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Examples of Differential Invariants

Euclidean Group on R3

G = SE(3) = SO(3)! R
3

=⇒ group of rigid motions

z #−→ Rz + b R ∈ SO(3)

• Induced action on curves and surfaces.



Euclidean Curves C ⊂ R3

• κ — curvature: order = 2

• τ — torsion: order = 3

• κs, τs,κss, . . . — derivatives w.r.t. arc length ds

Theorem. Every Euclidean differential invariant of a
space curve C ⊂ R3 can be written

I = H(κ, τ,κs, τs,κss, . . . )

Thus, κ and τ generate the differential invariants of
space curves under the Euclidean group.
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Euclidean Surfaces S ⊂ R3

• H = 1
2 (κ1 + κ2) — mean curvature: order = 2

• K = κ1 κ2 — Gauss curvature: order = 2

• D1H,D2H,D1K,D2K,D2
1H, . . . — derivatives

with respect to the equivariant Frenet frame on S

Theorem. Every Euclidean differential invariant of a
non-umbilic surface S ⊂ R3 can be written

I = Φ(H,K,D1H,D2H,D1K,D2K,D2
1H, . . . )

Thus, H,K generate the differential invariant algebra
of (generic) Euclidean surfaces.
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Equi-affine Group on R3

G = SA(3) = SL(3)! R3 — volume preserving
z #−→ Az + b, detA = 1

Curves in R3:

• κ — equi-affine curvature: order = 4

• τ — equi-affine torsion: order = 5

• κs, τs,κss, . . . — diff. w.r.t. equi-affine arc length

Surfaces in R3:

• P — Pick invariant: order = 3

• Q0, Q1, . . . , Q4 — fourth order invariants

• D1P,D2P,D1Qν, . . . diff. w.r.t. the equi-affine frame
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GeneralProblems

Determine the structure of the algebra of
differential invariants.

generators, syzygies, commutators, etc.

Find a minimal system of
generating differential invariants.
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Curves

Theorem. Let G be an ordinary" Lie group acting
on the m-dimensional manifold M . Then, locally,
there exist m− 1 generating differential invariants
κ1, . . . ,κm−1. Every other differential invariant
can be written as a function of the generating
differential invariants and their derivatives with
respect to the G-invariant arc length element ds.

" ordinary = transitive + no pseudo-stabilization.

=⇒ m = 3 — curvature κ & torsion τ



Curves

Theorem. Let G be an ordinary" Lie group acting
on the m-dimensional manifold M . Then, locally,
there exist m− 1 generating differential invariants
κ1, . . . ,κm−1. Every other differential invariant
can be written as a function of the generating
differential invariants and their derivatives with
respect to the G-invariant arc length element ds.

" ordinary = transitive + no pseudo-stabilization.

=⇒ m = 3 — curvature κ & torsion τ



Equi-affine Surfaces

Theorem.

The algebra of equi-affine differential invariants
for non-degenerate surfaces is generated by the
Pick invariant through invariant differentiation.

In particular:

Qν = Φν(P,D1P,D2P, . . . )
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Euclidean Surfaces

Theorem.

The algebra of Euclidean differential invariants for
non-degenerate surfaces is generated by only the
mean curvature through invariant differentiation.

In particular:
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Euclidean Proof
Commutation relation:

[D1,D2 ] = D1D2 −D2D1 = Y2D1 − Y1D2,

Commutator invariants:

Y1 =
D1κ2

κ1 − κ2

Y2 =
D2κ1

κ2 − κ1

Codazzi relation:

K = κ1κ2 = − (D1 + Y1)Y1 − (D2 + Y2)Y2

=⇒ Gauss’ Theorema Egregium

(Guggenheimer)
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The Commutator Trick

K = − (D1 + Y1)Y1 − (D2 + Y2)Y2

To determine the commutator invariants:

D1D2H −D2D1H = Y2 D1H − Y1D2H

D1D2DJH −D2D1DJH = Y2 D1DJH − Y1D2DJH
(∗)

Non-degeneracy condition:

det

(
D1H D2H

D1DJH D2DJH

)

)= 0,

Solve (∗) for Y1, Y2 in terms of derivatives of H, producing a universal formula

K = Ψ(H,D1H,D2H, . . . ,D1D
3
2H,D4

2H)

for the Gauss curvature as a rational function of the mean curvature and its
invariant derivatives up to order 4!
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Definition. A surface S ⊂ R3 is mean curvature degenerate
if, near any non-umbilic point p0 ∈ S, there exist scalar
functions F1(t), F2(t) such that

D1H = F1(H), D2H = F2(H).

