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G — Lie group (or Lie pseudo-group)
acting on a manifold M

I(G) — “algebra” (sheaf) of all differential invariants
for p-dimensional submanifolds S ⊂ M

Goal: Describe the structure of I(G) in as much
detail as possible.



Classical Geometries

• Euclidean: G =

⎧
⎨

⎩

SE(m) = SO(m)! R
m

E(m) = O(m)! R
m

z #−→ A · z + b A ∈ SO(m) or O(m), b ∈ R
m, z ∈ R

m

⇒ isometries: rotations, translations, (reflections)

• Equi-affine: G = SA(m) = SL(m)! Rm

A ∈ SL(m) — volume-preserving

• Affine: G = A(m) = GL(m)! Rm

A ∈ GL(m)

• Projective: G = PSL(m+ 1)
acting on Rm ⊂ RPm



Invariants

Definition. If G is a group acting on M , then an
invariant is a real-valued function I : M → R that
does not change under the action of G:

I(g · z) = I(z) for all g ∈ G, z ∈ M

⋆ If G acts transitively, there are no (non-constant)
invariants.



Differential Invariants

Given a submanifold (curve, surface, . . . )

S ⊂ M

a differential invariant is an invariant of the prolonged
action of G on its derivatives (jets):

I(g · z(k)) = I(z(k))



Examples of Differential Invariants

Euclidean Group on R3

G = SE(3) = SO(3)! R
3

=⇒ group of rigid motions

z #−→ Rz + b R ∈ SO(3)

• Induced action on curves and surfaces.



Euclidean Curves C ⊂ R3

• κ — curvature: order = 2

• τ — torsion: order = 3

• κs, τs,κss, . . . — derivatives w.r.t. arc length ds

Theorem. Every Euclidean differential invariant of a
space curve C ⊂ R3 can be written

I = H(κ, τ,κs, τs,κss, . . . )

Thus, κ and τ generate the differential invariants of
space curves under the Euclidean group.



Euclidean Surfaces S ⊂ R3

• H = 1
2 (κ1 + κ2) — mean curvature: order = 2

• K = κ1 κ2 — Gauss curvature: order = 2

• D1H,D2H,D1K,D2K,D2
1H, . . . — derivatives

with respect to the equivariant Frenet frame on S

Theorem. Every Euclidean differential invariant of a
non-umbilic surface S ⊂ R3 can be written

I = Φ(H,K,D1H,D2H,D1K,D2K,D2
1H, . . . )

Thus, H,K generate the differential invariant algebra
of (generic) Euclidean surfaces.



Equi-affine Group on R3

G = SA(3) = SL(3)! R3 — volume preserving
z #−→ Az + b, detA = 1

Curves in R3:

• κ — equi-affine curvature: order = 4

• τ — equi-affine torsion: order = 5

• κs, τs,κss, . . . — diff. w.r.t. equi-affine arc length

Surfaces in R3:

• P — Pick invariant: order = 3

• Q0, Q1, . . . , Q4 — fourth order invariants

• D1P,D2P,D1Qν, . . . diff. w.r.t. the equi-affine frame



GeneralProblems

Determine the structure of the
algebra of differential invariants:

generators, syzygies, commutators, etc.

Find a minimal system of
generating differential invariants.



The Basis Theorem

Theorem. The differential invariant algebra I(G) is locally
generated by a finite number of differential invariants

I1, . . . , Iℓ

and p = dimS invariant differential operators

D1, . . . ,Dp

meaning that every differential invariant can be locally
expressed as a function of the generating invariants and
their invariant derivatives:

DJIκ = Dj1Dj2 · · · DjnIκ.

⋆ Lie groups: Lie, Ovsiannikov, Fels–PJO

⋆ Lie pseudo-groups: Tresse, Kumpera,

Pohjanpelto–PJO, Kruglikov–Lychagin



ARational Basis Theorem

Theorem. (Kruglikov–Lychagin) If the Lie pseudo-group acts
transitively and algebraically, then the differential invariant
algebra I(G) is generated by a finite number of rational
differential invariants

I1, . . . , Iℓ

and p = dimS rational invariant differential operators

D1, . . . ,Dp

.

• Relies on an algebraic theorem due to Rosenlicht proving the
existence of bases of rational invariants

• Not constructive.



