Algebras of

 Differential Invariants

 Differential Invariants}

Peter J. Olver

University of Minnesota

http://www.math.umn.edu/ ~olver

Examples of Differential Invariants

Euclidean Group on \mathbb{R}^{3}

$$
G=\mathrm{SE}(3)=\mathrm{SO}(3) \ltimes \mathbb{R}^{3}
$$

$$
\Longrightarrow \text { group of rigid motions }
$$

$$
z \longmapsto R z+b \quad R \in \mathrm{SO}(3)
$$

- Induced action on curves and surfaces.

Euclidean Curves $\quad C \subset \mathbb{R}^{3}$

- κ - curvature: order $=2$
- $\tau \quad$ - torsion: order $=3$

Euclidean Curves $\quad C \subset \mathbb{R}^{3}$

- κ - curvature: order $=2$
- τ - torsion: order $=3$
- $\kappa_{s}, \tau_{s}, \kappa_{s s}, \ldots$ derivatives w.r.t. arc length $d s$

Euclidean Curves $\quad C \subset \mathbb{R}^{3}$

- $\kappa \quad$ - curvature: order $=2$
- $\tau \quad$ - torsion: \quad order $=3$
- $\kappa_{s}, \tau_{s}, \kappa_{s s}, \ldots-\quad$ derivatives w.r.t. arc length $d s$

Theorem. Every Euclidean differential invariant of a space curve $C \subset \mathbb{R}^{3}$ can be written

$$
I=H\left(\kappa, \tau, \kappa_{s}, \tau_{s}, \kappa_{s s}, \ldots\right)
$$

Euclidean Curves $\quad C \subset \mathbb{R}^{3}$

- $\kappa \quad$ - curvature: order $=2$
- $\tau \quad$ - torsion: \quad order $=3$
- $\kappa_{s}, \tau_{s}, \kappa_{s s}, \ldots-\quad$ derivatives w.r.t. arc length $d s$

Theorem. Every Euclidean differential invariant of a space curve $C \subset \mathbb{R}^{3}$ can be written

$$
I=H\left(\kappa, \tau, \kappa_{s}, \tau_{s}, \kappa_{s s}, \ldots\right)
$$

Thus, κ and τ generate the differential invariants of space curves under the Euclidean group.

Euclidean Surfaces $\quad S \subset \mathbb{R}^{3}$

Euclidean Surfaces $\quad S \subset \mathbb{R}^{3}$

- $H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right) \quad$ - mean curvature: order $=2$
- $K=\kappa_{1} \kappa_{2}$
- Gauss curvature: order $=2$

Euclidean Surfaces $\quad S \subset \mathbb{R}^{3}$

- $H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right) \quad$ mean curvature: order $=2$
- $K=\kappa_{1} \kappa_{2} \quad-\quad$ Gauss curvature: order $=2$
- $\mathcal{D}_{1} H, \mathcal{D}_{2} H, \mathcal{D}_{1} K, \mathcal{D}_{2} K, \mathcal{D}_{1}^{2} H, \ldots$ derivatives with respect to the equivariant Frenet frame on S

Euclidean Surfaces $\quad S \subset \mathbb{R}^{3}$

- $H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right) \quad$ - mean curvature: order $=2$
- $K=\kappa_{1} \kappa_{2} \quad-\quad$ Gauss curvature: order $=2$
- $\mathcal{D}_{1} H, \mathcal{D}_{2} H, \mathcal{D}_{1} K, \mathcal{D}_{2} K, \mathcal{D}_{1}^{2} H, \ldots \quad$ derivatives with respect to the equivariant Frenet frame on S

Theorem. Every Euclidean differential invariant of a non-umbilic surface $S \subset \mathbb{R}^{3}$ can be written

$$
I=\Phi\left(H, K, \mathcal{D}_{1} H, \mathcal{D}_{2} H, \mathcal{D}_{1} K, \mathcal{D}_{2} K, \mathcal{D}_{1}^{2} H, \ldots\right)
$$

Euclidean Surfaces $\quad S \subset \mathbb{R}^{3}$

- $H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right) \quad-\quad$ mean curvature: order $=2$
- $K=\kappa_{1} \kappa_{2} \quad-\quad$ Gauss curvature: order $=2$
- $\mathcal{D}_{1} H, \mathcal{D}_{2} H, \mathcal{D}_{1} K, \mathcal{D}_{2} K, \mathcal{D}_{1}^{2} H, \ldots \quad$ derivatives with respect to the equivariant Frenet frame on S

Theorem. Every Euclidean differential invariant of a non-umbilic surface $S \subset \mathbb{R}^{3}$ can be written

$$
I=\Phi\left(H, K, \mathcal{D}_{1} H, \mathcal{D}_{2} H, \mathcal{D}_{1} K, \mathcal{D}_{2} K, \mathcal{D}_{1}^{2} H, \ldots\right)
$$

Thus, H, K generate the differential invariant algebra of (generic) Euclidean surfaces.

Equi-affine Group on \mathbb{R}^{3}

$$
\begin{aligned}
G=\mathrm{SA}(3)=\mathrm{SL}(3) & \ltimes \mathbb{R}^{3} \quad-\quad \text { volume preserving } \\
z & \longmapsto A z+b, \quad \operatorname{det} A=1
\end{aligned}
$$

Equi-affine Group on \mathbb{R}^{3}

$$
\begin{array}{r}
G=\mathrm{SA}(3)=\mathrm{SL}(3) \ltimes \mathbb{R}^{3}-\quad \text { volume preserving } \\
z
\end{array}
$$

Curves in \mathbb{R}^{3} :

- $\kappa \quad$ - equi-affine curvature: order $=4$
- τ - equi-affine torsion: order $=5$
- $\kappa_{s}, \tau_{s}, \kappa_{s s}, \ldots$ - diff. w.r.t. equi-affine arc length

Equi-affine Group on \mathbb{R}^{3}

$G=\mathrm{SA}(3)=\mathrm{SL}(3) \ltimes \mathbb{R}^{3} \quad-\quad$ volume preserving

$$
z \quad \longmapsto \quad A z+b, \quad \operatorname{det} A=1
$$

Curves in \mathbb{R}^{3} :

- $\kappa \quad$ - equi-affine curvature: order $=4$
- τ - equi-affine torsion: order $=5$
- $\kappa_{s}, \tau_{s}, \kappa_{s s}, \ldots$ diff. w.r.t. equi-affine arc length

Surfaces in \mathbb{R}^{3} :

- P - Pick invariant: order $=3$
- $Q_{0}, Q_{1}, \ldots, Q_{4} \quad$ fourth order invariants
- $\mathcal{D}_{1} P, \mathcal{D}_{2} P, \mathcal{D}_{1} Q_{\nu}, \ldots$ diff. w.r.t. the equi-affine frame

General Problems

Determine the structure of the algebra of differential invariants.
generators, syzygies, commutators, etc.

General Problems

Determine the structure of the algebra of differential invariants.
generators, syzygies, commutators, etc.

Find a minimal system of generating differential invariants.

Curves

Theorem. Let G be an ordinary* Lie group acting on the m-dimensional manifold M. Then, locally, there exist $m-1$ generating differential invariants $\kappa_{1}, \ldots, \kappa_{m-1}$. Every other differential invariant can be written as a function of the generating differential invariants and their derivatives with respect to the G-invariant arc length element $d s$.
${ }^{\star}$ ordinary $=$ transitive + no pseudo-stabilization.

Curves

Theorem. Let G be an ordinary ${ }^{\star}$ Lie group acting on the m-dimensional manifold M. Then, locally, there exist $m-1$ generating differential invariants $\kappa_{1}, \ldots, \kappa_{m-1}$. Every other differential invariant can be written as a function of the generating differential invariants and their derivatives with respect to the G-invariant arc length element $d s$.

* ordinary $=$ transitive + no pseudo-stabilization.
$\Longrightarrow m=3 \quad$ curvature κ \& torsion τ

Equi-affine Surfaces

Theorem.

The algebra of equi-affine differential invariants for non-degenerate surfaces is generated by the Pick invariant through invariant differentiation.

Equi-affine Surfaces

Theorem.

The algebra of equi-affine differential invariants for non-degenerate surfaces is generated by the Pick invariant through invariant differentiation.

In particular:

$$
Q_{\nu}=\Phi_{\nu}\left(P, \mathcal{D}_{1} P, \mathcal{D}_{2} P, \ldots\right)
$$

Euclidean Surfaces

Theorem.

The algebra of Euclidean differential invariants for non-degenerate surfaces is generated by only the mean curvature through invariant differentiation.

Euclidean Surfaces

Theorem.

The algebra of Euclidean differential invariants for non-degenerate surfaces is generated by only the mean curvature through invariant differentiation.

