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Sur la théorie, st importante sans doute, mazis
pour nous st obscure, des K groupes de Lie infinis>,
nous ne savons rien que ce qui trouve dans les
mémoires de Cartan, premaiere exploration a travers
une jungle presque tmpénétrable; mais celle-ci men-
ace de se refermer sur les sentiers déja tracés, si

[’on ne procede bientot a un indispensable travail de

défrichement.

— André Weil, 1947



What’s the Deal with Infinite-Dimensional Groups?

e Lie invented Lie groups to study symmetry and solution of
differential equations.

¢ In Lie’s time, there were no abstract Lie groups. All groups
were realized by their action on a space.

& Therefore, Lie saw no essential distinction between finite-
dimensional and infinite-dimensional group actions.

However, with the advent of abstract Lie groups, the two
subjects have gone in radically different directions.

(¢ The general theory of finite-dimensional Lie groups has been
rigorously formalized and applied.

& But there is still no generally accepted abstract object that
represents an infinite-dimensional Lie pseudo-group!
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Ehresmann’s Trinity

1953:

e Lie Pseudo-groups
o Jets

e Groupoids



Lie Pseudo-groups in Action

Lie — Medolaghi — Vessiot
Cartan
Ehresmann

Kuranishi, Spencer, Goldschmidt, Guillemin,
Sternberg, Kumpera, ...

Relativity
Noether’s (Second) Theorem



Gauge theory and field theories:
Maxwell, Yang—Mills, conformal, string, ...

Fluid mechanics, metereology: Euler, Navier—
Stokes, boundary layer, quasi-geostropic, ...

Solitons (in 2 + 1 dimensions):
K-P, Davey-Stewartson, ...

Kac—Moody
Linear and linearizable PDEs

Lie groups!



Moving Frames

In collaboration with Juha Pohjanpelto and Jeongoo
Cheh, I have recently established a moving frame theory
for infinite-dimensional Lie pseudo-groups mimicking the
earlier equivariant approach for finite-dimensional Lie
groups developed with Mark Fels and others.

The finite-dimensional theory and algorithms have had
a very wide range of significant applications, including
differential geometry, differential equations, calculus of
variations, computer vision, Poisson geometry and solitons,
numerical methods, relativity, classical invariant theory, ...



What’s New?

In the infinite-dimensional case, the moving frame
approach provides new constructive algorithms for:

Invariant Maurer—Cartan forms
Structure equations

Moving frames

Differential invariants

Invariant differential operators
Basis Theorem

Syzygies and recurrence formulae



e Further applications:

Symmetry groups of differential equations
Vessiot group splitting; explicit solutions
Gauge theories

Calculus of variations

Ll

Numerical methods



Symmetry Groups — Review

System of differential equations:

Ay(a:,u(")):O, v=12,....k

By a symmetry, we mean a transformation that maps solutions
to solutions.

Lie: To find the symmetry group of the differential equations,
work infinitesimally.

The vector field

2 xuax goaxuaua

a=1

is an infinitesimal symmetry if its flow exp(¢v) is a one-
parameter symmetry group of the differential equation.



To find the infinitesimal symmetry conditions, we prolong v
to the jet space whose coordinates are the derivatives appearing
in the differential equation:

p q n
(n) _
M ;£8x1+z Z

a=1

0 u
where
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= &/ (z,u™; M
Infinitesimal invariance criterion:
viW(A ) =0 whenever A=0.
Infinitesimal determining equations:

Lz, u; £, ™) =0



The Korteweg—deVries equation

U+ Uy, +uu, =0

Symmetry generator:

v ="1(t,z,u) % +&(t, z,u) % + p(t,z,u) 90
Prolongation:
ou, c’?u Ou,.
where

t __ 2

©" =@, +u,p, — u,T, —uu, T, —u,g, —uf’

rxrxr




Infinitesimal invariance:

Trx

V(g)(ut+uxxx+uux):90t+gp —|—ugpx—|—uxg0:O

on solutions

Infinitesimal determining equations:
szgt_%m't SOu:_%Tt:_Qfa;

Tot = Toge = Ty — ° 7 :QDUUZO

General solution:

T =c¢; + 3¢y, § = ¢y + 3t + ¢y, Y = c3 — 2c u.



Basis for symmetry algebra g ;-

v, = 0,
v, =0,
vy =10, +0,,

v,=3t0,+x20, —2u0,.

