Object Recognition,

Symmetry Detection,
Jigsaw Puzzles, and Cancer

Peter J. Olver
University of Minnesota

http://www.math.umn.edu/ ~olver

Symmetry

Definition. A symmetry of a set S is a transformation that preserves it:

$$
g \cdot S=S
$$

* * The set of symmetries forms a group, called the symmetry group of the set S.

Discrete Symmetry Group

Rotations by 90° :

$$
G_{S}=\mathbb{Z}_{4}
$$

Rotations + reflections:

$$
G_{S}=\mathbb{Z}_{4} \ltimes \mathbb{Z}_{4}
$$

Continuous Symmetry Group

Rotations:

$$
G_{S}=\mathrm{SO}(2)
$$

Rotations + reflections:

$$
G_{S}=\mathrm{O}(2)
$$

Conformal Inversions:

$$
\bar{x}=\frac{x}{x^{2}+y^{2}} \quad \bar{y}=\frac{y}{x^{2}+y^{2}}
$$

* A continuous group is known as a Lie group
- in honor of Sophus Lie.

Continuous Symmetries of a Square

Symmetry

* To define the set of symmetries requires a priori specification of the allowable transformations or, equivalently, the underlying geometry.
G - transformation group or pseudo-group of allowable transformations of the ambient space M

Definition. A symmetry of a subset $S \subset M$ is an allowable transformation $g \in G$ that preserves it:

$$
g \cdot S=S
$$

What is the Symmetry Group?

Allowable transformations:
Rigid motions

$$
G=\mathrm{SE}(2)=\mathrm{SO}(2) \ltimes \mathbb{R}^{2}
$$

$$
G_{S}=\mathbb{Z}_{4} \ltimes \mathbb{Z}^{2}
$$

What is the Symmetry Group?

Allowable transformations:
Rigid motions

$$
G=\mathrm{SE}(2)=\mathrm{SO}(2) \ltimes \mathbb{R}^{2}
$$

$$
G_{S}=\{e\}
$$

Local Symmetries

Definition. $g \in G$ is a local symmetry of $S \subset M$ based at a point $z \in S$ if there is an open neighborhood $z \in U \subset M$ such that

$$
g \cdot(S \cap U)=S \cap(g \cdot U)
$$

$G_{z} \subset G$ - the set of local symmetries based at z.
Global symmetries are local symmetries at all $z \in S$:

$$
G_{S} \subset G_{z} \quad G_{S}=\bigcap_{z \in S} G_{z}
$$

* \star The set of all local symmetries forms a groupoid!

Groupoids

Definition. A groupoid is a small category such that every morphism has an inverse.
\Longrightarrow Brandt (quadratic forms), Ehresmann (Lie pseudo-groups)
Mackenzie, R. Brown, A. Weinstein

Groupoids form the appropriate framework for studying objects with variable symmetry.

Groupoids

Double fibration:

$\boldsymbol{\sigma} \quad$ - \quad source map
$\boldsymbol{\tau} \quad$ - target map
$\star \star$ You are only allowed to multiply $\alpha \cdot \beta \in \mathcal{G}$ if

$$
\boldsymbol{\sigma}(\alpha)=\boldsymbol{\tau}(\beta)
$$

Groupoids

- Source and target of products:

$$
\boldsymbol{\sigma}(\alpha \cdot \beta)=\boldsymbol{\sigma}(\beta) \quad \boldsymbol{\tau}(\alpha \cdot \beta)=\boldsymbol{\tau}(\alpha) \quad \text { when } \quad \boldsymbol{\sigma}(\alpha)=\boldsymbol{\tau}(\beta)
$$

- Associativity:

$$
\alpha \cdot(\beta \cdot \gamma)=(\alpha \cdot \beta) \cdot \gamma \quad \text { when defined }
$$

- Identity section: $\quad e: M \rightarrow \mathcal{G} \quad \boldsymbol{\sigma}(e(x))=x=\boldsymbol{\tau}(e(x))$

$$
\alpha \cdot e(\boldsymbol{\sigma}(\alpha))=\alpha=e(\boldsymbol{\tau}(\alpha)) \cdot \alpha
$$

- Inverses: $\boldsymbol{\sigma}(\alpha)=x=\boldsymbol{\tau}\left(\alpha^{-1}\right), \quad \boldsymbol{\tau}(\alpha)=y=\boldsymbol{\sigma}\left(\alpha^{-1}\right)$,

$$
\alpha^{-1} \cdot \alpha=e(x), \quad \alpha \cdot \alpha^{-1}=e(y)
$$

Jet Groupoids

\Longrightarrow Ehresmann

The set of Taylor polynomials of degree $\leq n$, or Taylor series $(n=\infty)$ of local diffeomorphisms $\Psi: M \rightarrow M$ forms a groupoid.
\diamond Algebraic composition of Taylor polynomials/series is well-defined only when the source of the second matches the target of the first.

