
- Monge-Kantorovich transport
- Electrostatic/gravitational attraction
- Latent semantic analysis
- Histograms
- Geodesic distance
- Diffusion metric
- Gromov-Hausdorff \& Gromov-Wasserstein

Gravitational/Electrostatic Attraction

* Treat the two (signature) curves as masses or as oppositely charged wires. The higher their mutual attraction, the closer they are together.

Gravitational/Electrostatic Attraction

* Treat the two (signature) curves as masses or as oppositely charged wires. The higher their mutual attraction, the closer they are together.
* In practice, we are dealing with discrete data (pixels) and so treat the curves and signatures as point masses/charges.

Assembling the puzzle...

ए ht HS Las

Piece Locking

* * Minimize force and torque based on gravitational attraction of the two matching edges.

Putting Flumpty Dumpty Together Again

\longrightarrow Anna Grim, Ryan Slechta, Tim O'Connor, Rob Thompson, Cheri Shakiban, Peter Olver

A broken ostrich egg

(Scanned by M. Bern, Xerox PARC)

A synthetic 3d jigsaw puzzle

Assembly of synthetic spherical puzzle

- Uses curvature and torsion invariants

An egg piece

All the king's horses and men

The elephant bird of Madagascar

more than 3 meters tall
extinct by the 1700's
one egg could make about 160 omelets

Elephant bird egg shells

(Extract from "Zoo Quest to Madagascar", BBC 1961)

The elephant bird of Madagascar

(Image from Tennant's Auctioneers)

- pictured egg is 70% complete
complete egg recently sold for $\$ 100,000$

Puzzles in archaeology

Puzzles in surgery

Puzzles in anthropology and paleontology

theguardian

Could history of humans in North America be rewritten by broken bones?

Smashed mastodon bones show humans arrived over 100,000 years earlier than previously thought say researchers, although other experts are sceptical

Ian Sample Science editor
Wednesday 26 April 2017 13.00 EDT

Laelaps

Busted Mastodon Is Ice Age Roadkill

A mastodon said to be pulverized by Ice Age humans was probably busted up by roadwork

By Brian Switek on April 10, 2019

LATEST NEWS

Anthropological Implications

- Meat eater vs. vegetarian
- Brain development
- Scavenging vs. hunting
- Food sharing
- Social structures
- Cooperative behavior
- Home bases/central places
- Carcass transport

- Butchering behavior

Bone fragment

Segmentation

Fracture Angles - goniometer measurements

Fracture Angles: Methods

Carnivore Created Fragment

Fracture Angles

- Not fully tested
- Limited experimental studies
- Different taxa tested in each
- Different results related to taxon and element
- No independent testing of the same taxon

DETERMINACION DE PROCESOS DE FRACTURA SOBRE HUESOS FRESCOS: UN SISTEMA DE ANALISIS DE LOS ÁNGULOS DE LOS PLANOS DE FRACTURACIÓN COMO DISCRIMINADOR DE AGENTES BIÓTICOS
determination of the fracture processes of fresh bone an analytical system of the angles of Fracture planes AS AN INDICATOR OF BIOTIC AGENTS

VIRGINIA ALC; ©TARA GARCÖA, REBECA BARBA EGIDO, JOS... MARÕA BARRAL DEL PINO, ANA BEL...N CRESPO RUIZ, ARCO IRIS EIRIZ VIDAL, ;LVARO FALQUINA APARICIO, SILVIA HERRERO CALLEJA, ANA IBARRA JIM...NEZ, MARTA MEGOAS GONZiLEZ, MAITE P...REZ GIL, VICTORIA P...REZ TELLO, JORGE ROLLAND ALVO, JOS... YRAVEDRA SiINZ DE LOS TERREROS, AIXA VIDAL Y MANUE DOMÔNGUEZ-RODRIGO (*)

```
archaeometry
```

Archacometry 53, 5 (2011) 996-1011
doi: 10.1111/.1475-4754.2010.00576.x

TESTING ANALOGICAL TAPHONOMIC SIGNATURES IN BONE BREAKING: A COMPARISON BETWEEN
HAMMERSTONE-BROKEN EQUID AND BOVID BONES*
S. DE JUANA and M. DOMÍNGUEZ-RODRIGO \dagger