In particular:

$$
K=\Phi\left(H, \mathcal{D}_{1} H, \mathcal{D}_{2} H, \ldots\right)
$$

Euclidean Proof

Commutation relation:

$$
\left[\mathcal{D}_{1}, \mathcal{D}_{2}\right]=\mathcal{D}_{1} \mathcal{D}_{2}-\mathcal{D}_{2} \mathcal{D}_{1}=Y_{2} \mathcal{D}_{1}-Y_{1} \mathcal{D}_{2}
$$

Euclidean Proof

Commutation relation:

$$
\left[\mathcal{D}_{1}, \mathcal{D}_{2}\right]=\mathcal{D}_{1} \mathcal{D}_{2}-\mathcal{D}_{2} \mathcal{D}_{1}=Y_{2} \mathcal{D}_{1}-Y_{1} \mathcal{D}_{2}
$$

Commutator invariants:

$$
Y_{1}=\frac{\mathcal{D}_{1} \kappa_{2}}{\kappa_{1}-\kappa_{2}} \quad Y_{2}=\frac{\mathcal{D}_{2} \kappa_{1}}{\kappa_{2}-\kappa_{1}}
$$

Euclidean Proof

Commutation relation:

$$
\left[\mathcal{D}_{1}, \mathcal{D}_{2}\right]=\mathcal{D}_{1} \mathcal{D}_{2}-\mathcal{D}_{2} \mathcal{D}_{1}=Y_{2} \mathcal{D}_{1}-Y_{1} \mathcal{D}_{2},
$$

Commutator invariants:

$$
Y_{1}=\frac{\mathcal{D}_{1} \kappa_{2}}{\kappa_{1}-\kappa_{2}} \quad Y_{2}=\frac{\mathcal{D}_{2} \kappa_{1}}{\kappa_{2}-\kappa_{1}}
$$

Codazzi relation:

$$
K=\kappa_{1} \kappa_{2}=-\left(\mathcal{D}_{1}+Y_{1}\right) Y_{1}-\left(\mathcal{D}_{2}+Y_{2}\right) Y_{2}
$$

Euclidean Proof

Commutation relation:

$$
\left[\mathcal{D}_{1}, \mathcal{D}_{2}\right]=\mathcal{D}_{1} \mathcal{D}_{2}-\mathcal{D}_{2} \mathcal{D}_{1}=Y_{2} \mathcal{D}_{1}-Y_{1} \mathcal{D}_{2},
$$

Commutator invariants:

$$
Y_{1}=\frac{\mathcal{D}_{1} \kappa_{2}}{\kappa_{1}-\kappa_{2}} \quad Y_{2}=\frac{\mathcal{D}_{2} \kappa_{1}}{\kappa_{2}-\kappa_{1}}
$$

Codazzi relation:

$$
K=\kappa_{1} \kappa_{2}=-\left(\mathcal{D}_{1}+Y_{1}\right) Y_{1}-\left(\mathcal{D}_{2}+Y_{2}\right) Y_{2}
$$

\Longrightarrow Gauss' Theorema Egregium

The Commutator Trick

$$
K=-\left(\mathcal{D}_{1}+Y_{1}\right) Y_{1}-\left(\mathcal{D}_{2}+Y_{2}\right) Y_{2}
$$

To determine the commutator invariants:

$$
\begin{align*}
\mathcal{D}_{1} \mathcal{D}_{2} H-\mathcal{D}_{2} \mathcal{D}_{1} H & =Y_{2} \mathcal{D}_{1} H-Y_{1} \mathcal{D}_{2} H \\
\mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{J} H-\mathcal{D}_{2} \mathcal{D}_{1} \mathcal{D}_{J} H & =Y_{2} \mathcal{D}_{1} \mathcal{D}_{J} H-Y_{1} \mathcal{D}_{2} \mathcal{D}_{J} H \tag{*}
\end{align*}
$$

The Commutator Trick

$$
K=-\left(\mathcal{D}_{1}+Y_{1}\right) Y_{1}-\left(\mathcal{D}_{2}+Y_{2}\right) Y_{2}
$$

To determine the commutator invariants:

$$
\begin{align*}
\mathcal{D}_{1} \mathcal{D}_{2} H-\mathcal{D}_{2} \mathcal{D}_{1} H & =Y_{2} \mathcal{D}_{1} H-Y_{1} \mathcal{D}_{2} H \\
\mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{J} H-\mathcal{D}_{2} \mathcal{D}_{1} \mathcal{D}_{J} H & =Y_{2} \mathcal{D}_{1} \mathcal{D}_{J} H-Y_{1} \mathcal{D}_{2} \mathcal{D}_{J} H \tag{*}
\end{align*}
$$

Non-degeneracy condition:

$$
\operatorname{det}\left(\begin{array}{cc}
\mathcal{D}_{1} H & \mathcal{D}_{2} H \\
\mathcal{D}_{1} \mathcal{D}_{J} H & \mathcal{D}_{2} \mathcal{D}_{J} H
\end{array}\right) \neq 0
$$

The Commutator Trick

$$
K=-\left(\mathcal{D}_{1}+Y_{1}\right) Y_{1}-\left(\mathcal{D}_{2}+Y_{2}\right) Y_{2}
$$

To determine the commutator invariants:

$$
\begin{align*}
\mathcal{D}_{1} \mathcal{D}_{2} H-\mathcal{D}_{2} \mathcal{D}_{1} H & =Y_{2} \mathcal{D}_{1} H-Y_{1} \mathcal{D}_{2} H \\
\mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{J} H-\mathcal{D}_{2} \mathcal{D}_{1} \mathcal{D}_{J} H & =Y_{2} \mathcal{D}_{1} \mathcal{D}_{J} H-Y_{1} \mathcal{D}_{2} \mathcal{D}_{J} H \tag{*}
\end{align*}
$$

Non-degeneracy condition:

$$
\operatorname{det}\left(\begin{array}{cc}
\mathcal{D}_{1} H & \mathcal{D}_{2} H \\
\mathcal{D}_{1} \mathcal{D}_{J} H & \mathcal{D}_{2} \mathcal{D}_{J} H
\end{array}\right) \neq 0
$$

Solve $(*)$ for Y_{1}, Y_{2} in terms of derivatives of H, producing a universal formula

$$
K=\Psi\left(H, \mathcal{D}_{1} H, \mathcal{D}_{2} H, \ldots, \mathcal{D}_{1} \mathcal{D}_{2}^{3} H, \mathcal{D}_{2}^{4} H\right)
$$

for the Gauss curvature as a rational function of the mean curvature and its invariant derivatives up to order 4!

Definition. A surface $S \subset \mathbb{R}^{3}$ is mean curvature degenerate if, near any non-umbilic point $p_{0} \in S$, there exist scalar functions $F_{1}(t), F_{2}(t)$ such that

$$
\mathcal{D}_{1} H=F_{1}(H), \quad \mathcal{D}_{2} H=F_{2}(H)
$$

Definition. A surface $S \subset \mathbb{R}^{3}$ is mean curvature degenerate if, near any non-umbilic point $p_{0} \in S$, there exist scalar functions $F_{1}(t), F_{2}(t)$ such that

$$
\mathcal{D}_{1} H=F_{1}(H), \quad \mathcal{D}_{2} H=F_{2}(H) .
$$

- surfaces with symmetry: rotation, helical;
- minimal surfaces;
- constant mean curvature surfaces;
- ???

Definition. A surface $S \subset \mathbb{R}^{3}$ is mean curvature degenerate if, near any non-umbilic point $p_{0} \in S$, there exist scalar functions $F_{1}(t), F_{2}(t)$ such that

$$
\mathcal{D}_{1} H=F_{1}(H), \quad \mathcal{D}_{2} H=F_{2}(H)
$$

- surfaces with symmetry: rotation, helical;
- minimal surfaces;
- constant mean curvature surfaces;
- ???

Theorem. If a surface is mean curvature non-degenerate then the algebra of Euclidean differential invariants is generated entirely by the mean curvature and its successive invariant derivatives.

Further Results

For suitably non-degenerate surfaces $S \subset \mathbb{R}^{3}$:

Further Results

For suitably non-degenerate surfaces $S \subset \mathbb{R}^{3}$:

Theorem. $\quad G=\operatorname{SO}(4,2)$
The algebra of conformal differential invariants is generated by a single third order differential invariant.

Further Results

For suitably non-degenerate surfaces $S \subset \mathbb{R}^{3}$:

Theorem. $\quad G=\operatorname{SO}(4,2)$

The algebra of conformal differential invariants is generated by a single third order differential invariant.

Theorem. $\quad G=\operatorname{PSL}(4)$

The algebra of projective differential invariants is generated by a single fourth order differential invariant.