The Symmetry Groupoid

Definition. The symmetry groupoid of $S \subset M$ is

$$
\mathcal{G}_{S}=\left\{(g, z) \mid z \in S, g \in G_{z}\right\} \subset G \times S
$$

Source and target maps: $\boldsymbol{\sigma}(g, z)=z, \quad \boldsymbol{\tau}(g, z)=g \cdot z$.
Groupoid multiplication and inversion:

$$
(h, g \cdot z) \cdot(g, z)=(g \cdot h, z) \quad(g, z)^{-1}=\left(g^{-1}, g \cdot z\right)
$$

Identity map: $e(z)=(z, e) \in \mathcal{G}_{S}$

What is the Symmetry Groupoid?

$$
G=\mathrm{SE}(2)
$$

Corners:

$$
G_{z}=G_{S}=\mathbb{Z}_{4}
$$

Sides: G_{z} generated by

$$
G_{S}=\mathbb{Z}_{4}
$$

some translations
180° rotation around z

What is the Symmetry Groupoid?

Cogwheels $\quad \Longrightarrow$ Musso-Nicoldi

What is the Symmetry Groupoid?

Cogwheels $\quad \Longrightarrow$ Musso-Nicoldi

$$
G_{S}=\mathbb{Z}_{6}
$$

$$
G_{S}=\mathbb{Z}_{2}
$$

Geometry = Group Theory

Felix Klein's Erlanger Programm (1872):

Each type of geometry is founded on an underlying transformation group.

Plane Geometries/Groups

Euclidean geometry:

$\mathrm{SE}(2)$ - rigid motions (rotations and translations)

$$
\binom{\bar{x}}{\bar{y}}=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y}+\binom{a}{b}
$$

$\mathrm{E}(2)$ - plus reflections?
Equi-affine geometry:
SA(2) - area-preserving affine transformations:

$$
\binom{\bar{x}}{\bar{y}}=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\binom{x}{y}+\binom{a}{b} \quad \alpha \delta-\beta \gamma=1
$$

Projective geometry:
PSL(3) - projective transformations:

$$
\bar{x}=\frac{\alpha x+\beta y+\gamma}{\rho x+\sigma y+\tau} \quad \bar{y}=\frac{\lambda x+\mu y+\nu}{\rho x+\sigma y+\tau}
$$

The Equivalence Problem

G - transformation group acting on M

Equivalence:

Determine when two subsets

$$
S \quad \text { and } \quad \bar{S} \subset M
$$

are congruent:

$$
\bar{S}=g \cdot S \quad \text { for } \quad g \in G
$$

Symmetry:

Find all symmetries or self-congruences:

$$
S=g \cdot S
$$

Tennis, Anyone?

Invariants

The solution to an equivalence problem rests on understanding its invariants.

Definition. If G is a group acting on M, then an invariant is a real-valued function $I: M \rightarrow \mathbb{R}$ that does not change under the action of G :

$$
I(g \cdot z)=I(z) \quad \text { for all } \quad g \in G, \quad z \in M
$$

* If G acts transtively, there are no (non-constant) invariants.

Differential Invariants

Given a submanifold (curve, surface, ...)

$$
S \subset M
$$

a differential invariant is an invariant of the prolonged action of G on its Taylor coefficients (jets):

$$
I\left(g \cdot z^{(k)}\right)=I\left(z^{(k)}\right)
$$

Euclidean Plane Curves

$$
G=\mathrm{SE}(2) \quad \text { acts on curves } \quad C \subset M=\mathbb{R}^{2}
$$

The simplest differential invariant is the curvature, defined as the reciprocal of the radius of the osculating circle:

$$
\kappa=\frac{1}{r}
$$

Curvature

Curvature

Curvature

Euclidean Plane Curves: $\quad G=\mathrm{SE}(2)$

Differentiation with respect to the Euclidean-invariant arc length element $d s$ is an invariant differential operator, meaning that it maps differential invariants to differential invariants.