[^0]
Fracture Angles: Methods

Medullary Surface

Virtual Goníometer

Princípal Curvatures

Surface Curvatures

- Principal curvatures: κ_{1}, κ_{2}
- Gauss curvature: $K=\kappa_{1} \kappa_{2} \quad$ - intrinsic
- Mean curvature: $H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right)$ - extrinsic
- Curvature difference: $\Delta=\left|\kappa_{1}-\kappa_{2}\right|$

Sample Size (Manual Data)

Number of breaks per element and actor of breakage

	Femur	Humerus	Radius-Ulna	Tibia	Total
Crocuta	411	120	0	64	595
Hominin	363	291	287	333	1274
Rockfall	0	85	105	0	190
Total	774	496	392	397	2059

Number of breaks per element and method of breakage

	Femur	Humerus	Radius- Ulna	Tibia	Total
Batting	159	144	130	186	619
Crocuta	411	120	-	64	595
Rockfall	-	85	105	-	190
Hammerstone \& Anvil	175	137	122	147	581
Hammerstone only	-	10	-	-	10
Hominin mixed method	29	-	35	-	64
Total	774	496	392	397	2059

Number of breaks per element and actor for which no goniometer measurement could be taken

	Femur	Humerus	Radius-Ulna	Tibia	Total
Crocuta	$234(57 \%)$	$32(27 \%)$	-	$13(20 \%)$	$279(47 \%)$
Hominin	$102(28 \%)$	$51(18 \%)$	$64(22 \%)$	$153(46 \%)$	$370(29 \%)$
Rockfall	-	$21(25 \%)$	$31(30 \%)$	-	$52(27 \%)$
Total	$336(43 \%)$	$104(21 \%)$	$95(24 \%)$	$166(42 \%)$	$701(34 \%)$

Number of breaks per element and method for which no goniometer measurement could be taken

	Femur	Humerus	Radius- Ulna	Tibia	Total
Batting	$41(26 \%)$	$29(20 \%)$	$22(17 \%)$	$95(51 \%)$	$187(30 \%)$
Crocuta	$234(57 \%)$	$32(27 \%)$	-	$13(20 \%)$	$279(47 \%)$
Rockfall	-	$21(25 \%)$	$31(30 \%)$	-	$52(27 \%)$
Hammerstone \& Anvil	$57(33 \%)$	$19(14 \%)$	$35(29 \%)$	$58(39 \%)$	$169(29 \%)$
Hammerstone only	-	$3(30 \%)$	-	-	$3(30 \%)$
Hominin mixed method	$4(14 \%)$	-	$7(20 \%)$	-	$11(17 \%)$
Total	$336(43 \%)$	$104(21 \%)$	$95(24 \%)$	$166(42 \%)$	$701(34 \%)$

Sample Size (Digital Data)

Manual Data

- 457 fragments
- 2,059 breaks
- 1,358 measurements

Digital Data

- 82 fragments
- 1,376,900 measurements
- $1 \%=13,769$

First Stages

Kolmogorov-Smirnov test

Hominins vs. hyena (femur) - principal curvature differences

Yes category	yes Size	No category	no Size	Training percentage	Training Size	Sensitiv ity	Specific ity	Precisi on	Negative Predictive Rate	Miss Rate	Fall out
hominin (femur)	3243	hyena (femur)	1824	75	811	0.942	1	1	0.94518	0.058	0
hyena (femur)	1824	hominin (femur)	3243	75	456	0.95	1	1	0.95238	0.05	0
hominin (femur)	3243	hyena (femur)	1824	65	1136	0.947	1	1	0.94967	0.053	0
hyena (femur)	1824	hominin (femur)	3243	65	639	0.939	1	1	0.94251	0.061	0
hominin (femur)	3243	hyena (femur)	1824	50	1622	0.949	1	1	0.95147	0.051	0
hyena (femur)	1824	hominin (femur)	3243	50	912	0.946	1	1	0.94877	0.054	0
hominin (femur)	3243	hyena (femur)	1824	40	1824	0.946	1	1	0.94877	0.054	0
hyena (femur)	1824	hominin (femur)	3243	40	1095	0.938	1	1	0.94162	0.062	0