• surfaces with symmetry: rotation, helical;

• minimal surfaces;

• constant mean curvature surfaces;

• ???

Theorem. If a surface is mean curvature non-degenerate
then the algebra of Euclidean differential invariants
is generated entirely by the mean curvature and its
successive invariant derivatives.
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Further Results

For suitably non-degenerate surfaces S ⊂ R3:

Theorem. G = SO(4, 2)

The algebra of conformal differential invariants is generated

by a single third order differential invariant.

Theorem. G = PSL(4)

The algebra of projective differential invariants is generated

by a single fourth order differential invariant.

=⇒ (with E. Hubert)
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Example. G: (x, y, u) #−→ (x+ a, y + b, u+ P (x, y) )

a, b ∈ R, P is an arbitrary polynomial of degree ≤ n

Differential invariants:

ui,j =
∂i+ju

∂xi∂yj
i+ j ≥ n+ 1

Invariant differential operators:

D1 = Dx, D2 = Dy.

Minimal generating set:

ui,j, i+ j = n+ 1

♠ For submanifolds of dimension p ≥ 2, the number of
generating differential invariants can be arbitrarily large.



EquivariantMoving Frames

M — m-dimensional manifold

Jn = Jn(M,p) — nth order jet space for

p-dimensional submanifolds S ⊂ M

z(n) = (x, u(n)) = ( . . . xi . . . uα
J . . . )

— local coordinates on Jn viewing S = {u = f(x)}

G — transformation group acting on M

G(n) — prolonged action

on the submanifold jet space Jn



Differential Invariants

Differential invariant I : U ⊂ Jn → R

I(g(n) · z(n)) = I(z(n)) for all z(n) ∈ U = dom I

Invariant differential operators:

D1, . . . ,Dp p = dimS = # indep. vars.

$ If I is a differential invariant, so is DjI.

I(G) — the algebra (sheaf) of differential invariants
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The Basis Theorem

Theorem. The differential invariant algebra I(G) is locally
generated by a finite number of differential invariants

I1, . . . , I$

and p = dimS invariant differential operators

D1, . . . ,Dp

meaning that every differential invariant can be locally
expressed as a function of the generating invariants and
their invariant derivatives:

DJIκ = Dj1
Dj2

· · · Djn
Iκ.

=⇒ Lie groups: Lie, Ovsiannikov

=⇒ Lie pseudo-groups: Tresse, Kumpera,

Pohjanpelto–PJO, Krugkilov–Lychagin



Key Issues

• Minimal basis of generating invariants: I1, . . . , I$

• Commutation formulae for

the invariant differential operators:

[Dj,Dk ] =
p∑

i=1

Y i
jk Di

=⇒ Non-commutative differential algebra

• Syzygies (functional relations) among

the differentiated invariants:

Φ( . . . DJIκ . . . ) ≡ 0

=⇒ Codazzi relations
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Applications

• Equivalence and signatures of submanifolds
=⇒ image processing

• Characterization of moduli spaces

• Invariant differential equations:

H( . . . DJIκ . . . ) = 0

• Group splitting/foliation of PDEs
— explicit solutions & Bäcklund transformations

• Invariant variational problems:
∫

L( . . . DJIκ . . . ) ω

• conservation laws and characteristic classes



EquivariantMoving Frames

Definition. An nth order moving frame is a G-equivariant map

ρ(n) : V n ⊂ Jn −→ G

• Élie Cartan
• Guggenheimer, Griffiths, Green, Jensen
• Fels, Kogan, Pohjanpelto, PJO

Equivariance:

ρ(g(n) · z(n)) =

{
g · ρ(z(n)) left moving frame

ρ(z(n)) · g−1 right moving frame

Note: ρleft(z
(n)) = ρright(z

(n))−1



Theorem. A moving frame exists in a neighborhood
of a jet z(n) ∈ Jn if and only if G acts freely and
regularly near z(n).