Thus, starting with curvature κ, we can generate an infinite collection of higher order Euclidean differential invariants:

$$
\kappa, \quad \frac{d \kappa}{d s}, \quad \frac{d^{2} \kappa}{d s^{2}}, \quad \frac{d^{3} \kappa}{d s^{3}}, \quad \cdots
$$

Theorem. All Euclidean differential invariants are functions of the derivatives of curvature with respect to arc length:

```
\kappa, }\mp@subsup{\kappa}{s}{},\quad\mp@subsup{\kappa}{ss}{},
```


Euclidean Plane Curves: $G=\mathrm{SE}(2)$

Assume the curve $C \subset M$ is a graph: $\quad y=u(x)$

Differential invariants:
$\kappa=\frac{u_{x x}}{\left(1+u_{x}^{2}\right)^{3 / 2}}, \quad \frac{d \kappa}{d s}=\frac{\left(1+u_{x}^{2}\right) u_{x x x}-3 u_{x} u_{x x}^{2}}{\left(1+u_{x}^{2}\right)^{3}}, \quad \frac{d^{2} \kappa}{d s^{2}}=\cdots$
Arc length (invariant one-form):

$$
d s=\sqrt{1+u_{x}^{2}} d x, \quad \frac{d}{d s}=\frac{1}{\sqrt{1+u_{x}^{2}}} \frac{d}{d x}
$$

Equi-affine Plane Curves: $G=\mathrm{SA}(2)=\mathrm{SL}(2) \ltimes \mathbb{R}^{2}$

Equi-affine curvature:

$$
\kappa=\frac{5 u_{x x} u_{x x x x}-3 u_{x x x}^{2}}{9 u_{x x}^{8 / 3}} \quad \frac{d \kappa}{d s}=\cdots
$$

Equi-affine arc length:

$$
d s=\sqrt[3]{u_{x x}} d x \quad \frac{d}{d s}=\frac{1}{\sqrt[3]{u_{x x}}} \frac{d}{d x}
$$

Theorem. All equi-affine differential invariants are functions of the derivatives of equi-affine curvature with respect to equi-affine arc length: $\kappa, \quad \kappa_{s}, \quad \kappa_{s s}, \ldots$

Plane Curves

Theorem. Let G be an ordinary ${ }^{\star}$ Lie group acting on $M=\mathbb{R}^{2}$. Then for curves $C \subset M$, there exists a unique (up to functions thereof) lowest order differential invariant κ and a unique (up to constant multiple) invariant differential form $d s$. Every other differential invariant can be written as a function of the "curvature" invariant and its derivatives with respect to "arc length": $\kappa, \quad \kappa_{s}, \quad \kappa_{s s}$,

* ordinary $=$ transitive + no pseudo-stabilization.

Moving Frames

The equivariant method of moving frames provides a systematic and algorithmic calculus for determining complete systems of differential invariants, invariant differential forms, invariant differential operators, etc., and the structure of the non-commutative differential algebra they generate.

Equivalence \& Invariants

- Equivalent submanifolds $S \approx \bar{S}$ must have the same invariants: $I=\bar{I}$.

Constant invariants provide immediate information:

$$
\text { e.g. } \quad \kappa=2 \quad \Longleftrightarrow \quad \bar{\kappa}=2
$$

Non-constant invariants are not useful in isolation, because an equivalence map can drastically alter the dependence on the submanifold parameters:

$$
\text { e.g. } \quad \kappa=x^{3} \quad \text { versus } \quad \bar{\kappa}=\sinh x
$$

Syzygies

However, a functional dependency or syzygy among the invariants is intrinsic:

$$
\text { e.g. } \kappa_{s}=\kappa^{3}-1 \quad \Longleftrightarrow \quad \bar{\kappa}_{\bar{s}}=\bar{\kappa}^{3}-1
$$

- Universal syzygies - Gauss-Codazzi
- Distinguishing syzygies.

Theorem. (Cartan)
Two regular submanifolds are locally equivalent if and only if they have identical syzygies among all their differential invariants.

Finiteness of Generators and Syzygies

A There are, in general, an infinite number of differential invariants and hence an infinite number of syzygies must be compared to establish equivalence.
\bigcirc But the higher order differential invariants are always generated by invariant differentiation from a finite collection of basic differential invariants, and the higher order syzygies are all consequences of a finite number of low order syzygies!