Example. $\quad G:(x, y, u) \longmapsto(x+a, y+b, u+P(x, y))$

$$
a, b \in \mathbb{R}, \quad P \text { is an arbitrary polynomial of degree } \leq n
$$

Differential invariants:

$$
u_{i, j}=\frac{\partial^{i+j} u}{\partial x^{i} \partial y^{j}} \quad i+j \geq n+1
$$

Invariant differential operators:

$$
\mathcal{D}_{1}=D_{x}, \quad \mathcal{D}_{2}=D_{y}
$$

Minimal generating set:

$$
u_{i, j}, \quad i+j=n+1
$$

© For submanifolds of dimension $p \geq 2$, the number of generating differential invariants can be arbitrarily large.

Equivariant Moving Frames

$$
\begin{aligned}
& M-m \text {-dimensional manifold } \\
& \begin{aligned}
& \mathrm{J}^{n}= \mathrm{J}^{n}(M, p) — n^{\text {th }} \text { order jet space for } \\
& p \text {-dimensional submanifolds } S \subset M \\
& z^{(n)}=\left(x, u^{(n)}\right)=\left(\ldots x^{i} \ldots u_{J}^{\alpha} \ldots\right) \\
& \text { local coordinates on } \mathrm{J}^{n} \text { viewing } S=\{u=f(x)\}
\end{aligned}
\end{aligned}
$$

$G \quad$ - transformation group acting on M
$G^{(n)} \quad$ - prolonged action on the submanifold jet space J^{n}

Differential Invariants

Differential invariant
$I\left(g^{(n)} \cdot z^{(n)}\right)=I\left(z^{(n)}\right)$
$I: U \subset \mathrm{~J}^{n} \rightarrow \mathbb{R}$
for all $\quad z^{(n)} \in U=\operatorname{dom} I$

Differential Invariants

Differential invariant $\quad I: U \subset \mathrm{~J}^{n} \rightarrow \mathbb{R}$
$I\left(g^{(n)} \cdot z^{(n)}\right)=I\left(z^{(n)}\right) \quad$ for all $\quad z^{(n)} \in U=\operatorname{dom} I$

Invariant differential operators:

$$
\mathcal{D}_{1}, \ldots, \mathcal{D}_{p} \quad p=\operatorname{dim} S=\# \text { indep. vars. }
$$

* If I is a differential invariant, so is $\mathcal{D}_{j} I$.

Differential invariant

$$
I\left(g^{(n)} \cdot z^{(n)}\right)=I\left(z^{(n)}\right) \quad \text { for all } \quad z^{(n)} \in U=\operatorname{dom} I
$$

Invariant differential operators:

$$
\mathcal{D}_{1}, \ldots, \mathcal{D}_{p} \quad p=\operatorname{dim} S=\# \text { indep. vars } .
$$

* If I is a differential invariant, so is $\mathcal{D}_{j} I$.
$I(G)$ - the algebra (sheaf) of differential invariants

The Basis Theorem

Theorem. The differential invariant algebra $\mathcal{I}(G)$ is locally generated by a finite number of differential invariants

$$
I_{1}, \ldots, I_{\ell}
$$

and $p=\operatorname{dim} S$ invariant differential operators

$$
\mathcal{D}_{1}, \ldots, \mathcal{D}_{p}
$$

meaning that every differential invariant can be locally expressed as a function of the generating invariants and their invariant derivatives:

$$
\mathcal{D}_{J} I_{\kappa}=\mathcal{D}_{j_{1}} \mathcal{D}_{j_{2}} \cdots \mathcal{D}_{j_{n}} I_{\kappa} .
$$

\Longrightarrow Lie groups: Lie, Ovsiannikov
\Longrightarrow Lie pseudo-groups: Tresse, Kumpera,

Key Issues

- Minimal basis of generating invariants: I_{1}, \ldots, I_{ℓ}

Key Issues

- Minimal basis of generating invariants: I_{1}, \ldots, I_{ℓ}
- Commutation formulae for the invariant differential operators:

$$
\left[\mathcal{D}_{j}, \mathcal{D}_{k}\right]=\sum_{i=1}^{p} Y_{j k}^{i} \mathcal{D}_{i}
$$

\Longrightarrow Non-commutative differential algebra

Key Issues

- Minimal basis of generating invariants: I_{1}, \ldots, I_{ℓ}
- Commutation formulae for
the invariant differential operators:

$$
\left[\mathcal{D}_{j}, \mathcal{D}_{k}\right]=\sum_{i=1}^{p} Y_{j k}^{i} \mathcal{D}_{i}
$$

\Longrightarrow Non-commutative differential algebra

- Syzygies (functional relations) among the differentiated invariants:

$$
\Phi\left(\ldots \mathcal{D}_{J} I_{\kappa} \ldots\right) \equiv 0
$$

\Longrightarrow Codazzi relations

Applications

- Equivalence and signatures of submanifolds
\Longrightarrow image processing
- Characterization of moduli spaces
- Invariant differential equations:

$$
H\left(\ldots \mathcal{D}_{J} I_{\kappa} \ldots\right)=0
$$

- Group splitting/foliation of PDEs
- explicit solutions \& Bäcklund transformations
- Invariant variational problems:

$$
\int L\left(\ldots \mathcal{D}_{J} I_{\kappa} \ldots\right) \boldsymbol{\omega}
$$

- conservation laws and characteristic classes

Equivariant Moving Frames

Definition. An $n^{\text {th }}$ order moving frame is a G-equivariant map

$$
\rho^{(n)}: V^{n} \subset \mathrm{~J}^{n} \longrightarrow G
$$

- Élie Cartan
- Guggenheimer, Griffiths, Green, Jensen
- Fels, Kogan, Pohjanpelto, PJO

Equivariance:

$$
\rho\left(g^{(n)} \cdot z^{(n)}\right)= \begin{cases}g \cdot \rho\left(z^{(n)}\right) & \text { left moving frame } \\ \rho\left(z^{(n)}\right) \cdot g^{-1} & \text { right moving frame }\end{cases}
$$

Note: $\quad \rho_{\text {left }}\left(z^{(n)}\right)=\rho_{\text {right }}\left(z^{(n)}\right)^{-1}$

Theorem. A moving frame exists in a neighborhood of a jet $z^{(n)} \in \mathrm{J}^{n}$ if and only if G acts freely and regularly near $z^{(n)}$.

Theorem. A moving frame exists in a neighborhood of a jet $z^{(n)} \in \mathrm{J}^{n}$ if and only if G acts freely and regularly near $z^{(n)}$.

Theorem. If G acts locally effectively on all open subsets $U \subset M$, then for $n \gg 0$, the (prolonged) action of G is locally free on an open subset of J^{n}.

$$
\Longrightarrow \text { Ovsiannikov, PJO, S. Adams }
$$

- free - the only group element $g \in G$ which fixes one point $z^{(n)} \in \mathrm{J}^{n}$ is the identity:

$$
g^{(n)} \cdot z^{(n)}=z^{(n)} \text { if and only if } g=e
$$

- locally free - the orbits have the same dimension as G.
- regular - all orbits have the same dimension and intersect sufficiently small coordinate charts only once ($\not \approx$ irrational flow on the torus)
- effective - the only group element $g \in G$ which fixes every point $z \in U \subset M$ is the identity:

$$
g \cdot z=z \text { for all } z \in U \text { if and only if } g=e
$$

Geometric Construction

Geometric Construction

Normalization $=$ choice of cross-section to the group orbits

Geometric Construction

Normalization $=$ choice of cross-section to the group orbits

Geometric Construction

Normalization $=$ choice of cross-section to the group orbits

Algebraic Construction

1. Write out the explicit formulas for the prolonged group action:

$$
w^{(n)}\left(g, z^{(n)}\right)=g^{(n)} \cdot z^{(n)}
$$

\Longrightarrow Implicit differentiation

Algebraic Construction

1. Write out the explicit formulas for the prolonged group action:

$$
w^{(n)}\left(g, z^{(n)}\right)=g^{(n)} \cdot z^{(n)}
$$

\Longrightarrow Implicit differentiation
2. From the components of $w^{(n)}$, choose $r=\operatorname{dim} G$ normalization equations to define the cross-section:

$$
w_{1}\left(g, z^{(n)}\right)=c_{1} \quad \ldots \quad w_{r}\left(g, z^{(n)}\right)=c_{r}
$$

3. Solve the normalization equations for the group parameters

$$
g=\left(g_{1}, \ldots, g_{r}\right):
$$

$$
g=\rho\left(z^{(n)}\right)=\rho\left(x, u^{(n)}\right)
$$

The solution is the right moving frame.
3. Solve the normalization equations for the group parameters

$$
\begin{aligned}
& g=\left(g_{1}, \ldots, g_{r}\right): \\
& \\
& \\
& \quad g=\rho\left(z^{(n)}\right)=\rho\left(x, u^{(n)}\right)
\end{aligned}
$$

