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The Distance Histogram

Definition. The distance histogram of a finite set of
points P = {z1, . . . , zn} ⊂ V is the function

ηP (r) = #
{

(i, j)
∣∣∣ 1 ≤ i < j ≤ n, d(zi, zj) = r

}
.



The Distance Set

The support of the histogram function,

supp ηP = ∆P ⊂ R
+

is the distance set of P .

Erdös’ distinct distances conjecture (1946):

If P ⊂ Rm, then # ∆P ≥ cm,ε (# P )2/m−ε



Characterization of Point Sets

Note: If P̃ = g · P is obtained from P ⊂ Rm by a
rigid motion g ∈ E(n), then they have the same
distance histogram: ηP = ηP̃ .

Question: Can one uniquely characterize, up to rigid
motion, a set of points P{z1, . . . , zn} ⊂ Rm by its
distance histogram?

=⇒ Tinkertoy problem.



Yes:

η = 1, 1, 1, 1,
√

2,
√

2.



No:

Kite Trapezoid

η =
√

2,
√

2, 2,
√

10,
√

10, 4.



No:

P = {0, 1, 4, 10, 12, 17}

Q = {0, 1, 8, 11, 13, 17}
⊂ R

η = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17

=⇒ G. Bloom, J. Comb. Theory, Ser. A 22 (1977) 378–379



Theorem. (Boutin–Kemper) Suppose n ≤ 3 or n ≥ m + 2.
Then there is a Zariski dense open subset in the space of n
point configurations in Rm that are uniquely characterized,
up to rigid motion, by their distance histograms.

=⇒ M. Boutin, G. Kemper, Adv. Appl. Math. 32 (2004) 709–735



Limiting Curve Histogram



Limiting Curve Histogram



Limiting Curve Histogram



Sample Point Histograms
Cumulative distance histogram: n = #P :

ΛP (r) =
1

n
+

2

n2

∑

s≤r

ηP (s) =
1

n2
#

{
(i, j)

∣∣∣ d(zi, zj) ≤ r
}

,

Note
η(r) = 1

2 n2[ ΛP (r) − ΛP (r − δ) ] δ ) 1.

Local distance histogram:

λP (r, z) =
1

n
#

{
j

∣∣∣ d(z, zj) ≤ r
}

=
1

n
#(P ∩ Br(z))

Ball of radius r centered at z:

Br(z) = { v ∈ V | d(v, z) ≤ r }

Note:

ΛP (r) =
1

n

∑

z ∈P

λP (r, z) =
1

n2

∑

z ∈P

#(P ∩ Br(z)).



Limiting Curve Histogram Functions

Length of a curve

l(C) =
∫

C
ds < ∞

Local curve distance histogram function z ∈ V

hC(r, z) =
l(C ∩ Br(z))

l(C)

=⇒ The fraction of the curve contained in the ball of radius r
centered at z.

Global curve distance histogram function:

HC(r) =
1

l(C)

∫

C
hC(r, z(s)) ds.



Convergence

Theorem. Let C be a regular plane curve. Then, for both
uniformly spaced and randomly chosen sample points
P ⊂ C, the cumulative local and global histograms converge
to their continuous counterparts:

λP (r, z) −→ hC(r, z), ΛP (r) −→ HC(r),

as the number of sample points goes to infinity.



Square Curve Histogram with Bounds



Kite and Trapezoid Curve Histograms



Histogram–Based Shape Recognition
500 sample points

Shape (a) (b) (c) (d) (e) (f)

(a) triangle 2.3 20.4 66.9 81.0 28.5 76.8

(b) square 28.2 .5 81.2 73.6 34.8 72.1

(c) circle 66.9 79.6 .5 137.0 89.2 138.0

(d) 2 × 3 rectangle 85.8 75.9 141.0 2.2 53.4 9.9

(e) 1 × 3 rectangle 31.8 36.7 83.7 55.7 4.0 46.5

(f) star 81.0 74.3 139.0 9.3 60.5 .9



Curve Histogram Conjecture

Two sufficiently regular plane curves C

and C̃ have identical global distance

histogram functions, so HC(r) = HC̃(r)

for all r ≥ 0, if and only if they are

rigidly equivalent: C . C̃.



“Proof Strategies”

• Show that any polygon obtained from (densely) discretizing a
curve does not lie in the Boutin–Kemper exceptional set.

• Polygons with obtuse angles: taking r small, one can recover
(i) the set of angles and (ii) the shortest side length from
HC(r). Further increasing r leads to further geometric
information about the polygon . . .

• Expand HC(r) in a Taylor series at r = 0 and show that the
corresponding integral invariants characterize the curve.