Example - Plane Curves

If non-constant, both κ and κ_{s} depend on a single parameter, and so, locally, are subject to a syzygy:

$$
\begin{equation*}
\kappa_{s}=H(\kappa) \tag{*}
\end{equation*}
$$

But then

$$
\kappa_{s s}=\frac{d}{d s} H(\kappa)=H^{\prime}(\kappa) \kappa_{s}=H^{\prime}(\kappa) H(\kappa)
$$

and similarly for $\kappa_{s s s}$, etc.
Consequently, all the higher order syzygies are generated by the fundamental first order syzygy ($*$).

Thus, for Euclidean (or equi-affine or projective or ...) plane curves we need only know a single syzygy between κ and κ_{s} in order to establish equivalence!

Signature Curves

Definition. The signature curve $\Sigma \subset \mathbb{R}^{2}$ of a plane curve $C \subset \mathbb{R}^{2}$ is parametrized by the two lowest order differential invariants

$$
\chi: C \longrightarrow \Sigma=\left\{\left(\kappa, \frac{d \kappa}{d s}\right)\right\} \subset \mathbb{R}^{2}
$$

\Longrightarrow Calabi, PJO, Shakiban, Tannenbaum, Haker

Theorem. Two regular curves C and \bar{C} are locally equivalent:

$$
\bar{C}=g \cdot C
$$

if and only if their signature curves are identical:

$$
\bar{\Sigma}=\Sigma
$$

\Longrightarrow regular: $\left(\kappa_{s}, \kappa_{s s}\right) \neq 0$.

Continuous Symmetries of Curves

Theorem. For a connected curve, the following are equivalent:

- All the differential invariants are constant on C :

$$
\kappa=c, \quad \kappa_{s}=0, \quad \ldots
$$

- The signature Σ degenerates to a point: $\operatorname{dim} \Sigma=0$
- C is a piece of an orbit of a 1-dimensional subgroup $H \subset G$
- C admits a one-dimensional local symmetry group

Discrete Symmetries of Curves

Definition. The index of a completely regular point $\zeta \in \Sigma$ equals the number of points in C which map to it:

$$
i_{\zeta}=\# \chi^{-1}\{\zeta\}
$$

Regular means that, in a neighborhood of ζ, the signature is an embedded curve - no self-intersections.

Theorem. If $\chi(z)=\zeta$ is completely regular, then its index counts the number of discrete local symmetries of C.

The Index

C

Σ

The Curve $x=\cos t+\frac{1}{5} \cos ^{2} t, y=\sin t+\frac{1}{10} \sin ^{2} t$

The Original Curve

Euclidean Signature

Equi-affine Signature

The Curve $x=\cos t+\frac{1}{5} \cos ^{2} t, y=\frac{1}{2} x+\sin t+\frac{1}{10} \sin ^{2} t$

The Original Curve

Euclidean Signature

Equi-affine Signature

Nut 1

Nut 2

Closeness: 0.137673

Signature Curve Nut 1

Hook 1

Nut 1

Closeness: 0.031217

Signature Curve Hook 1

Signatures

Original curve

Classical Signature

Differential invariant signature

Signatures

Original curve

Classical Signature

Differential invariant signature

Occlusions

Original curve

Differential invariant signature

3D Differential Invariant Signatures

Euclidean space curves: $\quad C \subset \mathbb{R}^{3}$

$$
\Sigma=\left\{\left(\kappa, \kappa_{s}, \tau\right)\right\} \subset \mathbb{R}^{3}
$$

- κ - curvature, τ - torsion

Euclidean surfaces: $S \subset \mathbb{R}^{3}$ (generic)

$$
\begin{aligned}
\Sigma & =\left\{\left(H, K, H_{, 1}, H_{, 2}, K_{, 1}, K_{, 2}\right)\right\} \subset \mathbb{R}^{6} \\
\text { or } \quad \hat{\Sigma} & =\left\{\left(H, H_{, 1}, H_{, 2}, H_{, 11}\right)\right\} \subset \mathbb{R}^{4} \\
& \bullet H-\text { mean curvature }, K-\text { Gauss curvature }
\end{aligned}
$$

Equi-affine surfaces: $S \subset \mathbb{R}^{3}$ (generic)

$$
\Sigma=\left\{\left(P, P_{, 1}, P_{, 2}, P_{, 11}\right)\right\} \subset \mathbb{R}^{4}
$$

- P - Pick invariant

Vertices of Euclidean Curves

Ordinary vertex: local extremum of curvature
Generalized vertex: $\kappa_{s} \equiv 0$

- critical point
- circular arc
- straight line segment

Mukhopadhya's Four Vertex Theorem:
A simple closed, non-circular plane curve has $n \geq 4$ generalized vertices.

