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G — Lie group (or Lie pseudo-group)
acting on a manifold M

T(G) — “algebra” (sheaf) of all differential invariants
for p-dimensional submanifolds S C M

Goal: Describe the structure of Z(G) in as much
detail as possible.



Classical Geometries

SE(m) = SO(m) x R™
Euclidean: G =
E(m)=0(m) x R™
z— Az + € SO(m) or O(m), e R™,
= isometries: rotations, translations, (reflections)
Equi-affine: G =SA(m) =SL(m) x R™
€ SL(m) — volume-preserving
Affine: G =A(m)=GL(m) x R™
€ GL(m)
Projective: G =PSL(m+1)

acting on R™ C RP™

z € R™



Invariants

Definition. If G is a group acting on M, then an
invariant is a real-valued function I: M — R that
does not change under the action of G:

I(g-2)=1(2) for all geG, zeM

* If G acts transitively, there are no (non-constant)
Invariants.



Differential Invariants

Given a submanifold (curve, surface, ...)

SCcM

a differential invariant is an invariant of the prolonged
action of G on its derivatives (jets):

I(g-2%) = 1(:0)




Examples of Differential Invariants

Euclidean Group on R°

G = SE(3) = SO(3) x R?

—> group of rigid motions

z +— Rz+b R € SO(3)

e Induced action on curves and surfaces.



Euclidean Curves C C RS

e kK — curvature: order = 2
e 7 — torsion: order = 3
® K, Ty Kys ... — derivatives w.r.t. arc length ds

Theorem. Every Euclidean differential invariant of a
space curve C' C R? can be written

I = H(K, T Ky, Ty Kggy -~ )

Thus, k and 7 generate the differential invariants of
space curves under the Euclidean group.



Euclidean Surfaces S C R3

e H=1(k;+kKy) — mean curvature: order = 2
o K = kKK, — Gauss curvature: order = 2
e DH,D,H,D,K,D,K,D?H, ... — derivatives

with respect to the equivariant Frenet frame on S

Theorem. Every Euclidean differential invariant of a
non-umbilic surface S C R? can be written

[ = ®(H,K,D,H,D,H,D,K,D,K,D>H, ...)

Thus, H, K generate the differential invariant algebra
of (generic) Fuclidean surfaces.



on R3

G =SA(3) =SL(3) x R® — volume preserving
z +—— Az+0b detA=1

Curves in  R3:

r — equi-affine curvature: order = 4
T — equi-affine torsion: order = 5
Kgy Tgs Kggy- - — diff. w.r.t. equi-affine arc length

Surfaces in R3:
P — Pick invariant: order = 3

Qo @q,-..,Q, — fourth order invariants
D,P,D,P,D,Q,,... diff. w.r.t. the equi-affine frame



General Problems

Determine the structure of the
algebra of differential invariants:

generators, syzygies, commutators, etc.

Find a minimal system of
generating differential invariants.




The Basis Theorem

Theorem. The differential invariant algebra Z((') is locally
generated by a finite number of differential invariants

I, ... 1,
and p = dim S invariant differential operators
Dy, ..., D,

meaning that every differential invariant can be locally
expressed as a function of the generating invariants and
their invariant derivatives:

D,I, =D, D, D, I

1 j2 In~ K°

* Lie groups: Lie, Ouvsiannikov, Fels P.JO

% Lie pseudo-groups: Tresse, Kumpera,
Pohjanpelto-PJO, Kruglikov-Lychagin



A Rational Basis Theorem

Theorem. (Kruglikov—Lychagin) If the Lie pseudo-group acts
transitively and algebraically, then the differential invariant
algebra 7((7) is generated by a finite number of rational
differential invariants

I, ... 1,
and p = dim S rational invariant differential operators
Dy, ... ,D,

e Relies on an algebraic theorem due to Rosenlicht proving the
existence of bases of rational invariants

e Not constructive.