The solution is the right moving frame.
4. Substitute the moving frame formulas

$$
g=\rho\left(z^{(n)}\right)=\rho\left(x, u^{(n)}\right)
$$

for the group parameters into the un-normalized components of $w^{(n)}$ to produce a complete system of functionally independent differential invariants of order $\leq n$:

$$
\left.I_{k}\left(x, u^{(n)}\right)=w_{k}\left(\rho\left(z^{(n)}\right), z^{(n)}\right)\right), \quad k=r+1, \ldots, \operatorname{dim} \mathrm{~J}^{n}
$$

Invariantization

The process of replacing group parameters in transformed objects by their moving frame formulae:
$\iota:\left\{\begin{array}{llc}\text { Functions } & \longrightarrow & \text { Invariants } \\ \text { Forms } & \longrightarrow & \text { Invariant Forms } \\ \text { Differential } & & \text { Invariant Differential } \\ \text { Operators } & \longrightarrow & \text { Operators } \\ \vdots & & \vdots\end{array}\right.$

- Invariantization defines an (exterior) algebra morphism.
- Invariantization does not affect invariants: $\iota(I)=I$

The Fundamental Differential Invariants

Invariantized jet coordinate functions:

$$
H^{i}\left(x, u^{(n)}\right)=\iota\left(x^{i}\right) \quad I_{K}^{\alpha}\left(x, u^{(l)}\right)=\iota\left(u_{K}^{\alpha}\right)
$$

- The constant differential invariants, as dictated by the moving frame normalizations, are known as the phantom invariants.
- The remaining non-constant differential invariants are the basic invariants and form a complete system of functionally independent differential invariants for the prolonged group action.

Invariantization of general differential functions:

$$
\iota\left[F\left(\ldots x^{i} \ldots u_{J}^{\alpha} \ldots\right)\right]=F\left(\ldots H^{i} \ldots I_{J}^{\alpha} \ldots\right)
$$

Invariantization of general differential functions:

$$
\iota\left[F\left(\ldots x^{i} \ldots u_{J}^{\alpha} \ldots\right)\right]=F\left(\ldots H^{i} \ldots I_{J}^{\alpha} \ldots\right)
$$

The Replacement Theorem:

If J is a differential invariant, then $\iota(J)=J$.

$$
J\left(\ldots x^{i} \ldots u_{J}^{\alpha} \ldots\right)=J\left(\ldots H^{i} \ldots I_{J}^{\alpha} \ldots\right)
$$

Invariantization of general differential functions:

$$
\iota\left[F\left(\ldots x^{i} \ldots u_{J}^{\alpha} \ldots\right)\right]=F\left(\ldots H^{i} \ldots I_{J}^{\alpha} \ldots\right)
$$

The Replacement Theorem:

If J is a differential invariant, then $\iota(J)=J$.

$$
J\left(\ldots x^{i} \ldots u_{J}^{\alpha} \ldots\right)=J\left(\ldots H^{i} \ldots I_{J}^{\alpha} \ldots\right)
$$

Key fact: Invariantization and differentiation do not commute:

$$
\iota\left(D_{i} F\right) \neq \mathcal{D}_{i} \iota(F)
$$

Infinitesimal Generators

Infinitesimal generators of action of G on M :

$$
\mathbf{v}_{\kappa}=\sum_{i=1}^{p} \xi_{\kappa}^{i}(x, u) \frac{\partial}{\partial x^{i}}+\sum_{\alpha=1}^{q} \varphi_{\kappa}^{\alpha}(x, u) \frac{\partial}{\partial u^{\alpha}} \quad \kappa=1, \ldots, r
$$

Infinitesimal Generators

Infinitesimal generators of action of G on M :

$$
\mathbf{v}_{\kappa}=\sum_{i=1}^{p} \xi_{\kappa}^{i}(x, u) \frac{\partial}{\partial x^{i}}+\sum_{\alpha=1}^{q} \varphi_{\kappa}^{\alpha}(x, u) \frac{\partial}{\partial u^{\alpha}} \quad \kappa=1, \ldots, r
$$

Prolonged infinitesimal generators on J^{n} :

$$
\mathbf{v}_{\kappa}^{(n)}=\mathbf{v}_{\kappa}+\sum_{\alpha=1}^{q} \sum_{j=\# J=1}^{n} \varphi_{J, \kappa}^{\alpha}\left(x, u^{(j)}\right) \frac{\partial}{\partial u_{J}^{\alpha}}
$$

Infinitesimal Generators

Infinitesimal generators of action of G on M :

$$
\mathbf{v}_{\kappa}=\sum_{i=1}^{p} \xi_{\kappa}^{i}(x, u) \frac{\partial}{\partial x^{i}}+\sum_{\alpha=1}^{q} \varphi_{\kappa}^{\alpha}(x, u) \frac{\partial}{\partial u^{\alpha}} \quad \kappa=1, \ldots, r
$$

Prolonged infinitesimal generators on J^{n} :

$$
\mathbf{v}_{\kappa}^{(n)}=\mathbf{v}_{\kappa}+\sum_{\alpha=1}^{q} \sum_{j=\# J=1}^{n} \varphi_{J, \kappa}^{\alpha}\left(x, u^{(j)}\right) \frac{\partial}{\partial u_{J}^{\alpha}}
$$

Prolongation formula:

$$
\begin{aligned}
\varphi_{J, \kappa}^{\alpha}=D_{K}\left(\varphi_{\kappa}^{\alpha}-\right. & \left.\sum_{i=1}^{p} u_{i}^{\alpha} \xi_{\kappa}^{i}\right)+\sum_{i=1}^{p} u_{J, i}^{\alpha} \xi_{\kappa}^{i} \\
& D_{1}, \ldots, D_{p} \quad-\quad \text { total derivatives }
\end{aligned}
$$

Recurrence Formulae

$$
\mathcal{D}_{j} \iota(F)=\iota\left(D_{j} F\right)+\sum_{\kappa=1}^{r} R_{j}^{\kappa} \iota\left(\mathbf{v}_{\kappa}^{(n)}(F)\right)
$$

$\omega^{i}=\iota\left(d x^{i}\right) \quad-\quad$ invariant coframe
$\mathcal{D}_{i}=\iota\left(D_{x^{i}}\right) \quad-\quad$ dual invariant differential operators
R_{j}^{κ} - Maurer-Cartan invariants
$\mathbf{v}_{1}, \ldots \mathbf{v}_{r} \in \mathfrak{g} \quad-\quad$ infinitesimal generators
$\mu^{1}, \ldots \mu^{r} \in \mathfrak{g}^{*} \quad$ dual Maurer-Cartan forms

The Maurer-Cartan Invariants

Invariantized Maurer-Cartan forms:

$$
\gamma^{\kappa}=\rho^{*}\left(\mu^{\kappa}\right) \equiv \sum_{j=1}^{p} R_{j}^{\kappa} \omega^{j}
$$

The Maurer-Cartan Invariants

Invariantized Maurer-Cartan forms:

$$
\gamma^{\kappa}=\rho^{*}\left(\mu^{\kappa}\right) \equiv \sum_{j=1}^{p} R_{j}^{\kappa} \omega^{j}
$$

Remark: When $G \subset \mathrm{GL}(N)$, the Maurer-Cartan invariants R_{j}^{κ} are the entries of the Frenet matrices

$$
\mathcal{D}_{i} \rho\left(x, u^{(n)}\right) \cdot \rho\left(x, u^{(n)}\right)^{-1}
$$

The Maurer-Cartan Invariants

Invariantized Maurer-Cartan forms:

$$
\gamma^{\kappa}=\rho^{*}\left(\mu^{\kappa}\right) \equiv \sum_{j=1}^{p} R_{j}^{\kappa} \omega^{j}
$$

Remark: When $G \subset \mathrm{GL}(N)$, the Maurer-Cartan invariants R_{j}^{κ} are the entries of the Frenet matrices

$$
\mathcal{D}_{i} \rho\left(x, u^{(n)}\right) \cdot \rho\left(x, u^{(n)}\right)^{-1}
$$

Theorem. (E. Hubert) The Maurer-Cartan invariants and, in the intransitive case, the order zero invariants generate the differential invariant algebra $\mathcal{I}(G)$.

Recurrence Formulae

$$
\mathcal{D}_{j} \iota(F)=\iota\left(D_{j} F\right)+\sum_{\kappa=1}^{r} R_{j}^{\kappa} \iota\left(\mathbf{v}_{\kappa}^{(n)}(F)\right)
$$

A If $\iota(F)=c$ is a phantom differential invariant, then the left hand side of the recurrence formula is zero. The collection of all such phantom recurrence formulae form a linear algebraic system of equations that can be uniquely solved for the Maurer-Cartan invariants R_{j}^{κ} !
\bigcirc Once the Maurer-Cartan invariants are replaced by their explicit formulae, the induced recurrence relations completely determine the structure of the differential invariant algebra $\mathcal{I}(G)$!