Key Issues

• Minimal basis of generating invariants: I1, . . . , Iℓ

• Commutation formulae for

the invariant differential operators:

[Dj,Dk ] =
p∑

i=1

Y i
jk Di

=⇒ Non-commutative differential algebra

• Syzygies (functional relations) among

the differentiated invariants:

Φ( . . . DJIκ . . . ) ≡ 0

=⇒ Codazzi relations



Curves

Theorem. Let G be an ordinary⋆ Lie group acting on the m-

dimensional manifold M . Then, locally, there exist m − 1

generating differential invariants κ1, . . . ,κm−1. Every other

differential invariant can be written as a function of the

generating differential invariants and their derivatives with

respect to the G-invariant arc length element ds.

⋆ ordinary = transitive + no pseudo-stabilization.

=⇒ m = 3 — curvature κ & torsion τ



Equi-affine Surfaces

Theorem.

The algebra of equi-affine differential invariants for non-
degenerate surfaces is generated by the Pick invariant through
invariant differentiation.

In particular:

Qν = Φν(P,D1P,D2P, . . . )



Euclidean Surfaces

Theorem.

The algebra of Euclidean differential invariants for suitably
non-degenerate surfaces is generated by only the mean curvature
through invariant differentiation.

In particular:

K = Φ(H,D1H,D2H, . . . )



Further Results

For suitably non-degenerate surfaces S ⊂ R3:

Theorem. G = SO(4, 2)

The algebra of conformal differential invariants is generated by a single
third order differential invariant.

Theorem. G = PSL(4)

The algebra of projective differential invariants is generated by a single
fourth order differential invariant.

=⇒ (with E. Hubert)

Theorem. G = GL(3)

The algebra of differential invariants for ternary forms is generated by a
single third order differential invariant.

=⇒ (with G. Gün Polat)



Example. G: (x, y, u) #−→ (x+ a, y + b, u+ P (x, y) )

a, b ∈ R, P is an arbitrary polynomial of degree ≤ n

Differential invariants:

ui,j =
∂i+ju

∂xi∂yj
i+ j ≥ n+ 1

Invariant differential operators:

D1 = Dx, D2 = Dy.

Minimal generating set:

ui,j, i+ j = n+ 1

♠ For submanifolds of dimension p ≥ 2, the number of
generating differential invariants can be arbitrarily large.



Applications of Differential Invariants

• Equivalence and signatures of submanifolds
=⇒ image processing

• Characterization of moduli spaces

• Invariant differential equations:

H( . . . DJIκ . . . ) = 0

• Integration of ordinary differential equations

• Group splitting/foliation of PDEs
— explicit solutions & Bäcklund transformations

• Invariant variational problems:
∫

L( . . . DJIκ . . . ) ω

• Conservation laws and characteristic classes



Equivalence & Invariants

Cartan’s solution to the equivalence problem for submanifolds
under a transformation group relies on the functional
relationships or syzygies among their differential invariants.

Theorem. Two regular submanifolds S, S̃ ⊂ M are locally
equivalent

S̃ = g · S for some g ∈ G

if and only if they have identical syzygies among all their
differential invariants.



Finiteness of Generators and Syzygies

♠ There are, in general, an infinite number of differential
invariants and hence an infinite number of syzygies
must be compared to establish equivalence.

♥ But the higher order differential invariants are always
generated by invariant differentiation from a finite
collection of basic differential invariants, and the higher
order syzygies are all consequences of a finite number
of low order syzygies!



Example — Plane Curves

If non-constant, both κ and κs depend on a single parame-
ter, and so, locally, are subject to a syzygy:

κs = H(κ) (∗)

But then

κss =
d

ds
H(κ) = H ′(κ)κs = H ′(κ)H(κ)

and similarly for κsss, etc.

Consequently, all the higher order syzygies are generated by
the fundamental first order syzygy (∗).

Thus, for Euclidean (or equi-affine or projective or . . . )
plane curves we need only know a single syzygy between κ and
κs in order to establish equivalence!



Signature Curves

Definition. The signature curve Σ ⊂ R2 of a plane curve
C ⊂ R2 is parametrized by the two lowest order differential
invariants

χ : C −→ Σ =

{ (

κ ,
dκ

ds

) }

⊂ R
2

=⇒ Calabi, PJO, Shakiban, Tannenbaum, Haker

Theorem. Two regular curves C and C are locally
equivalent:

C = g · C

if and only if their signature curves are identical:

Σ = Σ

=⇒ regular: (κs,κss) ̸= 0.