Key Issues

e Minimal basis of generating invariants: 1I,...,1,

° for

the invariant differential operators:
P

[Djapk;] — Z Di
i=1

—> Non-commutative differential algebra

e Syzygies (functional relations) among

the differentiated invariants:
(... DI, ...)=0

— (Codazzi relations



Curves

Theorem. Let G be an ordinary™ Lie group acting on the m-
dimensional manifold M. Then, locally, there exist m — 1
generating differential invariants <,,...,x,, ;. Every other
differential invariant can be written as a function of the
generating differential invariants and their derivatives with

respect to the G-invariant arc length element ds.

* ordinary = transitive 4+ no pseudo-stabilization.

— m=3 — curvature k & torsion 7



Theorem.

The algebra of equi-affine differential invariants for non-
degenerate surfaces is generated by the Pick invariant through
invariant differentiation.

In particular:

Q,=®, (P,D,P,D,P, ...)



Euclidean Surfaces

Theorem.

The algebra of Euclidean differential invariants for suitably
non-degenerate surfaces is generated by only the mean curvature
through invariant differentiation.

In particular:

K = ®(H,D,H,D,H, ...)



Further Results

For suitably non-degenerate surfaces S C R3:

Theorem. G =50(4,2)

The algebra of conformal differential invariants is generated by a single
third order differential invariant.

Theorem. G = PSL(4)

The algebra of projective differential invariants is generated by a single
fourth order differential invariant.

—>  (with E. Hubert)

Theorem. G = GL(3)

The algebra of differential invariants for ternary forms is generated by a
single third order differential invariant.

—> (with G. Giin Polat)



Example. G: (z,y,u) — (x+a,y+bu+ P(z,y))

a,b € R, P is an arbitrary polynomial of degree < n

Differential invariants:

Oy o
ui’j:(?xi(?yj 1+72>n+1
Invariant differential operators:
D, =D, D,=D,.
Minimal generating set:
W; s 1+7=n+1

& For submanifolds of dimension p > 2, the number of
generating differential invariants can be arbitrarily large.



Applications of Differential Invariants

Equivalence and signatures of submanifolds
—> 1mage processing

Characterization of moduli spaces

Invariant differential equations:
H(...DyI . ...)=0
Integration of ordinary differential equations

Group splitting /foliation of PDEs
— explicit solutions & Backlund transformations

Invariant variational problems:

[ L. DI, )

Comnservation laws and characteristic classes



Equivalence & Invariants

Cartan’s solution to the equivalence problem for submanifolds
under a transformation group relies on the functional
relationships or syzygies among their differential invariants.

Theorem. Two regular submanifolds S, S C M are locally
equivalent

S=g¢g-85 for some ged

if and only if they have identical syzygies among all their
differential invariants.



Finiteness of Generators and Syzygies

& There are, in general, an infinite number of differential
invariants and hence an infinite number of syzygies
must be compared to establish equivalence.

@ But the higher order differential invariants are always
generated by invariant differentiation from a finite
collection of basic differential invariants, and the higher
order syzygies are all consequences of a finite number
of low order syzygies!



Example — Plane Curves

If non-constant, both x and x, depend on a single parame-
ter, and so, locally, are subject to a syzygy:

ks = H(r) (%)

But then

oy = o H(x) = H'(8) 5, = H'(x) H(s)

and similarly for k___, etc.

CEER

Consequently, all the higher order syzygies are generated by
the fundamental first order syzygy (x).

Thus, for Euclidean (or equi-affine or projective or ... )
plane curves we need only know a single syzygy between x and
K, in order to establish equivalence!