The symmetry group G,y is four-dimensional

(z,t,u) — (Nt4+a, x+ct+b A 2u+c)



Vl — 8.[:, V2 — 833,

vy =10, + 0,, v,=3t0,+x0, —2ud,.

Commutator table:

Vi Vo Vs Vi
\'2 0 0 0 \'2
Vs 0 0 v, 3v,
Vg 0 —Vy 0 —2v,
Vg -V, —3v, 2V, 0

Entries: [v,;,v,] = Ek: ijvk Cy; — structure constants of g



Navier—Stokes Equations

%_IZ-Fu-Vu:—Vp—FVAU, V-u=0.

Symmetry generators:
ve=a(t) 0, +a(t)- 0, —a’(t)-x0,
Vo =0,
s=x-0,+2t9;,—u-9,—2p09,
r=xA0,+uAd,

w, = h(t) 0

p



Kadomtsev—Petviashvili
(KP) Equation

u,. =0

3 1
(ut+§uux+1ummm)xi Yy

NI

Symmetry generators:
vi=f0)0,+ 3y '), + (52 f () F 371" (1) 0,
+(=2ufO+22 ") F 5 0°1"(1) 0,
w,=g(t)0, T 3yg'(t)0, T 5y9"(t)d,,
z, = h(t) 9, + 2 1'(t) 9,.

—> Kac—Moody loop algebra Afll)
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Main Goals

Given a system of partial differential equations:

e Find the structure of its symmetry (pseudo-) group G

directly from the determining equations.
e Find and classify its differential invariants.

e Use symmetry reduction or group splitting to construct

explicit solutions.



Pseudo-groups
M — smooth (analytic) manifold

Definition. A pseudo-group is a collection of

local diffeomorphisms ¢: M — M such that
o Identity: 1,, €0,
e Inverses: e leg,
e Restriction: U Cdomyp =— ¢ |U€q,
o Continuation: domp = U,_and ¢ |U._€§ = ¢ €,

e Composition: imp C domy =— Pop e g.




Pseudo-groups
M — smooth (analytic) manifold

Definition. A pseudo-group is a collection of

local diffeomorphisms ¢: M — M such that
o Identity: 1,, €0,
e Inverses: o teg,
e Restriction: U Cdomyp =— ¢ |U €q,
o Continuation: domp=J U, and ¢ |U.€§ = p €,

e (Composition: imp C domy — Yop €.

—> small category with inverses



Lie Pseudo-groups

Definition. A Lie pseudo-group ¢ is a pseudo-group whose
transformations are the solutions to an involutive system of

partial differential equations:
F(z,o™) =0.

called the nonlinear determining equations.
—> analytic (Cartan—Kdhler)

* % Key complication: A abstract object G * %



A Non-Lie Pseudo-group

Acting on M = R?:

where ¢ € D(R) is any local diffeomorphism.

& Cannot be characterized by a system of partial differential

equations
Az, y, X™ Y™y =0




Theorem. (Johnson, Itskov) Any non-Lie pseudo-group can be
completed to a Lie pseudo-group with the same differential

invariants.

Completion of previous example:

where ¢, 9 € D(R).



Infinitesimal Generators

g — Lie algebra of infinitesimal generators of

the pseudo-group G

z = (x,u) — local coordinates on M

Vector field:

YT DRI g +§q:soo‘i
oy 0z ‘7 Ox* [ ou®
Vector field jet:
v o= (M= )
, 8#A<-b 8k:Cb
A= 024 — 0z01... 0z



The infinitesimal generators of G are the solutions to the

Infinitesimal (Linearized) Determining Equations

L(z,¢™) =0 (+)

Remark: If G is the symmetry group of a system of differential
equations A(z,u(™) = 0, then (*) is the (involutive
completion of) the usual Lie determining equations for the

symmetry group.



The Diffeomorphism Pseudo-group

M  — smooth m-dimensional manifold
D =D(M) — pseudo-group of all local diffeomorphisms
Z = ¢(2)
z=(z1,...,2™) — source coordinates
Z = (Z,...,Z™) — target coordinates



Jets

Jets are a fancy name for Taylor polynomials/series.
For 0 <n < oc:

Given a smooth map ¢: M — M, written in local coordinates as
Z = p(2), let j. |, denote its n—jet at z € M, i.e., its n'P

order Taylor polynomial or series based at z.
J*(M, M) is the n*™® order jet bundle, whose points are the jets.

Local coordinates on J" (M, M):
) 0k Zb

(2,20 = (... 2% ... Z5% ...), Z



Diffeomorphism Jets

The n*" order diffeomorphism jet bundle is the subbundle
D™ = DM(M) c JV(M, M)
consisting of n*" order jets of local diffeomorphisms ¢: M — M.