The Baffler Jigsaw Puzzle



The Baffler Solved

=⇒ Dan Hoff



Benign vs. Malignant Tumors

=⇒ A. Grim, C. Shakiban



Benign vs. Malignant Tumors



Benign vs. Malignant Tumors



3DDifferential Invariant Signatures
Euclidean space curves: C ⊂ R3

Σ = { (κ , κs , τ ) } ⊂ R
3

• κ — curvature, τ — torsion

Euclidean surfaces: S ⊂ R3 (generic)

Σ =
{ (

H , K , H,1 , H,2 , K,1 , K,2

) }
⊂ R

6

or Σ̂ =
{ (

H , H,1 , H,2 , H,11

) }
⊂ R

4

• H — mean curvature, K — Gauss curvature

Equi–affine surfaces: S ⊂ R3 (generic)

Σ =
{ (

P , P,1 , P,2, P,11

) }
⊂ R

4

• P — Pick invariant



3D Jigsaw Puzzles

=⇒ Anna Grim, Tim O’Connor, Ryan Schlecta

Cheri Shakiban, Rob Thompson, PJO



Reassembling Humpty Dumpty



=⇒ Broken ostrich egg shell — Marshall Bern



Archaeology



=⇒ Virtual Archaeology



Surgery



Anthropology

=⇒ Katrina Yezzi-Woodley, Jeff Calder, Pedro Angulo–Umana



Bone fragment



Bone fragment

=⇒ Mean curvature



Invariant Differential Equations

Any (non-degenerate) differential equation that admits G as
a symmetry group can be expressed in terms of the differential
invariants:

F ( . . . DKIα . . . ) = 0

⋆ Lie’s integration method for ordinary differential equations.

⋆ Vessiot’s Method of group foliation (group splitting) for
partial differential equations to construct invariant
and non-invariant solutions, as well as Bäcklund
transformations, etc, for partial differential equations.

=⇒ Thompson–Valiquette



Invariant Variational Problems

Any G–invariant variational problem can be written in
terms of the differential invariants:

I[u ] =
∫
L(x, u(n)) dx =

∫
P ( . . . DKIα . . . ) ω

Moreover, its Euler–Lagrange equations admit G as a symmetry
group, and hence can also be expressed in terms of the differen-
tial invariants:

E(L) ≃ F ( . . . DKIα . . . ) = 0

Main Problem: Construct F directly from P .

⋆ ⋆ The general formula is a now known and a consequence of
the structure of the differential invariant algebra and
the corresponding invariant variational bicomplex.



=⇒ I. Kogan–PJO



The Algebra of Differential Invariants

⋆ ⋆ Moving frames furnish constructive

algorithms for determining the full

structure of the differential invariant

algebra I(G) !



EquivariantMoving Frames

Definition. An nth order moving frame is a G-equivariant map

ρ(n) : V n ⊂ Jn −→ G

• Élie Cartan
• Guggenheimer, Griffiths, Green, Jensen
• Fels, Kogan, Pohjanpelto, PJO

Equivariance:

ρ(g(n) · z(n)) =

{
g · ρ(z(n)) left moving frame

ρ(z(n)) · g−1 right moving frame

Note: ρleft(z
(n)) = ρright(z

(n))−1



Theorem. A moving frame exists in a neighborhood of a jet
z(n) ∈ Jn if and only if G acts freely and regularly near z(n).

• free — the only group element g ∈ G which fixes one point
z(n) ∈ Jn is the identity: g(n) · z(n) = z(n) ⇐⇒ g = e.

• locally free — the orbits have the same dimension as G.

• regular — all orbits have the same dimension and intersect
sufficiently small coordinate charts only once ( ̸≈ irrational
flow on the torus)



Geometric Construction

Jn z(n)

Oz(n)



Geometric Construction

Jn z(n)

Oz(n)

Kn

k(n)

Normalization = choice of cross-section to the group orbits



Geometric Construction

Jn z(n)

Oz(n)

Kn

k(n)

g = ρleft(z
(n))

Normalization = choice of cross-section to the group orbits



Geometric Construction

Jn z(n)

Oz(n)

Kn

k(n)

g = ρright(z
(n))

Normalization = choice of cross-section to the group orbits



Algebraic Construction

1. Write out the explicit formulas for the
prolonged group action:

w(n)(g, z(n)) = g(n) · z(n)

=⇒ Implicit differentiation

2. From the components of w(n), choose r = dimG
normalization equations to define the cross-section:

w1(g, z
(n)) = c1 . . . wr(g, z

(n)) = cr



3. Solve the normalization equations for the group parameters
g = (g1, . . . , gr):

g = ρ(z(n)) = ρ(x, u(n))

The solution is the right moving frame.