Signature Curves

Definition. The signature curve > C R? of a plane curve
C' C R? is parametrized by the two lowest order differential

invariants
Cc — :{</ﬁ,d—l€>}CR2
ds

= Calabi, PJO, Shakiban, Tannenbaum, Haker

Theorem. Two regular curves C' and C are locally
equivalent:

C=g-C

if and only if their signature curves are identical:

=2
—> regular: (K, k,,) # 0.
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The Baffler Solved




Benign vs. Malignant Tumors

—> A. Grim, C. Shakiban



Benign vs. Malignant Tumors
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3D Differential Invariant Signatures

Euclidean space curves: C C R3
E:{(Kuvﬁs’T)} c R

e Kk — curvature, 7 — torsion

Euclidean surfaces: S C R? (generic)
v={(H,K,H, ,Hy, K, K,)} C RS

oo V={(H,H, Hy H;)} CcR

e H — mean curvature, K — Gauss curvature

Equi—affine surfaces: S C R (generic)
v={(P,P,,P, Py )} C R

e PP — Pick invariant



3D Jigsaw Puzzles

—> Anna Grim, Tim O’Connor, Ryan Schlecta
Cheri Shakiban, Rob Thompson, PJO



Reassembling Humpty Dumpty



0.04

0.02

-0.02 .

-0.04

-0.06

-0.08 —

-oWa
0.05 5 o 0.05

o5 0.05

— DBroken ostrich egg shell — Marshall Bern



Archaeology
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— Virtual Archaeology






Anthropology

STl
55

—> Katrina Yezzi-Woodley, Jeff Calder, Pedro Angulo-Umana



Bone fragment




Bone fragment

—> Mean curvature



Invariant Differential Equations

Any (non-degenerate) differential equation that admits G as
a symmetry group can be expressed in terms of the differential
invariants:

F(...DgI* ...)=0

K Lie’s integration method for ordinary differential equations.

* Vessiot’s Method of group foliation (group splitting) for
partial differential equations to construct invariant
and non-invariant solutions, as well as Backlund
transformations, etc, for partial differential equations.

—> Thompson—Valiquette



Invariant Variational Problems

Any G-invariant variational problem can be written in
terms of the differential invariants:

I[u]:/L(a:,u(”))dx:/P(... DI .. ) w

Moreover, its Euler-Lagrange equations admit G as a symmetry
group, and hence can also be expressed in terms of the differen-

tial invariants:
E(L)~F(... D1 ... )=20

Main Problem:  Construct F' directly from P.

* & The general formula is a now known and a consequence of
the structure of the differential invariant algebra and
the corresponding invariant variational bicomplex.



The shape of a Mobius strip
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The Mobius sirip, obtzined by nking a rectangelar stdp of
plastic or paper. twisting one end theough 180", and then
joining the ends, is the canonic example of o one-sided surface.
Finding its characteristic developable shape has been an open
problem ever since s first formulation in refs 1,2, Here we
wse the imvariant varigtional bicomplex formalism to derive
the first eguilibrivm eguations for 2 wide developable strip
undergoing large deformations, thereby giving the frst non-
trivial demonstration of the potential of this approach. We then
formulate the boundary-value problem for the Mabies steip and
mhammmmrmmgmmmm
formation of creases bounding nearly flat iriangular tegmm. o
feature also umﬂm:&mlnhcdnglng’mdpuper crumpling™,
This could give new insight nte enespy localization p]:ennrunu
in unsteclchable sheers®, which might help to predicl points
dmo{mmtg. It coubd also eid our understanding of the

1l mﬂp}rm:-al prupertios of rana-
md mu'rn&mpk Mabius m—lp structures”

11 s Exir o day that the Mobius steip 3 one of the few wons
of mathematics that have been absorbed into wider culture. It
b mrthematical besuty and inspired artists such as Escher™, In
engineering, pulley belts are often used in the form of Ml itrips
tor weat "otk sdces equally. At a mocl: sorsller seabe, Miibius stzips
have recently been formed in ribbon-shaped Nhle; crystals under
certidn erowtl conditions invalvine a Bree temperature eradient™.

Figure 1 Phato of 2 paper Mabius strip of aspect rafin 2. Trg siip adopts a
hermelersic shape. nestershity of e rateral causes the surtacs 1o be
deveiopabie, Bs stright genarators A cawn 2nd e colousng wirns acoonfiog o
1hz bending enargy cansty.



The Algebra of Differential Invariants

* » Moving frames furnish constructive
algorithms for determining the full

structure of the differential invariant
algebra Z(G)!