The Inverse Function Theorem tells us it is defined by the
non-vanishing of the Jacobian determinant:

det( Z8) = det(92%/02") # 0

A Lie pseudo-group G C D defines the subbundle
G ={F(z,Z2™) =0} c D

consisting of the jets of pseudo-group diffeomorphisms, and
therefore characterized by the pseudo-group’s nonlinear
determining equations.



G = {F(z,Z"™)=0} c D

¢ Local coordinates on G (”), e.g., the restricted diffeomor-
phism jet coordinates z¢, Z%, are viewed as the pseudo-
group parameters, playing the same role as the local co-
ordinates on a Lie group G.

& The pseudo-group jet bundle G (") does not form a group, but
rather a groupoid.



Groupoid Structure
Double fibration:
g(n)

oM/ N
M M

0-(”)(27 Z(n)) = Z — source map
T(n) (Z, Z(n)) — Z — target map

You are only allowed to multiply h(™ . () if
o™ (hM)) = +(0) (g(n))

* Composition of Taylor polynomials/series is well-defined
only when the source of the second matches the target of
the first.



One-dimensional case: M =R

Source coordinate: x Target coordinate: X

Local coordinates on D) (R)

g™ = (2, X, X_, X, X

xx) rxxx’) °°

5 Xp)

Jet:
X[h]=X+X,h+iX KW +iX, . B+ -

—> Taylor polynomial /series at a source point x



Groupoid multiplication of diffeomorphism jets:
(X, X, X, Xyyy oo ) (2, X, X, Xy o)
= (2, X, X X, Xy X+ Xy X2, ...

—> Composition of Taylor polynomials/series

The higher order terms are expressed in terms of Bell polynomi-
als according to the general Faa—di-Bruno formula.

e The groupoid multiplication (or Taylor composition) is only
defined when the source coordinate X of the first multipli-
cand matches the target coordinate X of the second.



Structure of Lie Pseudo-groups

The structure of a finite-dimensional Lie group
(G is specified by its Maurer—Cartan forms — a basis
pt, ..., u" for the right-invariant one-forms:

dp* =" CF p' A !
1<J



What should be the Maurer—Cartan forms of a Lie
pseudo-group?
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What should be the Maurer—Cartan forms of a Lie
pseudo-group?
Cartan: Use exterior differential systems and

prolongation to determine the structure equations.

I propose a direct approach based on the following
observation:

The Maurer—Cartan forms for a pseudo-group can be
identified with the right-invariant one-forms on
the jet groupoid G{*.

The structure equations can be determined immediately
from the infinitesimal determining equations.



The Variational Bicomplex

x The differential one-forms on an infinite jet bundle
split into two types:

e horizontal forms

e contact forms

Definition. A contact form 6 is a differential form
that vanishes on all jets: 6 | j ¢ = 0 for all local
diffeomorphisms ¢ € D.



For the diffeomorphism jet bundle
D) ¢ J*°(M, M)

Local coordinates:

source target jet

Horizontal forms:

Basis contact forms:

0% =dgZh=dz% - > Z% ,dz"

a=1



One-dimensional case: M =R

Local coordinates on D(*)(R)

(z, X,X,,X,., X

T Txxrxr? °°

LX)

Horizontal form:

dx

Contact forms:
O=dX — X, dx

0, =dX, — X, dz

e the contact forms vanish when X = op(x)



The Variational Bicomplex

—> Vinogradov, Tsujishita, 1. Anderson

Infinite jet space
J = lim J"
n— oo

Local coordinates
209 = (>N = (o2t S )

Horizontal one-forms

det, ... daP

Contact (vertical) one-forms

9 =duf§ — Z uJ,de

=1



Bigrading of the differential forms on J°°:

r=4 of dx

Q* — EB Qr,s

T8 s=# of 69
Vertical and Horizontal Differentials



The Variational Bicomplex

dH . Qs Qr—i—l,s

dV . QS Qr,s—l—l

p .
dy F =Y (D,F)dz’ — total differential
i=1
F
dy F = 8_a 05 —  “variation”
o, oug

QPR R = QPR [P

— integration by parts



dv

R — Q9.0

® conservation laws

dm

The Variational Bicomplex

dyv
91,3 dn
dvk
012 du
dvk
QL1 9
dyv
Ql,O dH
Lagrangians

dm

du

du

du

PDEs (Euler-Lagrange)

dv

Qp—l,O

d

dv

Op:0

)
)
)

Helmholtz conditions



The Simplest Example. M =R? z,ucR

Horizontal form

dx

Contact (vertical) forms
0 =du—u,dz
0,=D,0=du, —u,, dx
Opp = D30 = dutyy — vy, du



Differential F=F(x,u,u,u,,, ...)

oF oF oF OF
dF = e dx+% du + ou du,, + ou

OF oF OF
= (D, F)dz + %9+ o 6.+

8” rxr

rxr

oF _oF  or

0 + ...