Theorem. If G acts locally effectively on all open
subsets U ⊂ M , then for n . 0, the (prolonged)
action of G is locally free on an open subset of Jn.

=⇒ Ovsiannikov, PJO, S. Adams
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• free — the only group element g ∈ G which fixes one point
z(n) ∈ Jn is the identity:

g(n) · z(n) = z(n) if and only if g = e.

• locally free — the orbits have the same dimension as G.

• regular — all orbits have the same dimension and intersect
sufficiently small coordinate charts only once ( )≈ irrational
flow on the torus)

• effective — the only group element g ∈ G which fixes every
point z ∈ U ⊂ M is the identity:
g · z = z for all z ∈ U if and only if g = e.



Geometric Construction

Jn z(n)

Oz(n)
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Normalization = choice of cross-section to the group orbits
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Algebraic Construction

1. Write out the explicit formulas for the
prolonged group action:

w(n)(g, z(n)) = g(n) · z(n)

=⇒ Implicit differentiation

2. From the components of w(n), choose r = dimG
normalization equations to define the cross-section:

w1(g, z
(n)) = c1 . . . wr(g, z

(n)) = cr
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3. Solve the normalization equations for the group parameters
g = (g1, . . . , gr):

g = ρ(z(n)) = ρ(x, u(n))

The solution is the right moving frame.

4. Substitute the moving frame formulas

g = ρ(z(n)) = ρ(x, u(n))

for the group parameters into the un-normalized compo-
nents of w(n) to produce a complete system of functionally
independent differential invariants of order ≤ n:

Ik(x, u
(n)) = wk(ρ(z

(n)), z(n))), k = r + 1, . . . , dim Jn
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Invariantization

The process of replacing group parameters in transformed
objects by their moving frame formulae:

ι :






Functions −→ Invariants

Forms −→ Invariant Forms

Differential

Operators
−→

Invariant Differential

Operators

... ...

• Invariantization defines an (exterior) algebra morphism.

• Invariantization does not affect invariants: ι(I) = I



The Fundamental Differential Invariants

Invariantized jet coordinate functions:

Hi(x, u(n)) = ι(xi) IαK(x, u(l)) = ι(uα
K)

• The constant differential invariants, as dictated by the mov-

ing frame normalizations, are known as the phantom

invariants.

• The remaining non-constant differential invariants are

the basic invariants and form a complete system of

functionally independent differential invariants for the

prolonged group action.



Invariantization of general differential functions:

ι [F ( . . . xi . . . uα
J . . . ) ] = F ( . . . Hi . . . IαJ . . . )

The Replacement Theorem:

If J is a differential invariant, then ι(J) = J .

J( . . . xi . . . uα
J . . . ) = J( . . . Hi . . . IαJ . . . )

Key fact: Invariantization and differentiation do not commute:

ι(DiF ) )= Diι(F )
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Infinitesimal Generators

Infinitesimal generators of action of G on M :

vκ =
p∑

i=1

ξiκ(x, u)
∂

∂xi
+

q∑

α=1

ϕα
κ(x, u)

∂

∂uα
κ = 1, . . . , r

Prolonged infinitesimal generators on Jn:

v(n)
κ = vκ +

q∑

α=1

n∑

j=#J=1

ϕα
J,κ(x, u

(j))
∂

∂uα
J

Prolongation formula:

ϕα
J,κ = DK

(

ϕα
κ −

p∑

i=1

uα
i ξiκ

)

+
p∑

i=1

uα
J,i ξ

i
κ

D1, . . . , Dp — total derivatives
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κ = 1, . . . , r

Prolonged infinitesimal generators on Jn:

v(n)
κ = vκ +

q∑

α=1

n∑

j=#J=1

ϕα
J,κ(x, u

(j))
∂

∂uα
J

Prolongation formula:

ϕα
J,κ = DK

(

ϕα
κ −

p∑

i=1

uα
i ξiκ

)