"Counterexamples"

* Generalized vertices map to a single point of the signature. Hence, the (degenerate) curves obtained by replace ordinary vertices with circular arcs of the same radius all have identical signature:

\Longrightarrow Musso-Nicoldi

Bivertex Arcs

Bivertex arc: $\kappa_{s} \neq 0$ everywhere on the arc $B \subset C$ except $\kappa_{s}=0$ at the two endpoints

The signature $\Sigma=\chi(B)$ of a bivertex arc is a single arc that starts and ends on the κ-axis.

Bivertex Decomposition

v-regular curve - finitely many generalized vertices

$$
C=\bigcup_{j=1}^{m} B_{j} \cup \bigcup_{k=1}^{n} V_{k}
$$

$B_{1}, \ldots, B_{m} \quad$ bivertex arcs
$V_{1}, \ldots, V_{n} \quad$ - generalized vertices: $n \geq 4$

Main Idea: Compare individual bivertex arcs, and then decide whether the rigid equivalences are (approximately) the same.
D. Hoff \& PJO, Extensions of invariant signatures for object recognition, J. Math. Imaging Vision 45 (2013), 176-185.

Signature Metrics

Used to compare signatures:

- Hausdorff
- Monge-Kantorovich transport
- Electrostatic/gravitational attraction
- Latent semantic analysis
- Histograms
- Geodesic distance
- Diffusion metric
- Gromov-Hausdorff \& Gromov-Wasserstein

Gravitational/Electrostatic Attraction

\bigcirc Treat the two signature curves as masses or as oppositely charged wires. The higher their mutual attraction, the closer they are together.

Gravitational/Electrostatic Attraction

\bigcirc Treat the two signature curves as masses or as oppositely charged wires. The higher their mutual attraction, the closer they are together.
A In practice, we are dealing with discrete data (pixels) and so treat the curves and signatures as point masses/charges.

The Baffler Jigsaw Puzzle

俞会

Piece Locking

* * Minimize force and torque based on gravitational attraction of the two matching edges.

The Baffler Solved

The Rain Forest Giant Floor Puzzle

The Rain Forest Puzzle Solved

\Longrightarrow D. Hoff \& PJO, Automatic solution of jigsaw puzzles, J. Math. Imaging Vision 49 (2014) 234-250.

3D Jigsaw Puzzles

\Longrightarrow Anna Grim. Tim O’Connor, Ryan Schlecta

Broken Ostrich Egg Shell

\Longrightarrow Marshall Bern

Reassembling Humpty Dumpty

Benign vs. Malignant Tumors

\Longrightarrow A. Grim, C. Shakiban

Benign vs. Malignant Tumors

Benign vs. Malignant Tumors

LOCAL INDIVIDUAL SYMMETRY

Joint Invariant Signatures

If the invariants depend on k points on a p-dimensional submanifold, then you need at least

$$
\ell>k p
$$

distinct invariants I_{1}, \ldots, I_{ℓ} in order to construct a syzygy. Typically, the number of joint invariants is

$$
\ell=k m-r=(\# \text { points })(\operatorname{dim} M)-\operatorname{dim} G
$$

Therefore, a purely joint invariant signature requires at least

$$
k \geq \frac{r}{m-p}+1
$$

points on our p-dimensional submanifold $N \subset M$.