Lagrangian form: A= L(z,u™)dr ¢ QL0

Vertical derivative — variation:
d\ = di, A= dy, L Ndzx
oL oL oL
= 0 + 0, 0, A d Qb1
( ou’ Tou T ou, T ) v e
Integration by parts — compute modulo im d :
oL oL oL
d\ ~ O\ = D? — e ]ONd
( ou T ou, Mt ou,., ) !
=&(L) O N dx

—> FKuler-Lagrange source form.



Maurer—Cartan Forms

The Maurer—Cartan forms for the diffeomorphism pseudo-group
are the right-invariant one-forms on the diffeomorphism jet
groupoid D),

Key observation:
The target coordinate functions Z¢ are right-invariant.

Thus, when we decompose
az* = o" + p

horizontal contact
the two constituents are also right-invariant.



Invariant horizontal forms:
m
ot =dy 2% =Y Z8dzP

Invariant total differentiation (dual operators):

m

b zb

b
Invariant contact forms:

p=dg 2" =0"=dz" - Z 7% dz"

a=1

MZ:D? b:]:DZal o« o e Dzan@b



One-dimensional case: M =R

Contact forms:
O=dX — X, dx
O,=D060=dX, —X_  dz
O, =030 =dX,, - X, dz
Right-invariant horizontal form:
oc=dy,X=X_dz
Invariant differentiation:

x

x



Invariant contact forms:
p=0=dX — X _dx
S, dX, - X, dx

M x XM b% b%

Xa: @mm B Xma: @a:
Hxx = D?XU = X3

x

XL

) dx

X3

fy, = Dx



The Structure Equations for
the Diffeomorphism Pseudo—group

Maurer—Cartan series:

1
WlH] =32 o5 ua H?
A .

H = (H', ... ,H™) — formal parameters

dp[H] =Vp[H]|AN(p[H] - dZ)

do = —du]0] =Vu[0] Ao




One-dimensional case: M =R

Structure equations:

do=px Ao da[H] = 2L [H] A (u[H] - dZ)

where
o=X,dr=dX —p

plH] = p+px H+guxx H + -

dul| H
d[[H : = px +hxx H+guxxx H + -




In components:

do=p, No

n—1
n
d:un:_lun—l—l/\o- + Z (Z) lu'i—l—l/\:un—i
1=0

[=£] -
n—27+1(n+1
= oA — E ,
Hotl j=1 n+1 ( J

) g N g1 — -

— (Cartan



The Maurer—Cartan Forms
for a Lie Pseudo-group

The Maurer—Cartan forms for G are obtained by
restricting the diffeomorphism Maurer—Cartan

forms 0@, 1% to G\°) ¢ D),

*x The resulting one-forms are no longer linearly

independent.



Theorem. The Maurer-Cartan forms on G(°) satisfy the
invariant infinitesimal determining equations

L(... 2% ...ph ...)=0 (% %)
obtained from the infinitesimal determining equations

LO... 2% ... ...)=0 (%)
by replacing
e source variables z® by target variables Z¢

e derivatives of vector field coefficients ¢4 by
right-invariant Maurer—Cartan forms %



The Structure Equations
for a Lie Pseudo-group

Theorem. The structure equations for the pseudo-group
G are obtained by restricting the universal diffeomorphism

structure equations
dul H] = Vu[H] A (p[H] —dZ)
to the solution space of the linearized involutive system

(... 2% ...u%, ...)=0.



The Korteweg—deVries Equation

u, +u,,, +uu, =0

Diffeomorphism Maurer—Cartan forms:

t T U t t t T U t T
s By By By Bxs Hys Hps ---5 Ry By Brxs -



Maurer—Cartan determining equations:



Structure equations:
dp' = —p' Apt,

dp® = —p' Ap® = 3U pt A pt — 5 At




& The structure equations are on the principal bundle G (OO);
if G is a finite-dimensional Lie group, then G(>) ~ M x G,
and the usual Lie group structure equations are found by

restriction to the target fibers { Z = ¢} ~ G.