+
p∑

i=1

uα
J,i ξ

i
κ

D1, . . . , Dp — total derivatives
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Recurrence Formulae

Dj ι(F ) = ι(DjF ) +
r∑

κ=1

Rκ
j ι(v(n)

κ (F ))

ωi = ι(dxi) — invariant coframe

Di = ι(Dxi) — dual invariant differential operators

Rκ
j — Maurer–Cartan invariants

v1, . . . vr ∈ g — infinitesimal generators

µ1, . . . µr ∈ g∗ — dual Maurer–Cartan forms



The Maurer–Cartan Invariants

Invariantized Maurer–Cartan forms:

γκ = ρ∗(µκ) ≡
p∑

j=1

Rκ
j ω

j

Remark : When G ⊂ GL(N), the Maurer–Cartan invariants Rκ
j

are the entries of the Frenet matrices

Di ρ(x, u
(n)) · ρ(x, u(n))−1

Theorem. (E. Hubert) The Maurer–Cartan invariants and, in
the intransitive case, the order zero invariants generate the
differential invariant algebra I(G).
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The Maurer–Cartan Invariants

Invariantized Maurer–Cartan forms:

γκ = ρ∗(µκ) ≡
p∑

j=1

Rκ
j ω

j

Remark : When G ⊂ GL(N), the Maurer–Cartan invariants Rκ
j

are the entries of the Frenet matrices

Di ρ(x, u
(n)) · ρ(x, u(n))−1

Theorem. (E. Hubert) The Maurer–Cartan invariants and, in
the intransitive case, the order zero invariants generate the
differential invariant algebra I(G).



Recurrence Formulae

Dj ι(F ) = ι(DjF ) +
r∑

κ=1

Rκ
j ι(v(n)

κ (F ))

♠ If ι(F ) = c is a phantom differential invariant, then the left hand side
of the recurrence formula is zero. The collection of all such phantom
recurrence formulae form a linear algebraic system of equations that can
be uniquely solved for the Maurer–Cartan invariants Rκ

j !

♥ Once the Maurer–Cartan invariants are replaced by their
explicit formulae, the induced recurrence relations completely determine
the structure of the differential invariant algebra I(G)!



The Universal Recurrence Formula

Let Ω be any differential form on Jn.

d ι(Ω) = ι(dΩ) +
r∑

κ=1

γκ ∧ ι[vκ(Ω)]

=⇒ The invariant variational bicomplex

Commutator invariants:

dωi = d[ι(dxi)] = ι(d2xi) +
r∑

κ=1

γκ ∧ ι[vκ(dx
i)]

= −
∑

j<k

Y i
jk ω

j ∧ ωk + · · ·

[Dj,Dk ] =
p∑

i=1

Y i
jk Di



TheDifferential Invariant Algebra

Thus, remarkably, the structure of I(G) can be determined
without knowing the explicit formulae for either the moving
frame, or the differential invariants, or the invariant differ-
ential operators!

The only required ingredients are the specification of the cross-
section, and the standard formulae for the prolonged
infinitesimal generators.

Theorem. If G acts transitively on M , or if the infinitesimal
generator coefficients depend rationally in the coordinates,
then all recurrence formulae are rational in the basic
differential invariants and so I(G) is a rational, non-
commutative differential algebra.
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TheDifferential Invariant Algebra

Thus, remarkably, the structure of I(G) can be determined
without knowing the explicit formulae for either the moving
frame, or the differential invariants, or the invariant differ-
ential operators!

The only required ingredients are the specification of the cross-
section, and the standard formulae for the prolonged
infinitesimal generators.

Theorem. If G acts transitively on M , or if the infinitesimal
generator coefficients depend rationally in the coordinates,
then all recurrence formulae are rational in the basic
differential invariants and so I(G) is a rational, non-
commutative differential algebra.



Euclidean Surfaces

Euclidean group SE(3) = SO(3)! R3 acts on surfaces S ⊂ R3.