The Universal Recurrence Formula

Let Ω be any differential form on J^{n}.

$$
d \iota(\Omega)=\iota(d \Omega)+\sum_{\kappa=1}^{r} \gamma^{\kappa} \wedge \iota\left[\mathbf{v}_{\kappa}(\Omega)\right]
$$

\Longrightarrow The invariant variational bicomplex
Commutator invariants:

$$
\begin{aligned}
d \omega^{i}=d\left[\iota\left(d x^{i}\right)\right] & =\iota\left(d^{2} x^{i}\right)+\sum_{\kappa=1}^{r} \gamma^{\kappa} \wedge \iota\left[\mathbf{v}_{\kappa}\left(d x^{i}\right)\right] \\
& =-\sum_{j<k} Y_{j k}^{i} \omega^{j} \wedge \omega^{k}+\cdots \\
{\left[\mathcal{D}_{j}, \mathcal{D}_{k}\right] } & =\sum_{i=1}^{p} Y_{j k}^{i} \mathcal{D}_{i}
\end{aligned}
$$

The Differential Invariant Algebra

Thus, remarkably, the structure of $\mathcal{I}(G)$ can be determined without knowing the explicit formulae for either the moving frame, or the differential invariants, or the invariant differential operators!

The Differential Invariant Algebra

Thus, remarkably, the structure of $\mathcal{I}(G)$ can be determined without knowing the explicit formulae for either the moving frame, or the differential invariants, or the invariant differential operators!

The only required ingredients are the specification of the crosssection, and the standard formulae for the prolonged infinitesimal generators.

The Differential Invariant Algebra

Thus, remarkably, the structure of $\mathcal{I}(G)$ can be determined without knowing the explicit formulae for either the moving frame, or the differential invariants, or the invariant differential operators!

The only required ingredients are the specification of the crosssection, and the standard formulae for the prolonged infinitesimal generators.

Theorem. If G acts transitively on M, or if the infinitesimal generator coefficients depend rationally in the coordinates, then all recurrence formulae are rational in the basic differential invariants and so $\mathcal{I}(G)$ is a rational, noncommutative differential algebra.

Euclidean Surfaces

Euclidean group $\mathrm{SE}(3)=\mathrm{SO}(3) \ltimes \mathbb{R}^{3}$ acts on surfaces $S \subset \mathbb{R}^{3}$.

For simplicity, we assume the surface is (locally) the graph of a function

$$
z=u(x, y)
$$

Infinitesimal generators:

$$
\begin{gathered}
\mathbf{v}_{1}=-y \partial_{x}+x \partial_{y}, \quad \mathbf{v}_{2}=-u \partial_{x}+x \partial_{u}, \quad \mathbf{v}_{3}=-u \partial_{y}+y \partial_{u} \\
\mathbf{w}_{1}=\partial_{x}, \quad \mathbf{w}_{2}=\partial_{y}, \quad \mathbf{w}_{3}=\partial_{u}
\end{gathered}
$$

- The translations $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}$ will be ignored, as they play no role in the higher order recurrence formulae.

Cross-section (Darboux frame):

$$
x=y=u=u_{x}=u_{y}=u_{x y}=0 .
$$

Phantom differential invariants:

$$
\iota(x)=\iota(y)=\iota(u)=\iota\left(u_{x}\right)=\iota\left(u_{y}\right)=\iota\left(u_{x y}\right)=0
$$

Principal curvatures

$$
\kappa_{1}=\iota\left(u_{x x}\right), \quad \kappa_{2}=\iota\left(u_{y y}\right)
$$

Mean curvature and Gauss curvature:

$$
H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right), \quad K=\kappa_{1} \kappa_{2}
$$

Higher order differential invariants - invariantized jet coordinates:

$$
I_{j k}=\iota\left(u_{j k}\right) \quad \text { where } \quad u_{j k}=\frac{\partial^{j+k} u}{\partial x^{j} \partial y^{k}}
$$

$\star \star$ Nondegeneracy condition: non-umbilic point $\kappa_{1} \neq \kappa_{2}$.

Principal curvatures:

$$
\kappa_{1}=\iota\left(u_{x x}\right), \quad \kappa_{2}=\iota\left(u_{y y}\right)
$$

Mean curvature and Gauss curvature:

$$
H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right), \quad K=\kappa_{1} \kappa_{2}
$$

Invariant differentiation operators:

$$
\mathcal{D}_{1}=\iota\left(D_{x}\right), \quad \mathcal{D}_{2}=\iota\left(D_{y}\right)
$$

\Longrightarrow Differentiation with respect to the diagonalizing Darboux frame.

Principal curvatures:

$$
\kappa_{1}=\iota\left(u_{x x}\right), \quad \kappa_{2}=\iota\left(u_{y y}\right)
$$

Mean curvature and Gauss curvature:

$$
H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right), \quad K=\kappa_{1} \kappa_{2}
$$

Invariant differentiation operators:

$$
\mathcal{D}_{1}=\iota\left(D_{x}\right), \quad \mathcal{D}_{2}=\iota\left(D_{y}\right)
$$

\Longrightarrow Differentiation with respect to the diagonalizing Darboux frame.

The recurrence formulae enable one to express the higher order differential invariants in terms of the principal curvatures, or, equivalently, the mean and Gauss curvatures, and their invariant derivatives:

$$
\begin{aligned}
I_{j k}=\iota\left(u_{j k}\right) & =\widetilde{\Phi}_{j k}\left(\kappa_{1}, \kappa_{2}, \mathcal{D}_{1} \kappa_{1}, \mathcal{D}_{2} \kappa_{1}, \mathcal{D}_{1} \kappa_{2}, \mathcal{D}_{2} \kappa_{2}, \mathcal{D}_{1}^{2} \kappa_{1}, \ldots\right) \\
& =\Phi_{j k}\left(H, K, \mathcal{D}_{1} H, \mathcal{D}_{2} H, \mathcal{D}_{1} K, \mathcal{D}_{2} K, \mathcal{D}_{1}^{2} H, \ldots\right)
\end{aligned}
$$

Recurrence Formulae

$$
\iota\left(D_{i} u_{j k}\right)=\mathcal{D}_{i} \iota\left(u_{j k}\right)-\sum_{\kappa=1}^{3} R_{i}^{\kappa} \iota\left[\varphi_{\kappa}^{j k}\left(x, y, u^{(j+k)}\right)\right], \quad j+k \geq 1
$$

$I_{j k}=\iota\left(u_{j k}\right) \quad-\quad$ normalized differential invariants
$R_{i}^{\kappa} \quad-\quad$ Maurer-Cartan invariants

Recurrence Formulae

$$
\iota\left(D_{i} u_{j k}\right)=\mathcal{D}_{i} \iota\left(u_{j k}\right)-\sum_{\kappa=1}^{3} R_{i}^{\kappa} \iota\left[\varphi_{\kappa}^{j k}\left(x, y, u^{(j+k)}\right)\right], \quad j+k \geq 1
$$

$$
I_{j k}=\iota\left(u_{j k}\right) \quad-\quad \text { normalized differential invariants }
$$

$$
\begin{aligned}
R_{i}^{\kappa} & -\quad \text { Maurer-Cartan invariants } \\
\varphi_{\kappa}^{j k}\left(0,0, I^{(j+k)}\right) & =\iota\left[\varphi_{\kappa}^{j k}\left(x, y, u^{(j+k)}\right)\right]
\end{aligned}
$$

- invariantized prolonged infinitesimal generator coefficients.

$$
\begin{aligned}
& I_{j+1, k}=\mathcal{D}_{1} I_{j k}-\sum_{\kappa=1}^{3} \varphi_{\kappa}^{j k}\left(0,0, I^{(j+k)}\right) R_{1}^{\kappa} \\
& I_{j, k+1}=\mathcal{D}_{1} I_{j k}-\sum_{\kappa=1}^{3} \varphi_{\kappa}^{j k}\left(0,0, I^{(j+k)}\right) R_{2}^{\kappa}
\end{aligned}
$$

Prolonged infinitesimal generators:

$$
\begin{aligned}
\operatorname{pr} \mathbf{v}_{1}=- & y \partial_{x}+x \partial_{y}-u_{y} \partial_{u_{x}}+u_{x} \partial_{u_{y}} \\
& -2 u_{x y} \partial_{u_{x x}}+\left(u_{x x}-u_{y y}\right) \partial_{u_{x y}}-2 u_{x y} \partial_{u_{y y}}+\cdots,
\end{aligned}
$$

$$
\operatorname{pr} \mathbf{v}_{2}=-u \partial_{x}+x \partial_{u}+\left(1+u_{x}^{2}\right) \partial_{u_{x}}+u_{x} u_{y} \partial_{u_{y}}
$$

$$
+3 u_{x} u_{x x} \partial_{u_{x x}}+\left(u_{y} u_{x x}+2 u_{x} u_{x y}\right) \partial_{u_{x y}}+\left(2 u_{y} u_{x y}+u_{x} u_{y y}\right) \partial_{u_{y y}}+\cdots
$$

$$
\operatorname{pr} \mathbf{v}_{3}=-u \partial_{y}+y \partial_{u}+u_{x} u_{y} \partial_{u_{x}}+\left(1+u_{y}^{2}\right) \partial_{u_{y}}
$$

$$
+\left(u_{y} u_{x x}+2 u_{x} u_{x y}\right) \partial_{u_{x x}}+\left(2 u_{y} u_{x y}+u_{x} u_{y y}\right) \partial_{u_{x y}}+3 u_{y} u_{y y} \partial_{u_{y y}}+\cdots
$$