Lie—Kumpera Example

Linearized determining system

o= —— £, =0 S



Maurer—Cartan forms:

Jz%d:c:fxdx, T:Umdx—l—%du: _”fwx?f2+fx du
u:dX—gdx:df—fxd:E, V:dU—de:ﬁ—gdu:—
u u

_du dU-U,dz df, — [, dx

Hx

U U Iz 7 o =0
vy = %(de _ U, d) — % (U — U, dx)

~ du  dU—U,dx _de—fmdw )

Vy = U+T: fx




Right-invariant linearized system:

First order structure equations:

VAo d A VAT
; V= —V o —
U X U

dy = —do =

vy AN(T+20)
U




Action of Pseudo-groups on Submanifolds

a.k.a. Solutions of Differential Equations

G — Lie pseudo-group acting on p-dimensional submanifolds:

N={u=f(x)}CM

For example, G may be the symmetry group of a
system of differential equations

Az, u™) =0

and the submanifolds the graphs of solutions u = f(x).



Prolongation

Jv=J"(M,p) — n*® order submanifold jet bundle

Local coordinates :
2 = (™) = (.2t ud )
Prolonged action of G on submanifolds:
(:U,u(”)) — (X, ﬁ(n))
Coordinate formulae:
o = F9(x, (™ g(n))

— Implicit differentiation.



Differential Invariants

A differential invariant is an invariant function 7: J* — R
for the prolonged pseudo-group action

I(g'" - (z,u™)) = I(z,u™)

—> curvature, torsion, ...

Invariant differential operators:

D,,....,D,

— arc length derivative

[(G) — the algebra of differential invariants




The Basis Theorem

Theorem. The differential invariant algebra I(G) is locally
generated by a finite number of differential invariants

I, ... I,
and p = dim S invariant differential operators
Dy, ... ,D,

meaning that every differential invariant can be locally
expressed as a function of the generating invariants and
their invariant derivatives:

D,l,=D,D, D, I,.

—> Lie groups: Lie, Ovsiannikov

—> Lie pseudo-groups: Tresse, Kumpera, Pohjanpelto—O



Key Issues

e Minimal basis of generating invariants: Iy,...,1,

e Commutation formulae for

the invariant differential operators:
p .
7
[Djapk] — Z ik D,
i=1

—> Non-commutative differential algebra

e Syzygies (functional relations) among

the differentiated invariants:
(... DI, ...)=0

— (Codazzi relations



Examples of Differential Invariants

Euclidean Group on R’

G = SE(3) = SO(3) x R?

— group of rigid motions

z +— Rz+b R € SO(3)

e Induced action on curves and surfaces.



Euclidean Curves C C R3

curvature: order = 2

torsion: order = 3
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Euclidean Curves C C R3

e v~ — curvature: order = 2
e 7 — torsion: order = 3
® K, Ty, Kes,... — derivatives w.r.t. arc length ds

Theorem. Every Euclidean differential invariant of a
space curve C' C R3 can be written

I =H(R, Tk Ty Kygy «-- )

s’ '8



Euclidean Curves C C R3

e v~ — curvature: order = 2
e 7 — torsion: order = 3
® K, Ty, Kes,... — derivatives w.r.t. arc length ds

Theorem. Every Euclidean differential invariant of a
space curve C' C R3 can be written

I =F(Ky Ty Ky Ty Kggy - )

Thus, k£ and 7 generate the differential invariants of
space curves under the Euclidean group.



Euclidean Surfaces S C R3

e H=1(k + Ky — mean curvature: order = 2

o K = K{Ky — Gauss curvature: order = 2



Euclidean Surfaces S C R3

e H=1(k + Ky — mean curvature: order = 2
o K = kKK, — Gauss curvature: order = 2
e D,H,D,H,D,K,D,K,D?H,... — derivatives with

respect to the equivariant Frenet frame on S



Euclidean Surfaces S C R3

e H=1(k + Ky — mean curvature: order = 2
o K = kKK, — Gauss curvature: order = 2
e D,H,D,H,D,K,D,K,D?H,... — derivatives with

respect to the equivariant Frenet frame on S

Theorem. Every Euclidean differential invariant of a
non-umbilic surface S C R? can be written

[ = F(H,K,D,H,D,H,D,K,D,K,D?H, ...)