For simplicity, we assume the surface is (locally) the graph of a function

z = u(x, y)

Infinitesimal generators:

v1 = −y∂x + x∂y, v2 = −u∂x + x∂u, v3 = −u∂y + y∂u,

w1 = ∂x, w2 = ∂y, w3 = ∂u.

• The translations w1,w2,w3 will be ignored, as they play no role in the
higher order recurrence formulae.



Cross-section (Darboux frame):

x = y = u = ux = uy = uxy = 0.

Phantom differential invariants:

ι(x) = ι(y) = ι(u) = ι(ux) = ι(uy) = ι(uxy) = 0

Principal curvatures
κ1 = ι(uxx), κ2 = ι(uyy)

Mean curvature and Gauss curvature:

H = 1
2(κ1 + κ2), K = κ1κ2

Higher order differential invariants — invariantized jet coordinates:

Ijk = ι(ujk) where ujk =
∂j+ku

∂xj∂yk

$ $ Nondegeneracy condition: non-umbilic point κ1 )= κ2.



Algebra of Euclidean Differential Invariants

Principal curvatures:
κ1 = ι(uxx), κ2 = ι(uyy)

Mean curvature and Gauss curvature:

H = 1
2(κ1 + κ2), K = κ1κ2

Invariant differentiation operators:

D1 = ι(Dx), D2 = ι(Dy)

=⇒ Differentiation with respect to the diagonalizing Darboux frame.

The recurrence formulae enable one to express the higher order differential
invariants in terms of the principal curvatures, or, equivalently, the mean and
Gauss curvatures, and their invariant derivatives:

Ijk = ι(ujk) = Φ̃jk(κ1,κ2,D1κ1,D2κ1,D1κ2,D2κ2,D
2
1κ1, . . . )

= Φjk(H,K,D1H,D2H,D1K,D2K,D2
1H, . . . )



Algebra of Euclidean Differential Invariants

Principal curvatures:
κ1 = ι(uxx), κ2 = ι(uyy)

Mean curvature and Gauss curvature:

H = 1
2(κ1 + κ2), K = κ1κ2

Invariant differentiation operators:

D1 = ι(Dx), D2 = ι(Dy)

=⇒ Differentiation with respect to the diagonalizing Darboux frame.

The recurrence formulae enable one to express the higher order differential
invariants in terms of the principal curvatures, or, equivalently, the mean and
Gauss curvatures, and their invariant derivatives:

Ijk = ι(ujk) = Φ̃jk(κ1,κ2,D1κ1,D2κ1,D1κ2,D2κ2,D
2
1κ1, . . . )

= Φjk(H,K,D1H,D2H,D1K,D2K,D2
1H, . . . )



Recurrence Formulae

ι(Diujk) = Di ι(ujk)−
3∑

κ=1

Rκ
i ι[ϕ

jk
κ (x, y, u(j+k)) ], j + k ≥ 1

Ijk = ι(ujk) — normalized differential invariants

Rκ
i — Maurer–Cartan invariants

ϕjk
κ (0, 0, I(j+k)) = ι[ϕjk

κ (x, y, u(j+k)) ]

— invariantized prolonged infinitesimal generator coefficients.

Ij+1,k = D1Ijk −
3∑

κ=1

ϕjk
κ (0, 0, I(j+k))Rκ

1

Ij,k+1 = D1Ijk −
3∑

κ=1

ϕjk
κ (0, 0, I(j+k))Rκ

2
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jk
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Ijk = ι(ujk) — normalized differential invariants

Rκ
i — Maurer–Cartan invariants

ϕjk
κ (0, 0, I(j+k)) = ι[ϕjk

κ (x, y, u(j+k)) ]

— invariantized prolonged infinitesimal generator coefficients.

Ij+1,k = D1Ijk −
3∑

κ=1

ϕjk
κ (0, 0, I(j+k))Rκ

1

Ij,k+1 = D1Ijk −
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κ=1

ϕjk
κ (0, 0, I(j+k))Rκ
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Prolonged infinitesimal generators:

pr v1 = −y∂x + x∂y − uy∂ux
+ ux∂uy

− 2uxy∂uxx
+ (uxx − uyy)∂uxy

− 2uxy∂uyy
+ · · · ,

pr v2 = −u∂x + x∂u + (1 + u2
x)∂ux

+ uxuy∂uy

+ 3uxuxx∂uxx
+ (uyuxx + 2uxuxy)∂uxy

+ (2uyuxy + uxuyy)∂uyy
+ · · · ,

pr v3 = −u∂y + y∂u + uxuy∂ux
+ (1 + u2

y)∂uy

+ (uyuxx + 2uxuxy)∂uxx
+ (2uyuxy + uxuyy)∂uxy

+ 3uyuyy∂uyy
+ · · · .