Equivariant Moving Frames

Definition. An n'" order moving frame is a G-equivariant map
pm Vg — G
e Elie Cartan

e Guggenheimer, Griffiths, Green, Jensen
e [Fels, Kogan, Pohjanpelto, PJO

Equivariance:

(n) _(n) g- p(z(”)) left moving frame
plg"™ - 2) = (n)y - —1 . .
p(z\") g right moving frame




Theorem. A moving frame exists in a neighborhood of a jet
2(™) € J™ if and only if G acts freely and regularly near z(").

e free — the only group element g € GG which fixes one point
2" € J7 is the identity: ¢(™ - 2(") = 2(") — g =e.

e locally free — the orbits have the same dimension as G.

e rcgular — all orbits have the same dimension and intersect
sufficiently small coordinate charts only once ( % irrational
flow on the torus)



JH

Geometric Construction

7




Geometric Construction

JH

NN

O,

KTL

Normalization = choice of cross-section to the group orbits




Geometric Construction

Jn

NN

O.m

KTL

Normalization = choice of cross-section to the group orbits




Geometric Construction

~(n)

Jn

9= p’r'ight(’z<n))

NN

L(n)

O,
KTL

Normalization = choice of cross-section to the group orbits




Algebraic Construction

1. Write out the explicit formulas for the
prolonged group action:

w™ (g, 2(™) = g . z(7)

—> Implicit differentiation

2. From the components of w(™, choose r = dim G
normalization equations to define the cross-section:

w, (g, 2™) = ¢, . w (g,2™) =c,



3. Solve the normalization equations for the group parameters
9="(91:---:9,)

g=p(z") = p(z,u™)

The solution is the right moving frame.

4. Substitute the moving frame formulas

g=p(z'") = p(z,u™)

for the group parameters into the un-normalized components
of w(™ to produce a complete system of functionally inde-
pendent differential invariants of order < n:

IL(z,u™) =w, (p(z™), z2™)),  k=r+1, ..., dimJ"



Example: Euclidean Plane Curves

Rigid motions (translations and rotations):

G = SE(2) acting on C CcM=R?

Assume the curve is (locally) a graph:

C={u=flz);

0. Write out the group transformations

Yy=1xcosp—using +a
w=Rz+c
v=2xcosp+using+ b



1. Prolong to J™ via implicit differentiation

Yy=1xcosp—using +a v=xsin¢ +ucosp+ b

sin ¢ 4+ u,, cos ¢ Uy
v, = : Uy = :
Y cosp —u,sin¢ Y (cos¢p —u, sin ¢)3
(cos —u,sing)u,,, —3u?, sing
Yyyy =

(cosp —u,sin¢)®
2. Choose a cross-section, or, equivalently a set of
r = dim G = 3 normalization equations:

3. Solve the normalization equations for the group parameters:

B T + uu Tu,. — U
¢ =— tan tu, a=— = b=

x

V1+u2 1+ u2

The result is the right moving frame p: J' — SE(2)




4. Substitute into the moving frame formulas for the
group parameters into the remaining prolonged transformation
formulae to produce the basic differential invariants:

Vyy — K = Yoa
vy (14 u2)3/2
vy ds (1+wu2)3
d’k 3
Vyyyy F— E+3K = ...

— recurrence formulae

Theorem. All differential invariants are functions of the
derivatives of curvature with respect to arc length:

ds ds?

K



. The invariant differential operators and invariant differential

forms are also obtained by substituting the moving frame
formulas for the group parameters:

Invariant one-form — arc length
dy = (cosp —u,singp)dr +—— ds=/1+u2 dx
Invariant differential operator — arc length derivative
d 1 d d 1 d

\ J—
4

d_y:cosgb—uxsingb de ds 1+ u? dx



Invariantization

The process of replacing group parameters in transformed ob-
jects by their moving frame formulae is known as invariantization:

( Functions — Invariants
Differential . Invariant Differential
Forms Forms
Differential Invariant Differential
L. < —
Operators Operators
Variational . Invariant Variational
Problems Problems

\

e Invariantization defines an (exterior) algebra morphism.

e Invariantization does not affect invariants: «(1) =1



The Fundamental Differential Invariants

Invariantized jet coordinate functions:

H'(z,u!™) = o(a")  Ii(z,u) = o(uf)

e The constant differential invariants, as defined by the cross-
section coordiantes, are known as the

phantom invariants.

e The remaining non-constant differential invariants are
the basic invariants and form a complete system of
functionally independent differential invariants for the

prolonged group action.