Euclidean Surfaces S C R3

e H=1(k + Ky — mean curvature: order = 2
o K = kKK, — Gauss curvature: order = 2
e D,H,D,H,D,K,D,K,D?H,... — derivatives with

respect to the equivariant Frenet frame on S

Theorem. Every Euclidean differential invariant of a
non-umbilic surface S C R? can be written

[ = F(H,K,D,H,D,H,D,K,D,K,D?H, ...)

Thus, H, K generate the differential invariants of
(generic) Euclidean surfaces.



Euclidean Surfaces

Theorem.

The algebra of Euclidean differential invariants for
a non-degenerate surface is generated by the
mean curvature through invariant differentiation.




Euclidean Surfaces

Theorem.

The algebra of Euclidean differential invariants for
a non-degenerate surface is generated by the
mean curvature through invariant differentiation.

K = ®(H,D,H,D,H, ...)



Applications of Differential Invariants

Every (regular) G-invariant system of differential equations can
be expressed in terms of the differential invariants:

F(...D,I, ...)=0

Every G-invariant variational problem can be expressed in terms
of the differential invariants and an invariant volume form:

Z[u]:/L(... DI ...)Q

Question: How to go directly from the differential invariant form
of the variational problem to the differential invariant
form of the Euler-Lagrange equations? (See Kogan—0.)



Characterization of moduli spaces

Integration of invariant ordinary differential equa-
tions.

Symmetry reduction and group splitting (Vessiot’s
method) for finding explicit solutions to partial
differential equations.

Equivalence and symmetry of solutions/submanifolds
— differential invariant signatures.
Image processing.

Design of symmetry-preserving numerical
algorithms.



Computing Differential Invariants

& The infinitesimal method:
v(l)=0 for every infinitesimal generator vVEg

—> Requires solving differential equations.

O Moving frames. (Cartan; PJO-Fels—Pohjanpelto— - - - )
e Completely algebraic.
e Can be adapted to arbitrary group and pseudo-group actions.

e Describes the complete structure of the differential invariant
algebra [(G) — using only linear algebra & differentiation!

e Prescribes differential invariant signatures for equivalence and
symmetry detection.



Moving Frames for Pseudo—Groups

In the finite-dimensional Lie group case, a moving frame is

defined as an equivariant map

pm g — G

—> All classical moving frames can be thus interpreted.



However, we do not have an appropriate abstract object to

represent our pseudo-group G.

Consequently, the moving frame will be an equivariant section
A (p— AL
of the pulled-back pseudo-group jet groupoid:

G HM)

M ~——- J"



Moving Frames for Pseudo—Groups

Definition. A (right) moving frame of order n is a right-
equivariant section p(™ : V* — H(™ defined on an open
subset V™ C J".

— Groupoid action.

Proposition. A moving frame of order n exists if and only if

G acts freely and regularly.



Freeness

& For Lie group actions, freeness means no isotropy. For
infinite-dimensional pseudo-groups, this definition cannot
work, and one must restrict to the transformation jets of

order n, using the n'® order isotropy subgroup:
g(% — {g(n) c gén) ‘ g™ . (M) = () }

Definition. At a jet 2("™) € J”, the pseudo-group G acts
o freely if Qi@) = {1}

o locally freely if
o G is a discrete subgroup of G{™

z(n)
e the orbits have dim = r,, = dim gi,”)



Freeness Theorem

Theorem. Ifn > 1 and G acts locally freely
at z(") € J", then it acts locally freely at any
(k) € Jk with 7% (2(F)) = 2() for all k& > n.



The Normalization Algorithm

To construct a moving frame :

I. Compute the prolonged pseudo-group action
uy — Up = Fg(x, ul™, g(m)

by implicit differentiation.

II. Choose a cross-section to the pseudo-group orbits:

Uyl = s k=1,...,r, =fiber dim G



III. Solve the normalization equations
Uge = Fye(z,ul™,g™) = c,
for the n*" order pseudo-group parameters
g™ = p(”)(x,u(”))
IV. Substitute the moving frame formulas into the un-
normalized jet coordinates u$ = F&(z,u(™, g(™).

The resulting functions form a complete system of n*" order

differential invariants

]f‘((x,u(”)) _ Fg(x,u("),p(")(x,u(”)))



Invariantization

A moving frame induces an invariantization process, denoted ¢,
that projects functions to invariants, differential operators
to invariant differential operators; differential forms to

invariant differential forms, etc.

Geometrically, the invariantization of an object is the unique

invariant version that has the same cross-section values.

Algebraically, invariantization amounts to replacing the group
parameters in the transformed object by their moving frame

formulas.