Ijk = ι(ujk)

Phantom differential invariants:

I00 = I10 = I01 = I11 = 0

Principal curvatures:
I20 = κ1 I02 = κ2
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pr v1 = −y∂x + x∂y − uy∂ux
+ ux∂uy

− 2uxy∂uxx
+ (uxx − uyy)∂uxy

− 2uxy∂uyy
+ · · · ,

pr v2 = −u∂x + x∂u + (1 + u2
x)∂ux

+ uxuy∂uy

+ 3uxuxx∂uxx
+ (uyuxx + 2uxuxy)∂uxy

+ (2uyuxy + uxuyy)∂uyy
+ · · · ,

pr v3 = −u∂y + y∂u + uxuy∂ux
+ (1 + u2

y)∂uy

+ (uyuxx + 2uxuxy)∂uxx
+ (2uyuxy + uxuyy)∂uxy

+ 3uyuyy∂uyy
+ · · · .

Ijk = ι(ujk)

Phantom differential invariants:
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Principal curvatures:
I20 = κ1 I02 = κ2



Phantom recurrence formulae:
κ1 = I20 = D1I10 − R2

1 = −R2
1,

0 = I11 = D1I01 − R3
1 = −R3

1,

I21 = D1I11 − (κ1 − κ2)R
1
1 = −(κ1 − κ2)R

1
1,

0 = I11 = D2I10 − R2
2 = −R2

2,

κ2 = I02 = D2I01 − R3
2 = −R3

2,

I12 = D2I11 − (κ1 − κ2)R
1
2 = −(κ1 − κ2)R

1
2.

Maurer–Cartan invariants:
R1

1 = −Y1, R2
1 = −κ1, R3

1 = 0,

R2
1 = −Y2, R2

2 = 0, R2
3 = −κ2.

Commutator invariants:

Y1 =
I21

κ1 − κ2

=
D1κ2

κ1 − κ2

Y2 =
I12

κ1 − κ2

=
D2κ1

κ2 − κ1

[D1,D2 ] = D1D2 −D2D1 = Y2D1 − Y1 D2,
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Third order recurrence relations:

I30 = D1κ1 = κ1,1, I21 = D2κ1 = κ1,2, I12 = D1κ2 = κ2,1, I03 = D2κ2 = κ2,2,

Fourth order recurrence relations:

I40 = κ1,11 −
3κ2

1,2

κ1 − κ2

+ 3κ3
1,

I31 = κ1,12 −
3κ1,2κ2,1

κ1 − κ2

= κ1,21 +
κ1,1κ1,2 − 2κ1,2κ2,1

κ1 − κ2

,

I22 = κ1,22 +
κ1,1κ2,1 − 2κ2

2,1

κ1 − κ2

+ κ1κ
2
2 = κ2,11 −

κ1,2κ2,2 − 2κ2
1,2

κ1 − κ2

+ κ2
1κ2,

I13 = κ2,21 +
3κ1,2κ2,1

κ1 − κ2

= κ2,12 −
κ2,1κ2,2 − 2κ1,2κ2,1

κ1 − κ2

,

I04 = κ2,22 +
3κ2

2,1

κ1 − κ2

+ 3κ3
2.