Invariantization of general differential functions:

F(.. 2 oS )] =F(.. H OIS L)

The Replacement Theorem: (Rewrite Rule)
If J is a differential invariant, then «(J) = J.

Key fact: Invariantization and differentiation do commute:

{(D,F) # Du(F)



Infinitesimal Generators

Infinitesimal generators of action of G on M:

P 0 d 0

Prolonged infinitesimal generators on J™:

Vv Y )

8
a=1 j=#J=1 J

Prolongation formula:
p ‘ p ‘
Cn =D (w2 = L ure) + S ugél
i=1 i=1

Dy,...,D, — total derivatives



Recurrence Formulae

D;u(F) =uD,;F) + > R W(vIV(F))

k=1
w'=1(dr') — invariant coframe
D, =u(D,:) — dual invariant differential operators
vﬁ"), Vq(n") €g — prolonged infinitesimal generators

R® — Maurer—Cartan invariants



Recurrence Formulae

D;u(F) =«(D,;F) + > Rjuv ")(F))

& If «(F) = cis a phantom differential invariant, then the left hand side
of the recurrence formula is zero. The collection of all such phantom
recurrence formulae form a linear algebraic system of equations that can
be uniquely solved for the Maurer—Cartan invariants R;!

(" Once the Maurer—Cartan invariants are replaced by their
explicit formulae, the induced recurrence relations completely determine
the structure of the differential invariant algebra 7(G)!



The Universal Recurrence Formula

If © is any differential form on J™:

du(Q2) = (dQ) + 27”: YN v, (92)]

k=1

Invariantized Maurer—Cartan forms:
v =pt W) = Y RjW

—> The Invariant Variational Bicomplex



The

By the Universal Recurrence Formula:

dw' = d[u(dz)] = o(d’z°) + Zi: 5 A v, (dz")]

k=1

i<k

[Djvpkz]zz D,

)
1=1




The Differential Invariant Algebra

Thus, remarkably, the structure of 7((7) can be determined
without knowing the explicit formulae for either the moving
frame, or the differential invariants, or the invariant differ-
ential operators!

The only required ingredients are the specification of the cross-
section, and the standard formulae for the prolonged
infinitesimal generators.

Theorem. If G acts transitively on M, or if the infinitesimal
generator coefficients depend rationally in the coordinates,
then all recurrence formulae are rational in the basic
differential invariants and so Z(() is a rational, non-
commutative differential algebra.



Euclidean Surfaces

Euclidean group SE(3) = SO(3) x R3 acts on surfaces S C R3.

For simplicity, we assume the surface is (locally) the graph of a function

z = u(z,y)

Infinitesimal generators:

v, =-y0,+x0,, vy =—ud, +20,, vy =—ud, +y0,,

e The translations w,, w,, w, will be ignored, as they play no role in the
higher order recurrence formulae.



Cross-section (Darboux frame):

Principal curvatures
K1 = (U’mm)7 Ko = (uyy)

Mean curvature and Gauss curvature:

H = 5(ky + Ky), K =k,

Higher order differential invariants — invariantized jet coordinates:

HItky

I'ki = (ujk:) where U’jk} = W

J

% & Nondegeneracy condition: non-umbilic point x, # ..



The Algebra of Euclidean Differential Invariants

Principal curvatures:
Ry = (U’mm)7 Ko = (uyy)

Mean curvature and Gauss curvature:

H = §(ky + Ky), K =k,

Invariant differentiation operators:

D, = (‘D:c)7 D, = (Dy>

—> Differentiation with respect to the diagonalizing Darboux frame.