4. Substitute the moving frame formulas

g = ρ(z(n)) = ρ(x, u(n))

for the group parameters into the un-normalized components
of w(n) to produce a complete system of functionally inde-
pendent differential invariants of order ≤ n:

Ik(x, u
(n)) = wk(ρ(z

(n)), z(n))), k = r + 1, . . . , dim Jn



Example: Euclidean Plane Curves

Rigid motions (translations and rotations):

G = SE(2) acting on C ⊂ M = R
2

Assume the curve is (locally) a graph:

C = {u = f(x)}

0. Write out the group transformations

y = x cosφ− u sinφ+ a

v = x cosφ+ u sinφ+ b

⎫
⎬

⎭ w = Rz + c



1. Prolong to Jn via implicit differentiation

y = x cosφ− u sinφ+ a v = x sinφ+ u cosφ+ b

vy =
sinφ+ ux cosφ

cosφ− ux sinφ
vyy =

uxx

(cosφ− ux sinφ)
3

vyyy =
(cosφ − ux sinφ )uxxx − 3u2

xx sinφ

(cosφ − ux sinφ )5
...

2. Choose a cross-section, or, equivalently a set of
r = dimG = 3 normalization equations:

y = 0 v = 0 vy = 0

3. Solve the normalization equations for the group parameters:

φ = − tan−1 ux a = −
x+ uux√
1 + u2

x

b =
xux − u
√
1 + u2

x

The result is the right moving frame ρ : J1 −→ SE(2)



4. Substitute into the moving frame formulas for the
group parameters into the remaining prolonged transformation
formulae to produce the basic differential invariants:

vyy #−→ κ =
uxx

(1 + u2
x)

3/2

vyyy #−→
dκ

ds
=

(1 + u2
x)uxxx − 3uxu

2
xx

(1 + u2
x)

3

vyyyy #−→
d2κ

ds2
+ 3κ3 = · · ·

=⇒ recurrence formulae

Theorem. All differential invariants are functions of the
derivatives of curvature with respect to arc length:

κ
dκ

ds

d2κ

ds2
· · ·



5. The invariant differential operators and invariant differential
forms are also obtained by substituting the moving frame
formulas for the group parameters:

Invariant one-form — arc length

dy = (cosφ− ux sinφ) dx #−→ ds =
√
1 + u2

x dx

Invariant differential operator — arc length derivative

d

dy
=

1

cosφ− ux sinφ

d

dx
#−→

d

ds
=

1
√
1 + u2

x

d

dx



Invariantization

The process of replacing group parameters in transformed ob-
jects by their moving frame formulae is known as invariantization:

ι :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Functions −→ Invariants

Differential

Forms
−→

Invariant Differential

Forms

Differential

Operators
−→

Invariant Differential

Operators

Variational

Problems
−→

Invariant Variational

Problems
... ...

• Invariantization defines an (exterior) algebra morphism.

• Invariantization does not affect invariants: ι(I) = I



The Fundamental Differential Invariants

Invariantized jet coordinate functions:

Hi(x, u(n)) = ι(xi) IαK(x, u(l)) = ι(uα
K)

• The constant differential invariants, as defined by the cross-

section coordiantes, are known as the

phantom invariants.

• The remaining non-constant differential invariants are

the basic invariants and form a complete system of

functionally independent differential invariants for the

prolonged group action.



Invariantization of general differential functions:

ι [F ( . . . xi . . . uα
J . . . ) ] = F ( . . . Hi . . . IαJ . . . )

The Replacement Theorem: (Rewrite Rule)

If J is a differential invariant, then ι(J) = J .

J( . . . xi . . . uα
J . . . ) = J( . . . Hi . . . IαJ . . . )

Key fact: Invariantization and differentiation do not commute:

ι(DiF ) ̸= Diι(F )



Infinitesimal Generators

Infinitesimal generators of action of G on M :

vκ =
p∑

i=1

ξiκ(x, u)
∂

∂xi
+

q∑

α=1

ϕα
κ(x, u)

∂

∂uα
κ = 1, . . . , r

Prolonged infinitesimal generators on Jn:

v(n)
κ = vκ +

q∑

α=1

n∑

j=#J=1

ϕα
J,κ(x, u

(j))
∂

∂uα
J

Prolongation formula:

ϕα
J,κ = DK

(

ϕα
κ −

p∑

i=1

uα
i ξiκ

)

+
p∑

i=1

uα
J,i ξ

i
κ

D1, . . . , Dp — total derivatives



Recurrence Formulae

Dj ι(F ) = ι(DjF ) +
r∑

κ=1

Rκ
j ι(v(n)

κ (F ))

ωi = ι(dxi) — invariant coframe

Di = ι(Dxi) — dual invariant differential operators

v
(n)
1 , . . . v(n)

r ∈ g — prolonged infinitesimal generators

Rκ
j — Maurer–Cartan invariants



Recurrence Formulae

Dj ι(F ) = ι(DjF ) +
r∑

κ=1

Rκ
j ι(v(n)

κ (F ))

♠ If ι(F ) = c is a phantom differential invariant, then the left hand side
of the recurrence formula is zero. The collection of all such phantom
recurrence formulae form a linear algebraic system of equations that can
be uniquely solved for the Maurer–Cartan invariants Rκ

j !