Invariantization

In particular, invariantization of the jet coordinates leads to a
complete system of functionally independent differential

invariants:

W(z') = H L(ug) =19
e Phantom differential invariants:  I5" = ¢,

e The non-constant invariants form a functionally indepen-

dent generating set for the differential invariant algebra

Z(9)



e Replacement Theorem

> Differential forms — invariant differential forms
L(dx') = W' i=1,...,p

{ Differential operators —

invariant differential operators

1=1,...,p



Recurrence Formulae

* % Invariantization and differentiation + %

do not commute

The recurrence formulae connect the differentiated invariants

with their invariantized counterparts:

DI =I5, + MS,

— M§$, — correction terms



¢ Once established, the recurrence formulae completely
prescribe the structure of the differential invariant
algebra [(G) — thanks to the functional independence

of the non-phantom normalized differential invariants.

* % The recurrence formulae can be explicitly determined
using only the infinitesimal generators and linear

differential algebral



Korteweg—deVries Equation
Prolonged Symmetry Group Action:
T =e3M(t+ \)
X=eMOgt+z+ AN+
U=eMu+\,)
Up = €_5>\4(ut — Agliy,)

_ =3\
Uy =c¢ u,
_ _—8X\4 2
Urp=e (utt — 23Uy, + A3 Um)

Urx = Dx DU = €_6A4(Ut:g - )‘3Um)

—4Xy
Uy g



Cross Section:

T

M(t+N)=0
X=eMMgt+z+ A+ ),) =0
U=e?Mu+N) =0

Uy = e M(u, — Mu,) =1

Moving Frame:

AM=—t, A=-z,  Ay=-u, A =:log(u, +uu,)



Moving Frame:

)\1 — _t,

Invariantization:

)\2 — —CU,

1

Ay =—u, A\, = glog(u, + uu,)

[’(UK) — UK ‘)\1:—t,>\2:—sc,>\3:—u,>\4:log(ut—|—uum)/5

Phantom Invariants:



Normalized differential invariants:

Iy, = t(u,) = (u, +sz)3/5

Iy, = L(Utt) S z;fj_u;z:‘);ium
o = o) = o e

Loy = tug,) = () +u52$)4/5

oy = t(Uyyy) = -

u, + uu,



Invariantization:

LOE(t @ty Uy Uy Uy Uy Uy v )

= F(u(t), o), (), elu,), (), e(uy,), ), 0y, )

— F(Hlszv[00711071017120711171027 )
= F(0,0,0, L, 1oy, I5g, 141, Lo, - -- )

Replacement Theorem:

U, +uu.. +u
Ozb(ut+uux+uxxx) :1+103: : = mmm.

U, + uu,

Invariant horizontal one-forms:
wh = (dt) = (u, + uu, ) dt,

w? = 1(dz) = —u(u, + vu,)? dt + (u, + uu )/ dz.



Invariant differential operators:

D, = [’(Dt) = (ut + uux)_3/5Dt + u(ut + uum)_3/5Dm7

~1/5

DQ — [’(Dm) — (ut + uum) / Da:

Commutation formula;
[D17D2] - 101 Dl

Recurrence formulae:
D1101 - 111 - %Igl - %101120; D2101 - 102 - %Igl - 21011117
D1]20 - ISO + 2Ill - §101]20 - §12207 D2I20 - 121 + 2101]11 - 2131]20 - §111]20’
Dllll = I21 + 102 o 2101111 o 2111[207 D2111 = 112 + 101]02 _ 2131[11 _ 211217

D1]02 - 112 - %101102 - %102[207 D2102 - Io3 - 3131102 - %102[117



Generating differential invariants:

2
U Uyt 2uuy, + utug,

101 = L(Ua:) = (Ut n qu)3/57 ]2() = L(Utt) — (ut n uux)8/5

Fundamental syzygy:
D%IOI + %]017)1[20 — Dylyy + (% Iy + % ]01) DIy,

3
—Dyly; — % Iy 15, — % 15150 + % I5, = 0.



Lie—Tresse-Kumpera Example

Horizontal coframe

Implicit differentiations

1

xT

@’



Prolonged pseudo-group transformations on surfaces S C R?

ua: u xx _uy
KT YT
Uxx=7%s " g T s

U, Uy, [ oo U
Uxy = fzy_ yfg UYY_%

—> action is free at every order.