The recurrence formulae enable one to express the higher order differential
invariants in terms of the principal curvatures, or, equivalently, the mean and
Gauss curvatures, and their invariant derivatives:

J

_ - 2
R— (u]k) = <I>jk(/<el,/12,2?1/11,Dzml,D1m2,D2/€2,le<@1, o)
(I)jk

(H,K,D,H,D,H,D,K,D,K,DiH, ...)



Recurrence Formulae

3
(Dyujy) =D, i(ugy,) — > R [¢P*(z, y, TP, Jt+k=>1
k=1
I, = (u;,) — mnormalized differential invariants
R? — Maurer—Cartan invariants

@I5(0,0,IUTR)) = /[ pik(z, y,ulITH)]

— invariantized prolonged infinitesimal generator coefficients.

Iiv1 e = Dily, — Z ©1*(0,0 [(jJrk))Rl

k=1

I o1 = Dol — Z ©1*(0,0 I(ﬁk))RQ

k=1




Prolonged infinitesimal generators:
prvy = —yd, +x0, —u,0, +u,0,

—2u,, 0, + (uy, —u, )0, —2u, 8, + -,

yy) Ugy
prvy, =—ud, + 0, + (1 +u2 )0y, + uy w0,

+3u,.u. 0 .t

T TT Uy (yx:c T Ty T YY) T Uyy

prvy =—ud, +y0, +u,u,0 —|—(1—|—u )0y,

T YT Uy

+ 2u,u )8 , T Quyu,, +u,u,,)o, + -

+ (uy Uy, +2uyu,, )0,  + (2u,u,, +u,u,,)0, +3u,u, 0, + -

T -yy Y Yy Uy

Normalized differential invariants: Ly, = t(uyy,)
Phantom differential invariants: Joo = Lo = Ipg = 113 =0

Principal curvatures: Iy = Ky Iyy = Ko



Phantom recurrence formulae:
_ _ 2 2
ky = I,g =D11 — Rf = — Ry,

0= 111 — D1101 - Rzl)) - —R‘;’,
Iy, =Dy — (kg — “2)3& = —(ky — ’12)317

0= 111 — D2110 - R% - —R%,

Ko = lgg = Dylyy — R;’ = —R;’,

Iy =Dylyy — (kg — “2)R% = —(ky — “2)35-

Maurer—Cartan invariants:

1 _ 5 3 _
Rl — 9 Rl = _/41'11, Rl = O,
2 2 2
Rl — 9 R2 = 0, R3 = _’{z2.
Commutator invariants:
_ Iy _ DRy _ I _ Dykq

[D17D2] :D1D2_D2D1 - Dl - D2>




Third order recurrence relations:

Iyo = Diky = Ky s Iyy = Doky = Ky gy Ljg = Dikg = Ky, Loz = Dokig = Ky,

Fourth order recurrence relations:

3 K2
_ 1,2 3
Iyg=Fyq1 — PR + 3Ky
1 2
3”‘31,2’““2,1 Kii1K1,2 — 2’“7J1,2’“€2,1
I.,. =k — e S0 = K +
31 1,12 — 1,21 —
K1 — Ro K1 — Ko
2 2
Ki,1R21 2"52,1 2 Ki,9K2 92 2"91,2 2
I =K + + K{K5 =K + KK
22 1,22 1R2 2,11 1R2
K, — K K — K
1 2 1 2
3’<51,2"92,1 Ko 1R2 2 2K1 9Kg 1
.=k + =k
13 2,21 — 2,12
K1 — ko K1 — Ko
3 K2
_ 2,1 3
loy = Kg 90 + —— + 3k
K1 2

* The two expressions for I, and I, follow from the commutator formula.