♥ Once the Maurer–Cartan invariants are replaced by their
explicit formulae, the induced recurrence relations completely determine
the structure of the differential invariant algebra I(G)!



The Universal Recurrence Formula

If Ω is any differential form on Jn:

d ι(Ω) = ι(dΩ) +
r∑

κ=1

γκ ∧ ι[vκ(Ω)]

Invariantized Maurer–Cartan forms:

γκ = ρ∗(µκ) ≡
p∑

j=1

Rκ
j ω

j

=⇒ The Invariant Variational Bicomplex



The Commutator Invariants

By the Universal Recurrence Formula:

dωi = d[ι(dxi)] = ι(d2xi) +
r∑

κ=1

γκ ∧ ι[vκ(dx
i)]

= −
∑

j<k

Y i
jk ω

j ∧ ωk + · · ·

[Dj,Dk ] =
p∑

i=1

Y i
jk Di



TheDifferential Invariant Algebra

Thus, remarkably, the structure of I(G) can be determined
without knowing the explicit formulae for either the moving
frame, or the differential invariants, or the invariant differ-
ential operators!

The only required ingredients are the specification of the cross-
section, and the standard formulae for the prolonged
infinitesimal generators.

Theorem. If G acts transitively on M , or if the infinitesimal
generator coefficients depend rationally in the coordinates,
then all recurrence formulae are rational in the basic
differential invariants and so I(G) is a rational, non-
commutative differential algebra.



Euclidean Surfaces

Euclidean group SE(3) = SO(3)! R3 acts on surfaces S ⊂ R3.

For simplicity, we assume the surface is (locally) the graph of a function

z = u(x, y)

Infinitesimal generators:

v1 = −y∂x + x∂y, v2 = −u∂x + x∂u, v3 = −u∂y + y∂u,

w1 = ∂x, w2 = ∂y, w3 = ∂u.

• The translations w1,w2,w3 will be ignored, as they play no role in the
higher order recurrence formulae.



Cross-section (Darboux frame):

x = y = u = ux = uy = uxy = 0.

Phantom differential invariants:

ι(x) = ι(y) = ι(u) = ι(ux) = ι(uy) = ι(uxy) = 0

Principal curvatures
κ1 = ι(uxx), κ2 = ι(uyy)

Mean curvature and Gauss curvature:

H = 1
2(κ1 + κ2), K = κ1κ2

Higher order differential invariants — invariantized jet coordinates:

Ijk = ι(ujk) where ujk =
∂j+ku

∂xj∂yk

⋆ ⋆ Nondegeneracy condition: non-umbilic point κ1 ̸= κ2.



The Algebra of Euclidean Differential Invariants

Principal curvatures:
κ1 = ι(uxx), κ2 = ι(uyy)

Mean curvature and Gauss curvature:

H = 1
2(κ1 + κ2), K = κ1κ2

Invariant differentiation operators:

D1 = ι(Dx), D2 = ι(Dy)

=⇒ Differentiation with respect to the diagonalizing Darboux frame.

The recurrence formulae enable one to express the higher order differential
invariants in terms of the principal curvatures, or, equivalently, the mean and
Gauss curvatures, and their invariant derivatives:

Ijk = ι(ujk) = Φ̃jk(κ1,κ2,D1κ1,D2κ1,D1κ2,D2κ2,D
2
1κ1, . . . )

= Φjk(H,K,D1H,D2H,D1K,D2K,D2
1H, . . . )



Recurrence Formulae

ι(Diujk) = Di ι(ujk)−
3∑

κ=1

Rκ
i ι[ϕ

jk
κ (x, y, u(j+k)) ], j + k ≥ 1

Ijk = ι(ujk) — normalized differential invariants

Rκ
i — Maurer–Cartan invariants

ϕjk
κ (0, 0, I(j+k)) = ι[ϕjk

κ (x, y, u(j+k)) ]

— invariantized prolonged infinitesimal generator coefficients.