Prolonged infinitesimal generators:

$$
\begin{aligned}
\operatorname{pr} \mathbf{v}_{1}=- & y \partial_{x}+x \partial_{y}-u_{y} \partial_{u_{x}}+u_{x} \partial_{u_{y}} \\
& -2 u_{x y} \partial_{u_{x x}}+\left(u_{x x}-u_{y y}\right) \partial_{u_{x y}}-2 u_{x y} \partial_{u_{y y}}+\cdots,
\end{aligned}
$$

$$
\operatorname{pr} \mathbf{v}_{2}=-u \partial_{x}+x \partial_{u}+\left(1+u_{x}^{2}\right) \partial_{u_{x}}+u_{x} u_{y} \partial_{u_{y}}
$$

$$
+3 u_{x} u_{x x} \partial_{u_{x x}}+\left(u_{y} u_{x x}+2 u_{x} u_{x y}\right) \partial_{u_{x y}}+\left(2 u_{y} u_{x y}+u_{x} u_{y y}\right) \partial_{u_{y y}}+\cdots
$$

$$
\operatorname{pr} \mathbf{v}_{3}=-u \partial_{y}+y \partial_{u}+u_{x} u_{y} \partial_{u_{x}}+\left(1+u_{y}^{2}\right) \partial_{u_{y}}
$$

$$
+\left(u_{y} u_{x x}+2 u_{x} u_{x y}\right) \partial_{u_{x x}}+\left(2 u_{y} u_{x y}+u_{x} u_{y y}\right) \partial_{u_{x y}}+3 u_{y} u_{y y} \partial_{u_{y y}}+\cdots
$$

$$
I_{j k}=\iota\left(u_{j k}\right)
$$

Phantom differential invariants:

$$
I_{00}=I_{10}=I_{01}=I_{11}=0
$$

Principal curvatures:

$$
I_{20}=\kappa_{1} \quad I_{02}=\kappa_{2}
$$

Phantom recurrence formulae:

$$
\begin{aligned}
& \kappa_{1}= I_{20}= \\
& \mathcal{D}_{1} I_{10}-R_{1}^{2}=-R_{1}^{2} \\
& 0= I_{11}= \\
& \mathcal{D}_{1} I_{01}-R_{1}^{3}=-R_{1}^{3}, \\
& I_{21}= \\
& \mathcal{D}_{1} I_{11}-\left(\kappa_{1}-\kappa_{2}\right) R_{1}^{1}=-\left(\kappa_{1}-\kappa_{2}\right) R_{1}^{1}, \\
& 0= I_{11}=\mathcal{D}_{2} I_{10}-R_{2}^{2}=-R_{2}^{2}, \\
& \kappa_{2}= I_{02}=\mathcal{D}_{2} I_{01}-R_{2}^{3}=-R_{2}^{3}, \\
& I_{12}= \\
& \mathcal{D}_{2} I_{11}-\left(\kappa_{1}-\kappa_{2}\right) R_{2}^{1}=-\left(\kappa_{1}-\kappa_{2}\right) R_{2}^{1}
\end{aligned}
$$

Phantom recurrence formulae:

$$
\begin{aligned}
& \kappa_{1}= I_{20}= \\
& \mathcal{D}_{1} I_{10}-R_{1}^{2}=-R_{1}^{2}, \\
& 0= I_{11}= \\
& \mathcal{D}_{1} I_{01}-R_{1}^{3}=-R_{1}^{3}, \\
& I_{21}= \\
& \mathcal{D}_{1} I_{11}-\left(\kappa_{1}-\kappa_{2}\right) R_{1}^{1}=-\left(\kappa_{1}-\kappa_{2}\right) R_{1}^{1}, \\
& 0= I_{11}= \\
& \mathcal{D}_{2} I_{10}-R_{2}^{2}=-R_{2}^{2}, \\
& \kappa_{2}= I_{02} I_{01}-R_{2}^{3}=-R_{2}^{3}, \\
& I_{12}= \\
& \mathcal{D}_{2} I_{11}-\left(\kappa_{1}-\kappa_{2}\right) R_{2}^{1}=-\left(\kappa_{1}-\kappa_{2}\right) R_{2}^{1}
\end{aligned}
$$

Maurer-Cartan invariants:

$$
\begin{array}{lll}
R_{1}^{1}=-Y_{1}, & R_{1}^{2}=-\kappa_{1}, & R_{1}^{3}=0 \\
R_{1}^{2}=-Y_{2}, & R_{2}^{2}=0, & R_{3}^{2}=-\kappa_{2}
\end{array}
$$

Commutator invariants:

$$
Y_{1}=\frac{I_{21}}{\kappa_{1}-\kappa_{2}}=\frac{\mathcal{D}_{1} \kappa_{2}}{\kappa_{1}-\kappa_{2}} \quad Y_{2}=\frac{I_{12}}{\kappa_{1}-\kappa_{2}}=\frac{\mathcal{D}_{2} \kappa_{1}}{\kappa_{2}-\kappa_{1}}
$$

Phantom recurrence formulae:

$$
\begin{aligned}
& \kappa_{1}= I_{20}= \\
& \mathcal{D}_{1} I_{10}-R_{1}^{2}=-R_{1}^{2} \\
& 0= I_{11}= \\
& \mathcal{D}_{1} I_{01}-R_{1}^{3}=-R_{1}^{3} \\
& I_{21}= \\
& 0 \mathcal{D}_{1} I_{11}-\left(\kappa_{1}-\kappa_{2}\right) R_{1}^{1}=-\left(\kappa_{1}-\kappa_{2}\right) R_{1}^{1} \\
& 0= I_{11}= \\
& \kappa_{2}= I_{10}-R_{2}^{2}=-R_{2}^{2} \\
& I_{2} I_{01}-R_{2}^{3}=-R_{2}^{3} \\
& \mathcal{D}_{2} I_{11}-\left(\kappa_{1}-\kappa_{2}\right) R_{2}^{1}=-\left(\kappa_{1}-\kappa_{2}\right) R_{2}^{1}
\end{aligned}
$$

Maurer-Cartan invariants:

$$
\begin{array}{lll}
R_{1}^{1}=-Y_{1}, & R_{1}^{2}=-\kappa_{1}, & R_{1}^{3}=0 \\
R_{1}^{2}=-Y_{2}, & R_{2}^{2}=0, & R_{3}^{2}=-\kappa_{2}
\end{array}
$$

Commutator invariants:

$$
\begin{gathered}
Y_{1}=\frac{I_{21}}{\kappa_{1}-\kappa_{2}}=\frac{\mathcal{D}_{1} \kappa_{2}}{\kappa_{1}-\kappa_{2}} \quad Y_{2}=\frac{I_{12}}{\kappa_{1}-\kappa_{2}}=\frac{\mathcal{D}_{2} \kappa_{1}}{\kappa_{2}-\kappa_{1}} \\
{\left[\mathcal{D}_{1}, \mathcal{D}_{2}\right]=\mathcal{D}_{1} \mathcal{D}_{2}-\mathcal{D}_{2} \mathcal{D}_{1}=Y_{2} \mathcal{D}_{1}-Y_{1} \mathcal{D}_{2}}
\end{gathered}
$$

Third order recurrence relations:

$$
I_{30}=\mathcal{D}_{1} \kappa_{1}=\kappa_{1,1}, \quad I_{21}=\mathcal{D}_{2} \kappa_{1}=\kappa_{1,2}, \quad I_{12}=\mathcal{D}_{1} \kappa_{2}=\kappa_{2,1}, \quad I_{03}=\mathcal{D}_{2} \kappa_{2}=\kappa_{2,2},
$$

Third order recurrence relations:

$$
I_{30}=\mathcal{D}_{1} \kappa_{1}=\kappa_{1,1}, \quad I_{21}=\mathcal{D}_{2} \kappa_{1}=\kappa_{1,2}, \quad I_{12}=\mathcal{D}_{1} \kappa_{2}=\kappa_{2,1}, \quad I_{03}=\mathcal{D}_{2} \kappa_{2}=\kappa_{2,2},
$$