Taylor Expansions

Local distance histogram function:

LhC(r, z) = 2r + 1
12 κ

2 r3 +
(

1
40 κκss + 1

45 κ
2
s + 3

320 κ
4

)
r5 + · · · .

Global distance histogram function:

HC(r) =
2r

L
+

r3

12L2

∮

C
κ2 ds +

r5

40L2

∮

C

(
3
8 κ

4 − 1
9 κ

2
s

)
ds + · · · .



Space Curves

Saddle curve:

z(t) = (cos t, sin t, cos 2 t), 0 ≤ t ≤ 2π.

Convergence of global curve distance histogram function:



Surfaces
Local and global surface distance histogram functions:

hS(r, z) =
area (S ∩ Br(z))

area (S)
, HS(r) =

1

area (S)

∫ ∫

S
hS(r, z) dS.

Convergence for sphere:



Area Histograms

Rewrite global curve distance histogram function:

HC(r) =
1

L

∮

C
hC(r, z(s)) ds =

1

L2

∮

C

∮

C
χr(d(z(s), z(s′)) ds ds′

where χr(t) =

{
1, t ≤ r,

0, t > r,

Global curve area histogram function

AC(r) =
1

L3

∮

C

∮

C

∮

C
χr(area (z(ŝ), z(ŝ′), z(ŝ′′)) dŝ d ŝ′ dŝ′′,

d ŝ — equi-affine arc length element L =
∫

C
dŝ

Discrete cumulative area histogram

AP (r) =
1

n(n − 1)(n − 2)

∑

z %=z′ %=z′′∈P

χr(area (z, z′, z′′)),

Boutin & Kemper: the area histogram uniquely determines
generic point sets P ⊂ R2 up to equi-affine motion



Area Histogram for Circle

' ' Joint invariant histograms — convergence???



Triangle Distance Histograms

Z = (. . . zi . . .) ⊂ M — sample points on a subset M ⊂ Rn

(curve, surface, etc.)

Ti,j,k — triangle with vertices zi, zj, zk.

Side lengths:

σ(Ti,j,k) = ( d(zi, zj), d(zi, zk), d(zj, zk) )

Discrete triangle histogram:

S = σ(T ) ⊂ K

Triangle inequality cone

K = { (x, y, z) | x, y, z ≥ 0, x + y ≥ z, x + z ≥ y, y + z ≥ x } ⊂ R
3.



Triangle Histogram Distributions

Circle Triangle Square

=⇒ Madeleine Kotzagiannidis



Practical Object Recognition

• Scale-invariant feature transform (SIFT) (Lowe)

• Shape contexts (Belongie–Malik–Puzicha)

• Integral invariants (Krim, Kogan, Yezzi, Pottman, . . . )

• Shape distributions (Osada–Funkhouser–Chazelle–Dobkin)
Surfaces: distances, angles, areas, volumes, etc.

• Gromov–Hausdorff and Gromov-Wasserstein distances (Mémoli)
=⇒ lower bounds



Signature Curves

Definition. The signature curve S ⊂ R2 of a curve C ⊂ R2 is

parametrized by the two lowest order differential invariants

S =

{ (

κ ,
dκ

ds

) }

⊂ R
2

=⇒ One can recover the signature curve from the Taylor

expansion of the local distance histogram function.



Other Signatures

Euclidean space curves: C ⊂ R3

S = { (κ , κs , τ ) } ⊂ R
3

• κ — curvature, τ — torsion

Euclidean surfaces: S ⊂ R3 (generic)

S =
{ (

H , K , H,1 , H,2 , K,1 , K,2

) }
⊂ R

3

• H — mean curvature, K — Gauss curvature

Equi–affine surfaces: S ⊂ R3 (generic)

S =
{ (

P , P,1 , P,2, P,11

) }
⊂ R

3

• P — Pick invariant



Equivalence and Signature Curves

Theorem. Two regular curves C and C are equivalent:

C = g · C

if and only if their signature curves are identical:

S = S

=⇒ object recognition



Symmetry and Signature

Theorem. The dimension of the symmetry group

GN = { g | g · N ⊂ N }

of a nonsingular submanifold N ⊂ M equals the

codimension of its signature:

dimGN = dim N − dimS



Discrete Symmetries

Definition. The index of a submanifold N equals
the number of points in N which map to a generic
point of its signature:

ιN = min
{

# Σ−1{w}
∣∣∣ w ∈ S

}

=⇒ Self–intersections

Theorem. The cardinality of the symmetry group of
a submanifold N equals its index ιN .