Coordinate cross-section
u, U

U rxr __ I I
X:f:O, U:f—zl, UX f2 f3 —O, UXX—“'—O




Moving frame

f207 fm:uD fxx:usw fxxx:u:m:

Differential invariants

U "y
y — J = w
Uxy /> J1 = uumy;guwuy Uyy = Jy= %
Invariant horizontal forms
dy X = f.dr — udz, dyY = dy — dy,
Invariant differentiations
D, = 1 D, D,=D



Higher order differential invariants: D7 Dy J

UL — U.U
_ _ xy xy
J’l—DlJ— 3 = Jq,
U

“uyy—“§ 2
Jo=D,J = = J, — J~.
2 2 2 2

Recurrence formulae:
D,J=J,, D,J = J, — J?,
D,J, = J;, Dy,J, =J,—3JJq,
D,Jy=J,, D,Jy = J, — J Js,



The Master Recurrence Formula

p . ~
dg 1y = Y (D,I)w ZI WY
1=1
where
VI =0(pG) =% (... H ... I¢ ...5 ... 9% ...)

are the invariantized prolonged vector field coefficients, which
are particular linear combinations of

7% = «(¢}) — invariantized Maurer—Cartan forms
prescribed by the invariantized prolongation map.

e The invariantized Maurer—Cartan forms are subject to the
inmvariantized determining equations:

CH ...,HP, I',...)I% ... A% ...)=0



p . A~
dgI§ = > IF,w" +95(... 7% -..)
1=1

Step 1: Solve the phantom recurrence formulas
p . ~
0=dyl§ = > If,w +v5(... 7% ...)
i=1
for the invariantized Maurer—Cartan forms:

p .
Ya=2 Ja' (+)
i=1

Step 2: Substitute (x) into the non-phantom recurrence
formulae to obtain the explicit correction terms.



¢ Only uses linear differential algebra based on the specifica-
tion of cross-section.

@ Does not require explicit formulas for the moving frame, the
differential invariants, the invariant differential operators, or
even the Maurer—Cartan forms!



The Korteweg—deVries Equation (continued)
Recurrence formula:

dlj;, = Ij+17kw1 + Ij7k+1w2 + L(gpjk)
Invariantized Maurer—Cartan forms:

Ur) =X W& =n Up)=v=v, ur)=¢"=X,
Invariantized determining equations:

)\x:)\u:luu:]/t:]/xzo

V=, Vu:—z/ixz—%)\t
)\tt:)\t:c:)\:cx: = Vg = =0

Invariantizations of prolonged vector field coefficients:
L(T) = )\7 L(S) = K, L(SO) =, L(th) = _101V o %)\b

L(Spm) = —Ip Ay, L(‘Ptt) = —2I,v — %Izo)‘tv



Phantom recurrence formulae:
0=dy H' =w' + )\

0= dHH2:w2+,u,
0= dy Iy, = Lyw" + [w* +1 = w' + [ w? + v,
0=dyl,=Lyw' + 1w+ =Lyw' + 1w — v — 3\

— Solve for A= -w', p=-w? v=-w'-1I,w?

A =2 (Iyg + I )wh + 2 (I}, + 13))w?.
Non-phantom recurrence formulae:
dy Iy, = Ijjw' + Ingw® — Iy Ay,

dy Iy = Iygw' + Ipjw® — 2110 — 510,
dy Iy = Ipw' + Iw* — I — 210 ),

dy Ioo = 112“’1 + 103"‘32 - %102)‘157



D1101 - 111 - %Igl - %101120;
DiIyy = I3 + 21 — %Imlzo - §I220:
DIy = Iy + Ipy — g[01[11 - g[n[zov

D1]02 - [12 - §[o1102 - %102[207

D2101 - 102 - %Igl - 21011117
Dzlzo - 121 + 2101111 - %Igllzo - %Inlzoa
Dyl =I5 + [01[02 - 2131111 - 211217

Dzloz - 103 - %I(%Ioz - %102[117



Lie—Tresse—Kumpera Example (continued)

U
X = f z), Y = Y, U=
(@) (@)
Phantom recurrence formulae:
0=dH =o'+, 0=dl,=J, @+, — 7,
Solve for pulled-back Maurer—Cartan forms:
fyl:sz—l—i‘}, 73:J3w2—|—193,

Recurrence formulae: dy = w?
dJ = J, w4+ (Jy — J) @* + 9, — J 9,

dJ, = Jyww' +(J,—3JJ)w* +9, —JI, — J, 0,
dJy, = Jywt + (J5 — J Jy) @* + 95 — Jy 0,