Joint Euclidean Signature

Joint signature map:

$$
\begin{array}{ccc}
\Sigma: \mathcal{C}^{\times 4} \longrightarrow \Sigma \subset \mathbb{R}^{6} \\
a=\left\|z_{0}-z_{1}\right\| & b=\left\|z_{0}-z_{2}\right\| & c=\left\|z_{0}-z_{3}\right\| \\
d=\left\|z_{1}-z_{2}\right\| & e=\left\|z_{1}-z_{3}\right\| & f=\left\|z_{2}-z_{3}\right\|
\end{array}
$$

\Longrightarrow six functions of four variables
Syzygies:

$$
\Phi_{1}(a, b, c, d, e, f)=0 \quad \Phi_{2}(a, b, c, d, e, f)=0
$$

Universal Cayley-Menger syzygy $\Longleftrightarrow \quad \mathcal{C} \subset \mathbb{R}^{2}$

$$
\operatorname{det}\left|\begin{array}{ccc}
2 a^{2} & a^{2}+b^{2}-d^{2} & a^{2}+c^{2}-e^{2} \\
a^{2}+b^{2}-d^{2} & 2 b^{2} & b^{2}+c^{2}-f^{2} \\
a^{2}+c^{2}-e^{2} & b^{2}+c^{2}-f^{2} & 2 c^{2}
\end{array}\right|=0
$$

Requires 7 triangular areas:

$$
\left[\begin{array}{lll}
0 & 1 & 2
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 3
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 4
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 5
\end{array}\right],\left[\begin{array}{lll}
0 & 2 & 3
\end{array}\right],\left[\begin{array}{lll}
0 & 2 & 4
\end{array}\right],\left[\begin{array}{lll}
0 & 2 & 5
\end{array}\right]
$$

Joint Invariant Signatures

- The joint invariant signature subsumes other signatures, but resides in a higher dimensional space and contains a lot of redundant information.
- Identification of landmarks can significantly reduce the redundancies (Boutin)
- It includes the differential invariant signature and semidifferential invariant signatures as its "coalescent boundaries".
- Invariant numerical approximations to differential invariants and semi-differential invariants are constructed (using moving frames) near these coalescent boundaries.

Statistical Sampling

Idea: Replace high dimensional joint invariant signatures by increasingly dense point clouds obtained by multiply sampling the original submanifold.

- The equivalence problem requires direct comparison of signature point clouds.
- Continuous symmetry detection relies on determining the underlying dimension of the signature point clouds.
- Discrete symmetry detection relies on determining densities of the signature point clouds.

Invariant Histograms

丸 To eliminate noise, use histograms based on joint invariants.

Definition. The distance histogram of a finite set of points $P=\left\{z_{1}, \ldots, z_{n}\right\} \subset V$ is the function

$$
\eta_{P}(r)=\#\left\{(i, j) \mid 1 \leq i<j \leq n, d\left(z_{i}, z_{j}\right)=r\right\} .
$$

Brinkman, D., \& PJO, Invariant histograms, Amer. Math. Monthly 118 (2011) 2-24.

The Distance Set

The support of the histogram function,

$$
\operatorname{supp} \eta_{P}=\Delta_{P} \subset \mathbb{R}^{+}
$$

is the distance set of P.

Erdös' distinct distances conjecture (1946):

$$
\text { If } P \subset \mathbb{R}^{m} \text {, then } \# \Delta_{P} \geq c_{m, \varepsilon}(\# P)^{2 / m-\varepsilon}
$$

Characterization of Point Sets

Note: If $\widetilde{P}=g \cdot P$ is obtained from $P \subset \mathbb{R}^{m}$ by a rigid motion $g \in \mathrm{E}(n)$, then they have the same distance histogram: $\eta_{P}=\eta_{\widetilde{P}}$.

Question: Can one uniquely characterize, up to rigid motion, a set of points $P\left\{z_{1}, \ldots, z_{n}\right\} \subset \mathbb{R}^{m}$ by its distance histogram?
\Longrightarrow Tinkertoy problem.

Yes:

$$
\eta=1, \quad 1, \quad 1, \quad 1, \quad \sqrt{2}, \quad \sqrt{2}
$$

No:
Kite
Trapezoid

$$
\eta=\sqrt{2}, \sqrt{2}, 2, \sqrt{10}, \sqrt{10}, 4
$$

No:

$$
\begin{gathered}
P=\{0,1,4,10,12,17\} \\
Q=\{0,1,8,11,13,17\} \\
\eta=1,2,3,4,5,6,7,8,9,10,11,12,13,16,17
\end{gathered}
$$

\Longrightarrow G. Bloom, J. Comb. Theory, Ser. A 22 (1977) 378-379

Theorem. (Boutin-Kemper) Suppose $n \leq 3$ or $n \geq m+2$. Then there is a Zariski dense open subset in the space of n point configurations in \mathbb{R}^{m} that are uniquely characterized, up to rigid motion, by their distance histograms.
\Longrightarrow M. Boutin, G. Kemper, Adv. Appl. Math. 32 (2004) 709-735