Hominins vs. hyena (humerus) - principal curvature differences

Yes category	yes Size	No category	no Size	Training percentage	Training Size	Sensitiv ity	Specific ity	Precisi on	Negative Predictive Rate	Miss Rate	Fall out
hominin (humerus)	1609	hyena (humerus)	780	75	403	0.954	1	1	0.95602	0.046	0
hyena (humerus)	780	hominin (humerus)	1609	75	195	0.941	1	1	0.94429	0.059	0
hominin (humerus)	1609	hyena (humerus)	780	65	564	0.947	1	1	0.94967	0.053	0
hyena (humerus)	780	hominin (humerus)	1609	65	273	0.933	1	1	0.93721	0.067	0
hominin (humerus)	1609	hyena (humerus)	780	50	780	0.96	1	1	0.96154	0.04	0
hyena (humerus)	780	hominin (humerus)	1609	50	390	0.95	1	1	0.95238	0.05	0
hominin (humerus)	1609	hyena (humerus)	780	40	780	0.95	1	1	0.95238	0.05	0
hyena (humerus)	780	hominin (humerus)	1609	40	468	0.949	1	1	0.95147	0.051	0

Hammerstone vs. batting (femur) - principal curvature differences

Yes category	yes Size	No category	no Size	Training percentage	Training Size	Sensiti vity	Specific ity	Precisi on	Negative Predictive Rate	Miss Rate	Fall out
Batting femur	1758	HS \& Anv femur	1485	75	440	0.951	1	1	0.95329	0.049	0
HS \& Anv femur	1485	Batting femur	1758	75	372	0.956	1	1	0.95785	0.044	0
Batting femur	1758	HS \& Anv femur	1485	65	616	0.938	1	1	0.94162	0.062	0
HS \& Anv femur	1485	Batting femur	1758	65	520	0.948	1	1	0.95057	0.052	0
Batting femur	1758	HS \& Anv femur	1485	50	879	0.942	1	1	0.94518	0.058	0
HS \& Anv femur	1485	Batting femur	1758	50	743	0.957	1	1	0.95877	0.043	0
Batting femur	1758	HS \& Anv femur	1485	40	1055	0.954	1	1	0.95602	0.046	0
HS \& Anv femur	1485	Batting femur	1758	40	891	0.951	1	1	0.95329	0.049	0

HS \& Anv vs. batting (humerus) - surface curvature

Yes category	yes Size	No category	no Size	Training percentage	Training Size	Sensitivity	Specificity	Precision	Negative Predictive Rate	Miss Rate	Fall out
anv humerus	606	hsanv humerus	1003	75	152	0.947	1	1	0.94967	0.053	0
hsanv humerus	1003	anv humerus	606	75	251	0.952	1	1	0.9542	0.048	0
anv humerus	606	hsanv humerus	1003	65	213	0.948	1	1	0.95057	0.052	0
hsanv humerus	1003	anv humerus	606	65	352	0.951	1	1	0.95329	0.049	0
anv humerus	606	hsanv humerus	1003	50	303	0.965	1	1	0.96618	0.035	0
hsanv humerus	1003	anv humerus	606	50	502	0.961	1	1	0.96246	0.039	0
anv humerus	606	hsanv humerus	1003	40	364	0.941	1	1	0.94429	0.059	0
hsanv humerus	1003	anv humerus	606	40	602	0.946	1	1	0.94877	0.054	0

HS \& Anv vs. batting (tibia) - surface curvature

Yes category	yes Size	No category	$\begin{aligned} & \text { no } \\ & \text { Size } \end{aligned}$	Training percentage	Training Size	$\begin{aligned} & \text { Sensiti } \\ & y \end{aligned}$	Specificit y	Precisio n	Negative Predictive Rate	Miss Rate	Fall out
anv tibia	1878	hsanv tibia	1291	75	470	0.945	1	1	0.94787	0.055	0
hsanv tibia	1291	anv tibia	1878	75	323	0.943	1	1	0.94607	0.057	0
anv tibia	1878	hsanv tibia	1291	65	658	0.94	1	1	0.9434	0.06	0
hsanv tibia	1291	anv tibia	1878	65	452	0.954	1	1	0.95602	0.046	0
anv tibia	1878	hsanv tibia	1291	50	939	0.946	1	1	0.94877	0.054	0
hsanv tibia	1291	anv tibia	1878	50	646	0.947	1	1	0.94967	0.053	0
anv tibia	1878	hsanv tibia	1291	40	1127	0.941	1	1	0.94429	0.059	0
hsanv tibia	1291	anv tibia	1878	40	775	0.945	1	1	0.94787	0.055	0