=⇒ Approximate symmetries



The Index

Σ

−→

N S



=⇒ Steve Haker



 









   














 










   














   



























   














 









   














   
















Signature Metrics

• Hausdorff

• Monge–Kantorovich transport

• Electrostatic repulsion

• Latent semantic analysis (Shakiban)

• Histograms (Kemper–Boutin)

• Diffusion metric

• Gromov–Hausdorff



Signatures

s

κ

Classical Signature−→

Original curve
κ

κs

Differential invariant signature



Signatures

s

κ

Classical Signature−→

Original curve
κ

κs

Differential invariant signature



Occlusions

s

κ

Classical Signature−→

Original curve
κ

κs

Differential invariant signature



The Baffler Jigsaw Puzzle



The Baffler Solved

=⇒ Dan Hoff



Advantages of the Signature Curve

• Purely local — no ambiguities

• Symmetries and approximate symmetries

• Extends to surfaces and higher dimensional
submanifolds

• Occlusions and reconstruction

Main disadvantage: Noise sensitivity due to
dependence on high order derivatives.



Noise Reduction

' Use lower order invariants to construct a signature:

• joint invariants

• joint differential invariants

• integral invariants

• topological invariants

• . . .



Joint Invariants

A joint invariant is an invariant of the k-fold
Cartesian product action of G on M × · · ·× M :

I(g · z1, . . . , g · zk) = I(z1, . . . , zk)

A joint differential invariant or semi-differential
invariant is an invariant depending on the derivatives
at several points z1, . . . , zk ∈ N on the submanifold:

I(g · z(n)
1 , . . . , g · z(n)

k ) = I(z(n)
1 , . . . , z

(n)
k )



Joint Euclidean Invariants

Theorem. Every joint Euclidean invariant is a
function of the interpoint distances

d(zi, zj) = ‖ zi − zj ‖

zi

zj



Joint Equi–Affine Invariants

Theorem. Every planar joint equi–affine invariant is
a function of the triangular areas

[ i j k ] = 1
2 (zi − zj) ∧ (zi − zk)

zi

zj

zk



Joint Projective Invariants

Theorem. Every joint projective invariant is a
function of the planar cross-ratios

[ zi, zj, zk, zl, zm ] =
A B

C D

A B

C

D



• Three–point projective joint differential invariant
— tangent triangle ratio:

[ 0 2
!

0 ] [ 0 1
!

1 ] [ 1 2
!

2 ]

[ 0 1
!

0 ] [ 1 2
!

1 ] [ 0 2
!

2 ]

z0 z1

z2

z0 z1

z2



Joint Invariant Signatures

If the invariants depend on k points on a p-dimensional

submanifold, then you need at least

+ > k p

distinct invariants I1, . . . , I" in order to construct a syzygy.

Typically, the number of joint invariants is

+ = k m − r = (#points) (dimM) − dim G

Therefore, a purely joint invariant signature requires at least

k ≥
r

m − p
+ 1

points on our p-dimensional submanifold N ⊂ M .



Joint Euclidean Signature

z0 z1

z2
z3

a

b

c d

e

f



Joint signature map:

Σ : C×4 −→ S ⊂ R
6

a = ‖ z0 − z1 ‖ b = ‖ z0 − z2 ‖ c = ‖ z0 − z3 ‖

d = ‖ z1 − z2 ‖ e = ‖ z1 − z3 ‖ f = ‖ z2 − z3 ‖

=⇒ six functions of four variables

Syzygies: Φ1(a, b, c, d, e, f) = 0 Φ2(a, b, c, d, e, f) = 0

Universal Cayley–Menger syzygy ⇐⇒ C ⊂ R2

det

∣∣∣∣∣∣∣

2a2 a2 + b2 − d2 a2 + c2 − e2

a2 + b2 − d2 2b2 b2 + c2 − f2

a2 + c2 − e2 b2 + c2 − f2 2c2

∣∣∣∣∣∣∣
= 0



Joint Equi–Affine Signature

Requires 7 triangular areas:

[ 0 1 2 ] , [ 0 1 3 ] , [ 0 1 4 ] , [ 0 1 5 ] , [ 0 2 3 ] , [ 0 2 4 ] , [ 0 2 5 ]

z0

z1

z2

z3

z4

z5



Joint Invariant Signatures

• The joint invariant signature subsumes other signatures, but
resides in a higher dimensional space and contains a lot of
redundant information.

• Identification of landmarks can significantly reduce the
redundancies (Boutin)

• It includes the differential invariant signature and semi-
differential invariant signatures as its “coalescent bound-
aries”.

• Invariant numerical approximations to differential invariants
and semi-differential invariants are constructed (using
moving frames) near these coalescent boundaries.



Statistical Sampling

Idea: Replace high dimensional joint invariant signatures by
increasingly dense point clouds obtained by multiply
sampling the original submanifold.

• The equivalence problem requires direct comparison of
signature point clouds.

• Continuous symmetry detection relies on determining the
underlying dimension of the signature point clouds.

• Discrete symmetry detection relies on determining densities of
the signature point clouds.