Distinguishing Melanomas from Moles

Melanoma

Mole

Cumulative Global Histograms

Red: melanoma Green: mole

Logistic Function Fitting

Melanoma

Mole

Logistic Function Fitting - Residuals

$$
\left.\begin{array}{rl}
\text { Melanoma } & =17.1336 \pm 1.02253 \\
\text { Mole } & =19.5819 \pm 1.42892
\end{array}\right\} \quad 58.7 \% \text { Confidence }
$$

Limiting Curve Histogram

Limiting Curve Histogram

Limiting Curve Histogram

Sample Point Histograms

Cumulative distance histogram: $n=\# P$:

$$
\Lambda_{P}(r)=\frac{1}{n}+\frac{2}{n^{2}} \sum_{s \leq r} \eta_{P}(s)=\frac{1}{n^{2}} \#\left\{(i, j) \mid d\left(z_{i}, z_{j}\right) \leq r\right\},
$$

Note

$$
\eta(r)=\frac{1}{2} n^{2}\left[\Lambda_{P}(r)-\Lambda_{P}(r-\delta)\right] \quad \delta \ll 1 .
$$

Local distance histogram:

$$
\lambda_{P}(r, z)=\frac{1}{n} \#\left\{j \mid d\left(z, z_{j}\right) \leq r\right\}=\frac{1}{n} \#\left(P \cap B_{r}(z)\right)
$$

Ball of radius r centered at z :

$$
B_{r}(z)=\{v \in V \mid d(v, z) \leq r\}
$$

Note:

$$
\Lambda_{P}(r)=\frac{1}{n} \sum_{z \in P} \lambda_{P}(r, z)=\frac{1}{n^{2}} \sum_{z \in P} \#\left(P \cap B_{r}(z)\right)
$$

Limiting Curve Histogram Functions

Length of a curve

$$
l(C)=\int_{C} d s<\infty
$$

Local curve distance histogram function $\quad z \in V$

$$
h_{C}(r, z)=\frac{l\left(C \cap B_{r}(z)\right)}{l(C)}
$$

\Longrightarrow The fraction of the curve contained in the ball of radius r centered at z.

Global curve distance histogram function:

$$
H_{C}(r)=\frac{1}{l(C)} \int_{C} h_{C}(r, z(s)) d s
$$

Convergence

Theorem. Let C be a regular plane curve. Then, for both uniformly spaced and randomly chosen sample points $P \subset C$, the cumulative local and global histograms converge to their continuous counterparts:

$$
\lambda_{P}(r, z) \longrightarrow h_{C}(r, z), \quad \Lambda_{P}(r) \longrightarrow H_{C}(r),
$$

as the number of sample points goes to infinity.

Square Curve Histogram with Bounds

Kite and Trapezoid Curve Histograms

Histogram-Based Shape Recognition

500 sample points

Shape	(a)	(b)	(c)	(d)	(e)	(f)
(a) triangle	2.3	20.4	66.9	81.0	28.5	76.8
(b) square	28.2	.5	81.2	73.6	34.8	72.1
(c) circle	66.9	79.6	.5	137.0	89.2	138.0
(d) 2×3 rectangle	85.8	75.9	141.0	2.2	53.4	9.9
(e) 1×3 rectangle	31.8	36.7	83.7	55.7	4.0	46.5
(f) star	81.0	74.3	139.0	9.3	60.5	.9

Curve Histogram Conjecture

Two sufficiently regular plane curves C and \widetilde{C}
have identical global distance histogram functions, so
$H_{C}(r)=H_{\widetilde{C}}(r)$ for all $r \geq 0$, if and only if they are rigidly equivalent: $C \simeq \widetilde{C}$.

"Proof Strategies"

- Show that any polygon obtained from (densely) discretizing a curve does not lie in the Boutin-Kemper exceptional set.
- Polygons with obtuse angles: taking r small, one can recover (i) the set of angles and (ii) the shortest side length from $H_{C}(r)$. Further increasing r leads to further geometric information about the polygon...
- Expand $H_{C}(r)$ in a Taylor series at $r=0$ and show that the corresponding integral invariants characterize the curve.