HS \& Anv vs. batting (rad-uln) - surface curvature

Yes category	yes Size	No category	no Siz	Training percentage	Training Size	Sensitivity	Specificity	Precision	Negative Predictive Rate	Miss Rate	Fall out
Batting raduln	1878	HS \& Anv raduln	1291	75	470	0.962	1	1	0.96339	0.038	0
HS \& Anv raduln	1291	Batting raduln	1878	75	323	0.957	1	1	0.95877	0.043	0
Batting raduln	1878	HS \& Anv raduln	1291	65	658	0.948	1	1	0.95057	0.052	0
HS \& Anv raduln	1291	Batting raduln	1878	65	452	0.95	1	1	0.95238	0.05	0
Batting raduln	1878	HS \& Anv raduln	1291	50	939	0.954	1	1	0.95602	0.046	0
HS \& Anv raduln	1291	Batting raduln	1878	50	646	0.953	1	1	0.95511	0.047	0
Batting raduln	1878	HS \& Anv raduln	1291	40	1127	0.946	1	1	0.94877	0.054	0
HS \& Anv raduln	1291	Batting raduln	1878	40	775	0.956	1	1	0.95785	0.044	0

Hominins vs. hyena (femur) - manual goniometer data

Yes category	yes Size	No category	no Size	Training percentage	Training Size	Sensitivity	Specificity	Precision	Negative Predictive Rate	Miss Rate	Fall out
hominin femur	261	hyena femur	177	75	66	0.956	0.368	0.60202	0.8932	0.044	0.632
hyena femur	177	hominin femur	261	75	45	0.957	0.222	0.55159	0.83774	0.043	0.778
hominin femur	261	hyena femur	177	65	92	0.959	0.502	0.6582	0.92449	0.041	0.498
hyena femur	177	hominin femur	261	65	62	0.966	0.294	0.57775	0.89634	0.034	0.706
hominin femur	261	hyena femur	177	50	131	0.963	0.561	0.68688	0.93813	0.037	0.439
hyena femur	177	hominin femur	261	50	89	0.966	0.299	0.57948	0.8979	0.034	0.701
hominin femur	261	hyena femur	177	40	157	0.949	0.494	0.65223	0.90642	0.051	0.506
hyena femur	177	hominin femur	261	40	107	0.956	0.327	0.58686	0.8814	0.044	0.673

Hominins vs. hyena (humerus) - virtual goniometer

Yes category	yes Size	No category	no Size	Training \%	Training Size	Sensitivity	Specificity	Precision	Negative Predictive Rate	Miss Rate	Fall out
hominin humerus		hyena humerus	512	75	195	0.959	0.152	0.53071	0.78756	0.041	0.85
hyena humerus		hominin 2 humerus	779	75	128	0.959	0.094	0.51421	0.69630	0.041	0.91
hominin humerus		hyena humerus	512	65	273	0.959	0.154	0.53130	0.78974	0.041	0.85
hyena humerus		hominin 2 humerus	779	65	180	0.934	0.121	0.51517	0.64706	0.066	0.88
hominin humerus		hyena humerus	512	50	390	0.957	0.163	0.53344	0.79126	0.043	0.84
hyena humerus		hominin 2 humerus	779	50	256	0.961	0.125	0.52342	0.76220	0.039	0.88
hominin humerus		hyena humerus	512	40	468	0.958	0.139	0.52666	0.76796	0.042	0.86
hyena humerus		hominin 2 humerus	779	40	308	0.950	0.123	0.51998	0.71098	0.05	0.88