Fourth order recurrence relations:

$$
\begin{aligned}
& I_{40}=\kappa_{1,11}-\frac{3 \kappa_{1,2}^{2}}{\kappa_{1}-\kappa_{2}}+3 \kappa_{1}^{3}, \\
& I_{31}=\kappa_{1,12}-\frac{3 \kappa_{1,2} \kappa_{2,1}}{\kappa_{1}-\kappa_{2}} \\
& I_{22}=\kappa_{1,22}+\frac{\kappa_{1,1} \kappa_{2,1}-2 \kappa_{2,1}^{2}}{\kappa_{1}-\kappa_{2}}+\kappa_{1} \kappa_{2}^{2}=\kappa_{2,11}-\frac{\kappa_{1,2} \kappa_{2,2}-2 \kappa_{1,2}^{2}}{\kappa_{1}-\kappa_{2}}+\kappa_{1}^{2} \kappa_{2}, \\
& I_{13}=\kappa_{2,21}+\frac{3 \kappa_{1,2} \kappa_{2,1}}{\kappa_{1}-\kappa_{2}} \\
& I_{04}=\kappa_{2,22}+\frac{3 \kappa_{2,1}^{2}}{\kappa_{1}-\kappa_{2}}+3 \kappa_{2}^{3} .
\end{aligned}=\kappa_{2,12}-\frac{\kappa_{2,1} \kappa_{2,2}-2 \kappa_{1,2} \kappa_{2,1}}{\kappa_{1}-\kappa_{2}},
$$

* The two expressions for I_{31} and I_{13} follow from the commutator formula.

Fourth order recurrence relations

$$
\begin{aligned}
& I_{40}=\kappa_{1,11}-\frac{3 \kappa_{1,2}^{2}}{\kappa_{1}-\kappa_{2}}+3 \kappa_{1}^{3} \\
& I_{31}=\kappa_{1,12}-\frac{3 \kappa_{1,2} \kappa_{2,1}}{\kappa_{1}-\kappa_{2}} \\
& I_{22}=\kappa_{1,22}+\frac{\kappa_{1,1} \kappa_{2,1}-2 \kappa_{2,1}^{2}}{\kappa_{1}-\kappa_{2}}+\kappa_{1} \kappa_{2}^{2} \\
& I_{13}=\kappa_{2,21}+\frac{3 \kappa_{1,2} \kappa_{2,1}}{\kappa_{1}-\kappa_{2}} \\
& I_{2,11}-\frac{\kappa_{1,2} \kappa_{2,2}-2 \kappa_{1,2}^{2}}{\kappa_{1}-\kappa_{2}}+\kappa_{1}^{2} \kappa_{2} \\
& I_{04}=\kappa_{2,22}+\frac{\kappa_{1,1} \kappa_{1,2}-2 \kappa_{1,2} \kappa_{2,1}}{\kappa_{1}-\kappa_{2}} \\
& \kappa_{2,1}^{2}+3 \kappa_{2}^{3}
\end{aligned}
$$

* * The two expressions for I_{22} imply the Codazzi syzygy

$$
\kappa_{1,22}-\kappa_{2,11}+\frac{\kappa_{1,1} \kappa_{2,1}+\kappa_{1,2} \kappa_{2,2}-2 \kappa_{2,1}^{2}-2 \kappa_{1,2}^{2}}{\kappa_{1}-\kappa_{2}}-\kappa_{1} \kappa_{2}\left(\kappa_{1}-\kappa_{2}\right)=0
$$

which can be written compactly as

$$
K=\kappa_{1} \kappa_{2}=-\left(\mathcal{D}_{1}+Y_{1}\right) Y_{1}-\left(\mathcal{D}_{2}+Y_{2}\right) Y_{2}
$$

Generating Differential Invariants

\bigcirc From the general structure of the recurrence relations, one proves that the Euclidean differential invariant algebra $\mathcal{I}_{\mathrm{SE}(3)}$ is generated by the principal curvatures κ_{1}, κ_{2} or, equivalently, the mean and Gauss curvatures, H, K, through the process of invariant differentiation:

$$
I=\Phi\left(H, K, \mathcal{D}_{1} H, \mathcal{D}_{2} H, \mathcal{D}_{1} K, \mathcal{D}_{2} K, \mathcal{D}_{1}^{2} H, \ldots\right)
$$

\diamond Remarkably, for suitably generic surfaces, the Gauss curvature can be written as a universal rational function of the mean curvature and its invariant derivatives of order ≤ 4 :

$$
K=\Psi\left(H, \mathcal{D}_{1} H, \mathcal{D}_{2} H, \mathcal{D}_{1}^{2} H, \ldots, \mathcal{D}_{2}^{4} H\right)
$$

and hence $\mathcal{I}_{\mathrm{SE}(3)}$ is generated by mean curvature alone!
A To prove this, given

$$
K=\kappa_{1} \kappa_{2}=-\left(\mathcal{D}_{1}+Y_{1}\right) Y_{1}-\left(\mathcal{D}_{2}+Y_{2}\right) Y_{2}
$$

it suffices to write the commutator invariants Y_{1}, Y_{2} in terms of H.

Equi-affine Surfaces

$$
M=\mathbb{R}^{3} \quad G=\mathrm{SA}(3)=\mathrm{SL}(3) \ltimes \mathbb{R}^{3} \quad \operatorname{dim} G=11 .
$$

$$
g \cdot z=A z+b, \quad \operatorname{det} A=1, \quad z=\left(\begin{array}{l}
x \\
y \\
u
\end{array}\right) \in \mathbb{R}^{3} .
$$

Surfaces $S \subset M=\mathbb{R}^{3}$:

$$
u=f(x, y)
$$

Hyperbolic case

$$
u_{x x} u_{y y}-u_{x y}^{2}<0
$$

Cross-section:

$$
\begin{gathered}
x=y=u=u_{x}=u_{y}=u_{x y}=0, \quad u_{x x}=1, \quad u_{y y}=-1 \\
u_{x y y}=u_{x x x}, \quad u_{x x y}=u_{y y y}=0
\end{gathered}
$$

Power series normal form:

$$
u(x, y)=\frac{1}{2}\left(x^{2}-y^{2}\right)+\frac{1}{6} c\left(x^{3}+3 x y^{2}\right)+\cdots
$$

\Longrightarrow Nonsingular: $c \neq 0$.

Invariantization - differential invariants: $\quad I_{j k}=\iota\left(u_{j k}\right)$
Phantom differential invariants:

$$
\begin{gathered}
\iota(x)=\iota(y)=\iota(u)=\iota\left(u_{x}\right)=\iota\left(u_{y}\right)=\iota\left(u_{x y}\right)=\iota\left(u_{x x y}\right)=\iota\left(u_{y y y}\right)=0, \\
\iota\left(u_{x x}\right)=1, \quad \iota\left(u_{y y}\right)=-1, \quad \iota\left(u_{x x x}\right)-\iota\left(u_{x y y}\right)=0 .
\end{gathered}
$$

Pick invariant:

$$
P=\iota\left(u_{x x x}\right)=\iota\left(u_{x y y}\right) .
$$

Basic differential invariants of order 4:

$$
\begin{gathered}
Q_{0}=\iota\left(u_{x x x x}\right), \quad Q_{1}=\iota\left(u_{x x x y}\right), \quad Q_{2}=\iota\left(u_{x x y y}\right), \\
Q_{3}=\iota\left(u_{x y y y}\right), \quad Q_{4}=\iota\left(u_{y y y y}\right)
\end{gathered}
$$

Invariant differential operators:

$$
\mathcal{D}_{1}=\iota\left(D_{x}\right), \quad \mathcal{D}_{2}=\iota\left(D_{y}\right)
$$

- Since the moving frame has order 3, one can generate all higher order differential invariants from the basic differential invariants of order ≤ 4.
- This is a consequence of a general theorem, that follows directly from the recurrence formulae.
- Thus, to prove that the Pick invariant generates $\mathcal{I}(G)$, it suffices to generate Q_{0}, \ldots, Q_{4} from P by invariant differentiation.

Infinitesimal generators:

$$
\begin{gathered}
\mathbf{v}_{1}=x \partial_{x}-u \partial_{u}, \quad \mathbf{v}_{2}=y \partial_{y}-u \partial_{u} \\
\mathbf{v}_{3}=y \partial_{x}, \quad \mathbf{v}_{4}=u \partial_{x}, \quad \mathbf{v}_{5}=x \partial_{y}, \\
\mathbf{v}_{6}=u \partial_{y}, \quad \mathbf{v}_{7}=x \partial_{u}, \quad \mathbf{v}_{8}=y \partial_{u} \\
\mathbf{w}_{1}=\partial_{x}, \quad \mathbf{w}_{2}=\partial_{y}, \quad \mathbf{w}_{3}=\partial_{u},
\end{gathered}
$$

- The translations will be ignored, as they play no role in the higher order recurrence formulae.