$ The two expressions for I31 and I13 follow from the commutator formula.
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Fourth order recurrence relations

I40 = κ1,11 −
3κ2

1,2

κ1 − κ2

+ 3κ3
1,

I31 = κ1,12 −
3κ1,2κ2,1

κ1 − κ2

= κ1,21 +
κ1,1κ1,2 − 2κ1,2κ2,1

κ1 − κ2

,

I22 = κ1,22 +
κ1,1κ2,1 − 2κ2

2,1

κ1 − κ2

+ κ1κ
2
2 = κ2,11 −

κ1,2κ2,2 − 2κ2
1,2

κ1 − κ2

+ κ2
1κ2,

I13 = κ2,21 +
3κ1,2κ2,1

κ1 − κ2

= κ2,12 −
κ2,1κ2,2 − 2κ1,2κ2,1

κ1 − κ2

,

I04 = κ2,22 +
3κ2

2,1

κ1 − κ2

+ 3κ3
2.

$ $ The two expressions for I22 imply the Codazzi syzygy

κ1,22 − κ2,11 +
κ1,1κ2,1 + κ1,2κ2,2 − 2κ2

2,1 − 2κ2
1,2

κ1 − κ2

− κ1κ2 (κ1 − κ2) = 0,

which can be written compactly as

K = κ1κ2 = − (D1 + Y1)Y1 − (D2 + Y2)Y2.

=⇒ Gauss’ Theorema Egregium



Generating Differential Invariants

♥ From the general structure of the recurrence relations, one proves that the
Euclidean differential invariant algebra ISE(3) is generated by the prin-
cipal curvatures κ1,κ2 or, equivalently, the mean and Gauss curvatures,
H,K, through the process of invariant differentiation:

I = Φ(H,K,D1H,D2H,D1K,D2K,D2
1H, . . . )

♦ Remarkably, for suitably generic surfaces, the Gauss curvature can be
written as a universal rational function of the mean curvature and its
invariant derivatives of order ≤ 4:

K = Ψ(H,D1H,D2H,D2
1H, . . . ,D4

2H)

and hence ISE(3) is generated by mean curvature alone!

♠ To prove this, given

K = κ1κ2 = − (D1 + Y1)Y1 − (D2 + Y2)Y2

it suffices to write the commutator invariants Y1, Y2 in terms of H.



Equi-affineSurfaces

M = R3 G = SA(3) = SL(3)! R3 dimG = 11.

g · z = Az + b, detA = 1, z =





x
y
u




 ∈ R

3.

Surfaces S ⊂ M = R3:
u = f(x, y)



Hyperbolic case

uxxuyy − u2
xy < 0

Cross-section:

x = y = u = ux = uy = uxy = 0, uxx = 1, uyy = −1,

uxyy = uxxx, uxxy = uyyy = 0.

Power series normal form:

u(x, y) = 1
2(x

2 − y2) + 1
6 c(x

3 + 3xy2) + · · ·

=⇒ Nonsingular : c )= 0.



Invariantization — differential invariants: Ijk = ι(ujk)

Phantom differential invariants:

ι(x) = ι(y) = ι(u) = ι(ux) = ι(uy) = ι(uxy) = ι(uxxy) = ι(uyyy) = 0,

ι(uxx) = 1, ι(uyy) = −1, ι(uxxx)− ι(uxyy) = 0.

Pick invariant:
P = ι(uxxx) = ι(uxyy).

Basic differential invariants of order 4:

Q0 = ι(uxxxx), Q1 = ι(uxxxy), Q2 = ι(uxxyy),

Q3 = ι(uxyyy), Q4 = ι(uyyyy),

Invariant differential operators:

D1 = ι(Dx), D2 = ι(Dy).



• Since the moving frame has order 3, one can generate all higher order
differential invariants from the basic differential invariants of order
≤ 4.

• This is a consequence of a general theorem, that follows directly from the
recurrence formulae.

• Thus, to prove that the Pick invariant generates I(G), it suffices to gener-
ate Q0, . . . , Q4 from P by invariant differentiation.



Infinitesimal generators:

v1 = x ∂x − u ∂u, v2 = y ∂y − u ∂u,

v3 = y ∂x, v4 = u ∂x, v5 = x ∂y,

v6 = u ∂y, v7 = x ∂u, v8 = y ∂u,

w1 = ∂x, w2 = ∂y, w3 = ∂u,

• The translations will be ignored, as they play no role in the higher order
recurrence formulae.