Hominins vs. hyena (femur) - virtual goniometer

Yes category	No yes Size category	no Size	Training \%	Training Size	Sensitivity	Specificity	Precision	Negative Predictive Rate	Miss Rate	Fall out
hominin femur	hyena 1565 femur	897	75	392	0.941	0.268	0.56246	0.81957	0.059	0.73
hyena femur	hominin 897 femur	1565	75	225	0.959	0.139	0.52692	0.77222	0.041	0.86
hominin femur	hyena 1565 femur	897	65	548	0.958	0.365	0.60138	0.89681	0.042	0.64
hyena femur	hominin 897 femur	1565	65	314	0.949	0.197	0.54167	0.79435	0.051	0.80
hominin femur	hyena 1565 femur	897	50	783	0.949	0.428	0.62393	0.89353	0.051	0.57
hyena femur	hominin 897 femur	1565	50	449	0.942	0.233	0.55120	0.80069	0.058	0.77
hominin femur	hyena 1565 femur	897	40	897	0.960	0.371	0.60415	0.90268	0.04	0.63
hyena femur	hominin 897 femur	1565	40	539	0.958	0.198	0.54432	0.82500	0.042	0.80

Hominins vs. hyena (humerus) - manual data

Yes category	yes Size	No category	$\begin{aligned} & \text { no } \\ & \text { Size } \end{aligned}$	Training percentage	Training Size	Sensitivi ty	Specifici ty	Precisio n	Negative Predictive Rate	Miss Rate	Fall out
hominin humerus	240	hyena humerus	88	75	60	0.958	0.069	$\begin{aligned} & 0.5071 \\ & 5 \end{aligned}$	0.62162	0.042	0.931
hyena humerus	88	hominin humerus	240	75	22	0.956	0.055	$\begin{aligned} & 0.5028 \\ & 9 \end{aligned}$	0.55556	0.044	0.945
hominin humerus	240	hyena humerus	88	65	84	0.953	0.019	$\begin{aligned} & 0.4927 \\ & 6 \end{aligned}$	0.28788	0.047	0.981
hyena humerus	88	hominin humerus	240	65	31	0.955	0.069	$\begin{aligned} & 0.5063 \\ & 6 \end{aligned}$	0.60526	0.045	0.931
hominin humerus	240	hyena humerus	88	50	88	0.96	0.035	0.4987	0.46667	0.04	0.965
hyena humerus	88	hominin humerus	240	50	44	0.964	0.066	0.5079	0.64706	0.036	0.934
hominin humerus	240	hyena humerus	88	40	88	0.954	0.055	$\begin{aligned} & 0.5023 \\ & 7 \end{aligned}$	0.54455	0.046	0.945
hyena humerus	88	hominin humerus	240	40	53	0.958	0.067	$\begin{aligned} & 0.5066 \\ & 1 \end{aligned}$	0.61468	0.042	0.933

Moving forward

- More taxa
- Bos
- Ovis/Capra
- Equus
- All appendicular long bones
- Archaeological collections
- Factor in rock fall
- More geometric methods
- Volume, surface areas (total/faces)
- Mean, variance, PCA
- Higher moments
- Digital measures of break angles at break curves using surface normals
- Break curve geometric invariants: curvature, torsion, etc.
- Surface curvatures (principal, Gauss, mean, total)

Acknowledgments:

Thanks to Rob Thompson and Cheri Shakiban for sharing their slides!

Undergraduates: Dan Brinkman, Anna Grim, Dan Hoff, Tim O’Connor, Ryan Slechta

Ph.D. students (past and present): Mimi Boutin, Steve Haker, David Richter, Jessica Senou,
Rob Thompson, Katrina Yezzi-Woody

Collaborators: Eugene Calabi, Jeff Calder, Cheri Shakiban, Allen Tannenbaum

[^0]: NEW ANALYTICAL METHODS FOR COMPARING BONE FRACTUREANGLES: A CONTROLLEDSTUDYOF HAMMERSTONE AND HYENA (Crocuta crocuta) LONGBONE BREAKAGE*
 R. COIL, ${ }^{1,2 \dagger} \dagger$ M. TAPPEN ${ }^{2}$ and K. YEZZI-WOODLEY ${ }^{2}$