Ij+1,k = D1Ijk −
3∑

κ=1

ϕjk
κ (0, 0, I(j+k))Rκ

1

Ij,k+1 = D1Ijk −
3∑

κ=1

ϕjk
κ (0, 0, I(j+k))Rκ

2



Prolonged infinitesimal generators:

pr v1 = −y∂x + x∂y − uy∂ux
+ ux∂uy

− 2uxy∂uxx
+ (uxx − uyy)∂uxy

− 2uxy∂uyy
+ · · · ,

pr v2 = −u∂x + x∂u + (1 + u2
x)∂ux

+ uxuy∂uy

+ 3uxuxx∂uxx
+ (uyuxx + 2uxuxy)∂uxy

+ (2uyuxy + uxuyy)∂uyy
+ · · · ,

pr v3 = −u∂y + y∂u + uxuy∂ux
+ (1 + u2

y)∂uy

+ (uyuxx + 2uxuxy)∂uxx
+ (2uyuxy + uxuyy)∂uxy

+ 3uyuyy∂uyy
+ · · · .

Normalized differential invariants: Ijk = ι(ujk)

Phantom differential invariants: I00 = I10 = I01 = I11 = 0

Principal curvatures: I20 = κ1 I02 = κ2



Phantom recurrence formulae:
κ1 = I20 = D1I10 − R2

1 = −R2
1,

0 = I11 = D1I01 − R3
1 = −R3

1,

I21 = D1I11 − (κ1 − κ2)R
1
1 = −(κ1 − κ2)R

1
1,

0 = I11 = D2I10 − R2
2 = −R2

2,

κ2 = I02 = D2I01 − R3
2 = −R3

2,

I12 = D2I11 − (κ1 − κ2)R
1
2 = −(κ1 − κ2)R

1
2.

Maurer–Cartan invariants:
R1

1 = −Y1, R2
1 = −κ1, R3

1 = 0,

R2
1 = −Y2, R2

2 = 0, R2
3 = −κ2.

Commutator invariants:

Y1 =
I21

κ1 − κ2

=
D1κ2

κ1 − κ2

Y2 =
I12

κ1 − κ2

=
D2κ1

κ2 − κ1

[D1,D2 ] = D1D2 −D2D1 = Y2D1 − Y1 D2,



Third order recurrence relations:

I30 = D1κ1 = κ1,1, I21 = D2κ1 = κ1,2, I12 = D1κ2 = κ2,1, I03 = D2κ2 = κ2,2,

Fourth order recurrence relations:

I40 = κ1,11 −
3κ2

1,2

κ1 − κ2

+ 3κ3
1

I31 = κ1,12 −
3κ1,2κ2,1

κ1 − κ2

= κ1,21 +
κ1,1κ1,2 − 2κ1,2κ2,1

κ1 − κ2

I22 = κ1,22 +
κ1,1κ2,1 − 2κ2

2,1

κ1 − κ2

+ κ1κ
2
2 = κ2,11 −

κ1,2κ2,2 − 2κ2
1,2

κ1 − κ2

+ κ2
1κ2

I13 = κ2,21 +
3κ1,2κ2,1

κ1 − κ2

= κ2,12 −
κ2,1κ2,2 − 2κ1,2κ2,1

κ1 − κ2

I04 = κ2,22 +
3κ2

2,1

κ1 − κ2

+ 3κ3
2

⋆ The two expressions for I31 and I13 follow from the commutator formula.



Fourth order recurrence relations

I40 = κ1,11 −
3κ2

1,2

κ1 − κ2

+ 3κ3
1

I31 = κ1,12 −
3κ1,2κ2,1

κ1 − κ2

= κ1,21 +
κ1,1κ1,2 − 2κ1,2κ2,1

κ1 − κ2

I22 = κ1,22 +
κ1,1κ2,1 − 2κ2

2,1

κ1 − κ2

+ κ1κ
2
2 = κ2,11 −

κ1,2κ2,2 − 2κ2
1,2

κ1 − κ2

+ κ2
1κ2

I13 = κ2,21 +
3κ1,2κ2,1

κ1 − κ2

= κ2,12 −
κ2,1κ2,2 − 2κ1,2κ2,1

κ1 − κ2

I04 = κ2,22 +
3κ2

2,1

κ1 − κ2

+ 3κ3
2

⋆ ⋆ The two expressions for I22 imply the Codazzi syzygy

κ1,22 − κ2,11 +
κ1,1κ2,1 + κ1,2κ2,2 − 2κ2

2,1 − 2κ2
1,2

κ1 − κ2

− κ1κ2 (κ1 − κ2) = 0

which can be written compactly as

K = κ1κ2 = − (D1 + Y1)Y1 − (D2 + Y2)Y2

=⇒ Gauss’ Theorema Egregium



The Commutator Trick

K = κ1κ2 = − (D1 + Y1)Y1 − (D2 + Y2)Y2

To determine the commutator invariants:

D1D2H −D2D1H = Y2 D1H − Y1D2H

D1D2DJH −D2D1DJH = Y2 D1DJH − Y1D2DJH
(∗)

Non-degeneracy condition:

det

(
D1H D2H

D1DJH D2DJH

)

̸= 0,

Solve (∗) for Y1, Y2 in terms of derivatives of H, producing a universal formula

K = Ψ(H,D1H,D2H, . . . )

for the Gauss curvature as a rational function of the mean curvature and its
invariant derivatives!



Definition. A surface S ⊂ R3 is mean curvature degenerate if, near any
non-umbilic point p0 ∈ S, there exist scalar functions F1(t), F2(t) such that

D1H = F1(H), D2H = F2(H).

• surfaces with symmetry: rotation, helical;

• minimal surfaces;

• constant mean curvature surfaces;

• ???

Theorem. If a surface is mean curvature non-degenerate
then the algebra of Euclidean differential invariants
is generated entirely by the mean curvature and its
successive invariant derivatives.



Equi-affineSurfaces

M = R3 G = SA(3) = SL(3)! R3 dimG = 11.

g · z = Az + b, detA = 1, z =

⎛

⎜⎝
x
y
u

⎞

⎟⎠ ∈ R
3.

Surfaces S ⊂ M = R3:
u = f(x, y)



Hyperbolic case

uxxuyy − u2
xy < 0

Cross-section:

x = y = u = ux = uy = uxy = 0, uxx = 1, uyy = −1,

uxyy = uxxx, uxxy = uyyy = 0.

Power series normal form:

u(x, y) = 1
2(x

2 − y2) + 1
6 c(x

3 + 3xy2) + · · ·

=⇒ Nonsingular : c ̸= 0.



Invariantization — differential invariants: Ijk = ι(ujk)

Phantom differential invariants:

ι(x) = ι(y) = ι(u) = ι(ux) = ι(uy) = ι(uxy) = ι(uxxy) = ι(uyyy) = 0,

ι(uxx) = 1, ι(uyy) = −1, ι(uxxx)− ι(uxyy) = 0.

Pick invariant:
P = ι(uxxx) = ι(uxyy).

Basic differential invariants of order 4:

Q0 = ι(uxxxx), Q1 = ι(uxxxy), Q2 = ι(uxxyy),

Q3 = ι(uxyyy), Q4 = ι(uyyyy),

Invariant differential operators:

D1 = ι(Dx), D2 = ι(Dy).



• Since the moving frame has order 3, one can generate all higher order
differential invariants from the basic differential invariants of order
≤ 4.

• This is a consequence of a general theorem, that follows directly from the
recurrence formulae.

• Thus, to prove that the Pick invariant generates I(G), it suffices to gener-
ate Q0, . . . , Q4 from P by invariant differentiation.



Infinitesimal generators:

v1 = x ∂x − u ∂u, v2 = y ∂y − u ∂u,

v3 = y ∂x, v4 = u ∂x, v5 = x ∂y,

v6 = u ∂y, v7 = x ∂u, v8 = y ∂u,

w1 = ∂x, w2 = ∂y, w3 = ∂u,

• The translations will be ignored, as they play no role in the higher order
recurrence formulae.



Recurrence formulae

Diι(ujk) = ι(Diujk) +
8∑

κ=1

ϕjk
κ (x, y, u(j+k))Rκ

i , j + k ≥ 1

D1Ijk = Ij+1,k +
8∑

κ=1

ϕjk
κ (0, 0, I(j+k))Rκ

1

D2Ijk = Ij,k+1 +
8∑

κ=1

ϕjk
κ (0, 0, I(j+k))Rκ

2

ϕjk
κ (0, 0, I(j+k)) = ι[ϕjk

κ (x, y, u(j+k)) ] — invariantized

prolonged infinitesimal generator coefficients

Rκ
i — Maurer–Cartan invariants



Phantom recurrence formulae:

0 = D1I10 = 1 +R7
1,

0 = D1I01 = R8
1,

0 = D1I20 = I30 − 3R1
1 −R2

1,

0 = D1I11 = −R3
1 +R5

1,

0 = D1I02 = I12 +R1
1 + 3R2

1,

0 = D1I21 = I31 − I30R
3
1 − 2I30R

5
1 + R6

1,

0 = D1I03 = I13 − 3I30R
3
2 − 3R6

2,

0 = D2I10 = R7
2,

0 = D2I01 = −1 + R8
2,

0 = D2I20 = −3R1
2 −R2

2,

0 = D2I11 = I30 −R3
2 +R5

2,

0 = D2I02 = R1
2 + 3R2

2,

0 = D2I21 = I22 − I30R
3
2 − 2I30R

5
2 +R6

2,

0 = D2I03 = I04 − 3I30R
3
2 − 3R6

2.



Maurer–Cartan invariants:

R1 =

(
1
2 P,−

1
2 P,

3Q1 +Q3

12P
, 14Q0 −

1
4Q2 −

1
2 P

2,
3Q1 +Q3

12P
,− 1

4Q1 +
1
4Q3,−1, 0

)

R2 =

(

0, 0,
3Q2 +Q4

12P
+ 1

2 P,
1
4Q1 −

1
4Q3,

3Q2 +Q4

12P
− 1

2 P,−
1
4Q2 +

1
4Q4 −

1
2 P

2, 0, 1

)

Fourth order invariants:

P1 = D1P = 1
4Q0 +

3
4Q2, P2 = D2P = 1

4Q1 +
3
4Q3.

Commutator:

D3 = [D1,D2 ] = D1D2 −D2D1 = Y1 D1 + Y2D2,

Commutator invariants:

Y1 = R1
2 −R3

1 = −
3Q1 +Q3

12P
, Y2 = R5

2 − R2
1 =

3Q2 +Q4

12P
.



Another fourth order invariant:

P3 = D3P = D1D2P −D2D1P = Y1P1 + Y2P2. (∗)

Nondegeneracy condition: If

det

(
P1 P2

D1Pj D2Pj

)

̸= 0 for j = 1, 2, or 3,

we can solve (∗) and
D3Pj = Y1D1Pj + Y2D2Pj

for the fourth order commutator invariants:

Y1 = −
3Q1 +Q3

12P
, Y2 =

3Q2 +Q4

12P
.



So far, we have constructed four combinations of the fourth order differential
invariants

S1 = Q0 + 3Q2, S2 = Q1 + 3Q3,

S3 = 3Q1 +Q3, S4 = 3Q2 +Q4.

as rational functions of the invariant derivatives of the Pick invariant. To
obtain the final fourth order differential invariant:

12P (D1S4 −D2S3 ) = 48P 2Q0 − 30P 2S1 + 18P 2S4

− 3S2S3 − S2
3 + 3S1S4 + S2

4 .

⋆ ⋆ ⋆ This completes the proof ⋆ ⋆ ⋆



Minimal Generating Invariants

A set of differential invariants is a generating system if all other differen-
tial invariants can be written in terms of them and their invariant derivatives.

Euclidean curves C ⊂ R3: curvature κ and torsion τ

Equi–affine curves C ⊂ R3: affine curvature κ and torsion τ

Euclidean surfaces S ⊂ R3: mean curvature H

Equi–affine surfaces S ⊂ R3: Pick invariant P .

Conformal surfaces S ⊂ R3: third order invariant J3.

Projective surfaces S ⊂ R3: fourth order invariant K4.

=⇒ (with E. Hubert)



Example. G: (x, y, u) #−→ (x+ a, y + b, u+ P (x, y) )

a, b ∈ R, P is an arbitrary polynomial of degree ≤ n

Differential invariants:

ui,j =
∂i+ju

∂xi∂yj
i+ j ≥ n+ 1

Invariant differential operators:

D1 = Dx, D2 = Dy.

Minimal generating set:

ui,j, i+ j = n+ 1

♣ For submanifolds of dimension p ≥ 2, the number of generating differential
invariants can be arbitrarily large.

♠ In general, finding a minimal generating set appears to be very difficult.
(No known bound on order of syzygies.)



General Issues

The equivariant moving frame calculus is
completely constructive, and can be applied to

all finite-dimensional Lie transformation groups

most infinite-dimensional Lie pseudo-groups
arising in applications (eventually locally freely acting)

Fully determines the recurrence relations and hence, in principle,
all identities for the algebra of differential invariants I(G).

⋆ ⋆ Structure theory for differential invariant algebras?

In particular, minimal generating sets require a syzygy bound:

K = Ψ(H, . . . ,D(n)H) n ≤ N ???



T HANK YOU !