Recurrence formulae

Diι(ujk) = ι(Diujk) +
8∑

κ=1

ϕjk
κ (x, y, u(j+k))Rκ

i , j + k ≥ 1

D1Ijk = Ij+1,k +
8∑

κ=1

ϕjk
κ (0, 0, I(j+k))Rκ

1

D2Ijk = Ij,k+1 +
8∑

κ=1

ϕjk
κ (0, 0, I(j+k))Rκ

2

ϕjk
κ (0, 0, I(j+k)) = ι[ϕjk

κ (x, y, u(j+k)) ] — invariantized

prolonged infinitesimal generator coefficients

Rκ
i — Maurer–Cartan invariants



Phantom recurrence formulae:

0 = D1I10 = 1 +R7
1,

0 = D1I01 = R8
1,

0 = D1I20 = I30 − 3R1
1 −R2

1,

0 = D1I11 = −R3
1 +R5

1,

0 = D1I02 = I12 +R1
1 + 3R2

1,

0 = D1I21 = I31 − I30R
3
1 − 2I30R

5
1 + R6

1,

0 = D1I03 = I13 − 3I30R
3
2 − 3R6

2,

0 = D2I10 = R7
2,

0 = D2I01 = −1 + R8
2,

0 = D2I20 = −3R1
2 −R2

2,

0 = D2I11 = I30 −R3
2 +R5

2,

0 = D2I02 = R1
2 + 3R2

2,

0 = D2I21 = I22 − I30R
3
2 − 2I30R

5
2 +R6

2,

0 = D2I03 = I04 − 3I30R
3
2 − 3R6

2.



Maurer–Cartan invariants:

R1 =

(
1
2 P,−

1
2 P,

3Q1 +Q3

12P
, 14Q0 −

1
4Q2 −

1
2 P

2,
3Q1 +Q3

12P
,− 1

4Q1 +
1
4Q3,−1, 0

)

R2 =

(

0, 0,
3Q2 +Q4

12P
+ 1

2 P,
1
4Q1 −

1
4Q3,

3Q2 +Q4

12P
− 1

2 P,−
1
4Q2 +

1
4Q4 −

1
2 P

2, 0, 1

)

Fourth order invariants:

P1 = D1P = 1
4Q0 +

3
4Q2, P2 = D2P = 1

4Q1 +
3
4Q3.

Commutator:

D3 = [D1,D2 ] = D1D2 −D2D1 = Y1 D1 + Y2D2,

Commutator invariants:

Y1 = R1
2 −R3

1 = −
3Q1 +Q3

12P
, Y2 = R5

2 − R2
1 =

3Q2 +Q4

12P
.



Another fourth order invariant:

P3 = D3P = D1D2P −D2D1P = Y1P1 + Y2P2. (∗)

Nondegeneracy condition: If

det

(
P1 P2

D1Pj D2Pj

)

)= 0 for j = 1, 2, or 3,

we can solve (∗) and
D3Pj = Y1D1Pj + Y2D2Pj

for the fourth order commutator invariants:

Y1 = −
3Q1 +Q3

12P
, Y2 =

3Q2 +Q4

12P
.



So far, we have constructed four combinations of the fourth order differential
invariants

S1 = Q0 + 3Q2, S2 = Q1 + 3Q3,

S3 = 3Q1 +Q3, S4 = 3Q2 +Q4.

as rational functions of the invariant derivatives of the Pick invariant. To
obtain the final fourth order differential invariant:

12P (D1S4 −D2S3 ) = 48P 2Q0 − 30P 2S1 + 18P 2S4

− 3S2S3 − S2
3 + 3S1S4 + S2

4 .

$ $ $ This completes the proof $ $ $



General Issues

The equivariant moving frame calculus is
completely constructive, and can be applied to

all finite-dimensional Lie transformation groups

almost all infinite-dimensional Lie pseudo-groups

(eventually locally freely acting)

Fully determines the recurrence relations and hence, in principle, all identities
for the algebra of differential invariants I(G).

$ Structure theory for differential invariant algebras?

In particular, minimal generating sets require a syzygy bound:

K = Ψ(H, . . . ,D(n)H) n ≤ N ???
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T HANK YOU !