Recurrence formulae

$$
\mathcal{D}_{i} \iota\left(u_{j k}\right)=\iota\left(D_{i} u_{j k}\right)+\sum_{\kappa=1}^{8} \varphi_{\kappa}^{j k}\left(x, y, u^{(j+k)}\right) R_{i}^{\kappa}, \quad j+k \geq 1
$$

$$
\begin{aligned}
& \mathcal{D}_{1} I_{j k}=I_{j+1, k}+\sum_{\kappa=1}^{8} \varphi_{\kappa}^{j k}\left(0,0, I^{(j+k)}\right) R_{1}^{\kappa} \\
& \mathcal{D}_{2} I_{j k}=I_{j, k+1}+\sum_{\kappa=1}^{8} \varphi_{\kappa}^{j k}\left(0,0, I^{(j+k)}\right) R_{2}^{\kappa}
\end{aligned}
$$

$$
\begin{aligned}
\varphi_{\kappa}^{j k}\left(0,0, I^{(j+k)}\right) & =\iota\left[\varphi_{\kappa}^{j k}\left(x, y, u^{(j+k)}\right)\right] \quad-\quad \text { invariantized } \\
& \text { prolonged infinitesimal generator coefficients }
\end{aligned}
$$

$R_{i}^{\kappa} \quad$ - Maurer-Cartan invariants

Phantom recurrence formulae:

$$
\begin{array}{ll}
0=\mathcal{D}_{1} I_{10}=1+R_{1}^{7}, & 0=\mathcal{D}_{2} I_{10}=R_{2}^{7}, \\
0=\mathcal{D}_{1} I_{01}=R_{1}^{8}, & 0=\mathcal{D}_{2} I_{01}=-1+R_{2}^{8}, \\
0=\mathcal{D}_{1} I_{20}=I_{30}-3 R_{1}^{1}-R_{1}^{2}, & 0=\mathcal{D}_{2} I_{20}=-3 R_{2}^{1}-R_{2}^{2}, \\
0=\mathcal{D}_{1} I_{11}=-R_{1}^{3}+R_{1}^{5}, & 0=\mathcal{D}_{2} I_{11}=I_{30}-R_{2}^{3}+R_{2}^{5}, \\
0=\mathcal{D}_{1} I_{02}=I_{12}+R_{1}^{1}+3 R_{1}^{2}, & 0=\mathcal{D}_{2} I_{02}=R_{2}^{1}+3 R_{2}^{2}, \\
0=\mathcal{D}_{1} I_{21}=I_{31}-I_{30} R_{1}^{3}-2 I_{30} R_{1}^{5}+R_{1}^{6}, \\
& 0=\mathcal{D}_{2} I_{21}=I_{22}-I_{30} R_{2}^{3}-2 I_{30} R_{2}^{5}+R_{2}^{6}, \\
0=\mathcal{D}_{1} I_{03}=I_{13}-3 I_{30} R_{2}^{3}-3 R_{2}^{6}, & 0=\mathcal{D}_{2} I_{03}=I_{04}-3 I_{30} R_{2}^{3}-3 R_{2}^{6} .
\end{array}
$$

Maurer-Cartan invariants:

$$
\begin{aligned}
& R_{1}=\left(\frac{1}{2} P,-\frac{1}{2} P, \frac{3 Q_{1}+Q_{3}}{12 P}, \frac{1}{4} Q_{0}-\frac{1}{4} Q_{2}-\frac{1}{2} P^{2}, \frac{3 Q_{1}+Q_{3}}{12 P},-\frac{1}{4} Q_{1}+\frac{1}{4} Q_{3},-1,0\right) \\
& R_{2}=\left(0,0, \frac{3 Q_{2}+Q_{4}}{12 P}+\frac{1}{2} P, \frac{1}{4} Q_{1}-\frac{1}{4} Q_{3}, \frac{3 Q_{2}+Q_{4}}{12 P}-\frac{1}{2} P,-\frac{1}{4} Q_{2}+\frac{1}{4} Q_{4}-\frac{1}{2} P^{2}, 0,1\right)
\end{aligned}
$$

Fourth order invariants:

$$
P_{1}=\mathcal{D}_{1} P=\frac{1}{4} Q_{0}+\frac{3}{4} Q_{2}, \quad P_{2}=\mathcal{D}_{2} P=\frac{1}{4} Q_{1}+\frac{3}{4} Q_{3} .
$$

Commutator:

$$
\mathcal{D}_{3}=\left[\mathcal{D}_{1}, \mathcal{D}_{2}\right]=\mathcal{D}_{1} \mathcal{D}_{2}-\mathcal{D}_{2} \mathcal{D}_{1}=Y_{1} \mathcal{D}_{1}+Y_{2} \mathcal{D}_{2},
$$

Commutator invariants:

$$
Y_{1}=R_{2}^{1}-R_{1}^{3}=-\frac{3 Q_{1}+Q_{3}}{12 P}, \quad Y_{2}=R_{2}^{5}-R_{1}^{2}=\frac{3 Q_{2}+Q_{4}}{12 P}
$$

Another fourth order invariant:

$$
\begin{equation*}
P_{3}=\mathcal{D}_{3} P=\mathcal{D}_{1} \mathcal{D}_{2} P-\mathcal{D}_{2} \mathcal{D}_{1} P=Y_{1} P_{1}+Y_{2} P_{2} \tag{*}
\end{equation*}
$$

Nondegeneracy condition: If

$$
\operatorname{det}\left(\begin{array}{cc}
P_{1} & P_{2} \\
\mathcal{D}_{1} P_{j} & \mathcal{D}_{2} P_{j}
\end{array}\right) \neq 0 \quad \text { for } \quad j=1,2, \text { or } 3
$$

we can solve (*) and

$$
\mathcal{D}_{3} P_{j}=Y_{1} \mathcal{D}_{1} P_{j}+Y_{2} \mathcal{D}_{2} P_{j}
$$

for the fourth order commutator invariants:

$$
Y_{1}=-\frac{3 Q_{1}+Q_{3}}{12 P}, \quad Y_{2}=\frac{3 Q_{2}+Q_{4}}{12 P}
$$

So far, we have constructed four combinations of the fourth order differential invariants

$$
\begin{array}{ll}
S_{1}=Q_{0}+3 Q_{2}, & S_{2}=Q_{1}+3 Q_{3} \\
S_{3}=3 Q_{1}+Q_{3}, & S_{4}=3 Q_{2}+Q_{4}
\end{array}
$$

as rational functions of the invariant derivatives of the Pick invariant. To obtain the final fourth order differential invariant:

$$
\begin{aligned}
& 12 P\left(\mathcal{D}_{1} S_{4}-\mathcal{D}_{2} S_{3}\right)=48 P^{2} Q_{0}-30 P^{2} S_{1}+18 P^{2} S_{4} \\
&-3 S_{2} S_{3}-S_{3}^{2}+3 S_{1} S_{4}+S_{4}^{2} .
\end{aligned}
$$

$$
\star \star \star \text { This completes the proof } \star \star \star
$$

General Issues

The equivariant moving frame calculus is completely constructive, and can be applied to

General Issues

The equivariant moving frame calculus is completely constructive, and can be applied to all finite-dimensional Lie transformation groups

General Issues

The equivariant moving frame calculus is completely constructive, and can be applied to all finite-dimensional Lie transformation groups almost all infinite-dimensional Lie pseudo-groups
(eventually locally freely acting)

General Issues

The equivariant moving frame calculus is completely constructive, and can be applied to all finite-dimensional Lie transformation groups almost all infinite-dimensional Lie pseudo-groups
(eventually locally freely acting)
Fully determines the recurrence relations and hence, in principle, all identities for the algebra of differential invariants $\mathcal{I}(G)$.

General Issues

The equivariant moving frame calculus is completely constructive, and can be applied to all finite-dimensional Lie transformation groups almost all infinite-dimensional Lie pseudo-groups
(eventually locally freely acting)
Fully determines the recurrence relations and hence, in principle, all identities for the algebra of differential invariants $\mathcal{I}(G)$.

* Structure theory for differential invariant algebras?

General Issues

The equivariant moving frame calculus is completely constructive, and can be applied to
all finite-dimensional Lie transformation groups almost all infinite-dimensional Lie pseudo-groups
(eventually locally freely acting)
Fully determines the recurrence relations and hence, in principle, all identities for the algebra of differential invariants $\mathcal{I}(G)$.

* Structure theory for differential invariant algebras?

In particular, minimal generating sets require a syzygy bound:

$$
K=\Psi\left(H, \ldots, \mathcal{D}^{(n)} H\right) \quad n \leq N ? ? ?
$$

$\mathcal{T H A N K} \mathcal{Y O U}!$