Taylor Expansions

Local distance histogram function:
$L h_{C}(r, z)=2 r+\frac{1}{12} \kappa^{2} r^{3}+\left(\frac{1}{40} \kappa \kappa_{s s}+\frac{1}{45} \kappa_{s}^{2}+\frac{3}{320} \kappa^{4}\right) r^{5}+\cdots$.

Global distance histogram function:

$$
H_{C}(r)=\frac{2 r}{L}+\frac{r^{3}}{12 L^{2}} \oint_{C} \kappa^{2} d s+\frac{r^{5}}{40 L^{2}} \oint_{C}\left(\frac{3}{8} \kappa^{4}-\frac{1}{9} \kappa_{s}^{2}\right) d s+\cdots
$$

Space Curves

Saddle curve:

$$
z(t)=(\cos t, \sin t, \cos 2 t), \quad 0 \leq t \leq 2 \pi
$$

Convergence of global curve distance histogram function:

Surfaces

Local and global surface distance histogram functions:

$$
h_{S}(r, z)=\frac{\operatorname{area}\left(S \cap B_{r}(z)\right)}{\operatorname{area}(S)}, \quad H_{S}(r)=\frac{1}{\operatorname{area}(S)} \iint_{S} h_{S}(r, z) d S
$$

Convergence for sphere:

Area Histograms

Rewrite global curve distance histogram function:

$$
\begin{gathered}
H_{C}(r)=\frac{1}{L} \oint_{C} h_{C}(r, z(s)) d s=\frac{1}{L^{2}} \oint_{C} \oint_{C} \chi_{r}\left(d\left(z(s), z\left(s^{\prime}\right)\right) d s d s^{\prime}\right. \\
\text { where } \quad \chi_{r}(t)= \begin{cases}1, & t \leq r \\
0, & t>r\end{cases}
\end{gathered}
$$

Global curve area histogram function

$$
\begin{aligned}
& A_{C}(r)=\frac{1}{L^{3}} \oint_{C} \oint_{C} \oint_{C} \chi_{r}\left(\operatorname{area}\left(z(\widehat{s}), z\left(\widehat{s}^{\prime}\right), z\left(\widehat{s}^{\prime \prime}\right)\right) d \widehat{s} d \widehat{s}^{\prime} d \widehat{s}^{\prime \prime},\right. \\
& d \widehat{s} \text { - equi-affine arc length element } \quad L=\int_{C} d \widehat{s}
\end{aligned}
$$

Discrete cumulative area histogram

$$
A_{P}(r)=\frac{1}{n(n-1)(n-2)} \sum_{z \neq z^{\prime} \neq z^{\prime \prime} \in P} \chi_{r}\left(\text { area }\left(z, z^{\prime}, z^{\prime \prime}\right)\right)
$$

Boutin \& Kemper: the area histogram uniquely determines generic point sets $P \subset \mathbb{R}^{2}$ up to equi-affine motion

Area Histogram for Circle

丸 \star Joint invariant histograms - convergence???

Triangle Distance Histograms

$Z=\left(\ldots z_{i} \ldots\right) \subset M \quad$ sample points on a subset $M \subset \mathbb{R}^{n}$ (curve, surface, etc.)
$T_{i, j, k} \quad$ triangle with vertices z_{i}, z_{j}, z_{k}.
Side lengths:

$$
\sigma\left(T_{i, j, k}\right)=\left(d\left(z_{i}, z_{j}\right), d\left(z_{i}, z_{k}\right), d\left(z_{j}, z_{k}\right)\right)
$$

Discrete triangle histogram:

$$
\mathcal{S}=\sigma(\mathcal{T}) \subset K
$$

Triangle inequality cone

$K=\{(x, y, z) \mid x, y, z \geq 0, x+y \geq z, x+z \geq y, y+z \geq x\} \subset \mathbb{R}^{3}$.

Triangle Histogram Distributions

Practical Object Recognition

- Scale-invariant feature transform (SIFT) (Lowe)
- Shape contexts (Belongie-Malik-Puzicha)
- Integral invariants (Krim, Kogan, Yezzi, Pottman, ...)
- Shape distributions (Osada-Funkhouser-Chazelle-Dobkin) Surfaces: distances, angles, areas, volumes, etc.
- Gromov-Hausdorff and Gromov-Wasserstein distances (Mémoli) \Longrightarrow lower bounds