Fourth order recurrence relations

3 K2
_ 1,2 3
Iy =k — ——— +3K]
1~ Ko
3Ky kg 1 K11K12 = 2Ky 9Ky
I.. =k - o =K +
31 1,12 — 1,21 —
K1 — Ko K1 — Kg
2 2
I Ki1K21 — 2’“32,1 2 Ki,2K9 2 — 2’“31,2 2
22 = K120+ T R1Ry = Ko 11 — T KiRy
K, — K K, — K
1 2 1 2
3"‘31,2“2,1 Ko 1Ko 2 — 2"31,2"32,1
.=k + —== s =K —
13 2,21 — 2,12 —
K1 — Ro K1 — Kg
3 K2
_ 2,1 3
Ioy = Ko 09 T + 3Ky
K1 = Ko

% %k The two expressions for I,, imply the Codazzi syzygy

2 2
K11Ke1 T R1gkeg — 2Ky — 2K

K19 — Ko 11 1 — Ky Ky (k) — Ky) =0

iy iy
which can be written compactly as
K=rry==(D1+ 7)Y, = (Dy+7))
—> Gauss’ Theorema Egregium



The Commutator Trick

K =kiky=—(D; + 1))V, = (Dy+ V)

To determine the commutator invariants:
D,D,D;H -D,D,D;H =Y,D,D;H -V D,D;H

Non-degeneracy condition:

D.H  D,H
det (DlpJH D2DJH) ?é 0’

Solve (x) for V|, Y, in terms of derivatives of H, producing a universal formula

K =VU(H,D,H,D,H, ...)

for the Gauss curvature as a rational function of the mean curvature and its
invariant derivatives!



Definition. A surface S C R3 is mean curvature degenerate if, near any
non-umbilic point p, € S, there exist scalar functions F(¢), F,(t) such that

D,H = F,(H), D,H = F,(H).

e surfaces with symmetry: rotation, helical;
e minimal surfaces;

e constant mean curvature surfaces;

o 777

Theorem. If a surface is mean curvature non-degenerate
then the algebra of Euclidean differential invariants
is generated entirely by the mean curvature and its
successive invariant derivatives.



Equi-affine Surfaces

M=R3® G=SA3)=SLEB)xR? dimG =11.

x
g-z=Az+0b, det A =1, z:(y)E]R3.
u

Surfaces S ¢ M = R3:
u= f(z,y)



Hyperbolic case

U Uy — uiy <0
Cross-section:
xzyzu:uxzuy:uxyzo, Uy, = 1, uyyz—l,
Uayy = Yaza: Ugay = Uyyy =0

Power series normal form:
u(x,y) = %(xz — %) + %c(x?’ +3zy?) + .-

—> Nonsingular: ¢ # 0.



Invariantization — differential invariants: I, = t(u;y,)

Phantom differential invariants:
Ux) = u(y) = v(u) = v(u,) = (u,) = t(u,,) = t(uy,,) = u,,,) =0,

L('LL - 17 L('LL - _17 L(u:cx:c) - l’(uxyy) = 0.

z) uy)

Pick invariant:

P = l’(ummm) - L(umyy)

Basic differential invariants of order 4:
Qo = t(Uprer)y, @1 = l’(ux:cacy)7 Qy = l’(ux:cyy)7
Qs = tltyyyy)y Qo= tlUyy,,),
Invariant differential operators:

D, =uD,), Dy =(D,).



e Since the moving frame has order 3, one can generate all higher order
differential invariants from the basic differential invariants of order
<4.

e This is a consequence of a general theorem, that follows directly from the
recurrence formulae.

e Thus, to prove that the Pick invariant generates 7((7), it suffices to gener-
ate Qg,...,Q, from P by invariant differentiation.



Infinitesimal generators:
v, =20, —u0,, vy =y0, —ud,,
vy =y0,, v, =ud,, V5::L‘(9y,
ve=u0,, Vv;=x0, Vg=yO0,,

Wl — a:c, W2 — ay, W3 — 8u,

e The translations will be ignored, as they play no role in the higher order
recurrence formulae.



Recurrence formulae

Dil’(ujk) ’L jk Z ()0 1’ ' Y, u(j—’_k))R?a ]—l— k Z 1
k=1
Dilje =1t 21 ©1*(0,0, IVtM) Ry
Doljp = Ijpe1 + Zl ©3*(0,0, 109\ R;
©Ik (0,0, I0TF)) =4[ pI*(z,y,uUT*®))] — invariantized

prolonged infinitesimal generator coefficients

REF — Maurer—Cartan invariants



Phantom recurrence formulae:

0="D,I,=1+ R], 0=D,I,, = R],

0=D,I,, = RS, 0="Dyl,; = -1+ R},

0= D, Iy = I,y — 3R} — R2, 0 =D, = —3R; — R3,
0=D,I,, = R+ R’ 0=D,I; = I, — R} + R,
0 =D, Iy, = I, + R! + 3R2, 0 = D,ly, = R; + 3R3,

0= D1121 — 131 - ISOR? - QISOR? + R?7
0= D2121 — 122 - ISORg - QISORS + RS7

0=D,Iy; =13 —3;0Rs — 3RS, 0=D,l,;=1I,,—3I,,R; —3RS.



Maurer—Cartan invariants:

30, +@ 30, +@
(1 1 1 3 1 1 1 p2 1 3 ] 1
Rl—<§P7—§P7127P71Q0—1Q2—§P7H7P7—1Q1+1Q37—170
3Qy+ @y 1,51 1 3Q+Q, 1 1 1 p2
R2:<0’07T+§RZQ1_ZQ37W_§P’_ZQ2+ZQ4_§P70’1
Fourth order invariants:
P\ =D\P'= 0y =05, P,=D,P=;0,+5Q;.

Commutator:
D3 =[Dy,Dy] =D, Dy =Dy D, =V, Dy + V, Dy,

Commutator invariants:

30, + Q4

=R -Ri=-—0p



Another fourth order invariant:

P,=D;,P=D,D,P-D,D;,P=Y,P, + Y,F,.
Nondegeneracy condition: If

Py P, -
det(Dle szj>7é0 for j=1,2, or 3,

we can solve (%) and
D3Pj = Dle — D2Pj
for the fourth order commutator invariants:

_ 314G _ 3@+ 0,
12P 12P



So far, we have constructed four combinations of the fourth order differential
invariants
51:Q0+3Q2, 52:Q1+3Q3,

as rational functions of the invariant derivatives of the Pick invariant. To
obtain the final fourth order differential invariant:

12P(D,S, — D,S;) = 48 P?Q, — 30 P2S, + 18 P2S,
— 35,8, — S2+35,8, + 53

%k % k This completes the proof * * %



Minimal Generating Invariants

A set of differential invariants is a generating system if all other differen-
tial invariants can be written in terms of them and their invariant derivatives.

Euclidean curves C C R3: curvature s and torsion 7
Equi-affine curves C' C R3: affine curvature x and torsion 7
Euclidean surfaces S C R3: mean curvature H

Equi-affine surfaces S C R3: Pick invariant P.
Conformal surfaces S C R3: third order invariant Jj.

Projective surfaces S C R3: fourth order invariant K.

—>  (with E. Hubert)



Example. G: (z,y,u) — (x+a,y+b,u+ P(x,y))

a,b e R, P is an arbitrary polynomial of degree < n

Differential invariants:

O tiy . '
Yis = Baioys ttyz2ntl

Invariant differential operators:

D,=D,, D,=D,

Minimal generating set:

U; i1 o=l
& For submanifolds of dimension p > 2, the number of generating differential
invariants can be arbitrarily large.

& In general, finding a minimal generating set appears to be very difficult.
(No known bound on order of syzygies.)



(General Issues

The equivariant moving frame calculus is
completely constructive, and can be applied to

all finite-dimensional Lie transformation groups

most infinite-dimensional Lie pseudo-groups
arising in applications (eventually locally freely acting)

Fully determines the recurrence relations and hence, in principle,
all identities for the algebra of differential invariants Z(().

* % Structure theory for differential invariant algebras?

In particular, minimal generating sets require a syzygy bound:

K=V(H, ... ,D™H) n <N 777




THANK YOU!



