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The Basic Equivalence Problem

M — smooth m-dimensional manifold.

G — transformation group acting on M

e finite-dimensional Lie group

e infinite-dimensional Lie pseudo-group



Transformation Groups

Fuclidean — rigid motions

Similarity — rigid plus scaling
Equi-affine — volume (area)-preserving
Conformal — angle-preserving
Projective

Video
[Nlumination & Color
Classical Invariant Theory

Symmetries of differential equations, etc.

Diffeomorphisms

Canonical — symplectomorphisms
Conformal — 2D



Equivalence:

Determine when two n-dimensional submanifolds

N and N Cc M

are congruent:

Symmetry:
Find all symmetries,
i.e., self-equivalences or self-congruences:

N=g N



Tennis, Anyone?




Invariants

Definition. An invariant is a real-valued function
I: M — R that is unaffected by the group
transformations:

I(g-z)=1(g)



Equivalence & Invariants

e Equivalent submanifolds N ~ N
must have the same invariants: [ = I.

Constant invariants provide immediate information:
e.g. K=2 << K=2

Non-constant invariants are not useful in isolation,
because an equivalence map can drastically alter the
dependence on the submanifold parameters:

e.g. K= x> Versus k =sinhx



Syzygies

However, a functional dependency or syzygy among
the invariants ¢s intrinsic:

T=k'—-1 & T=£r"-1

e Universal syzygies — Gauss—Codazzi

e Distinguishing syzygies.



Signatures

By an invariant signature we mean a set parametrized
by a complete system of “distinguishing invariants”, that will

rigorously resolve the equivalence problem.

Typically, there are not enough ordinary invariants to
prescribe a signature. In particular, if G acts transitively on M,

there are no ordinary invariants.

Constructing enough invariants for a signature requires that
we increase the dimension of the underlying space via some kind

of natural prolongation procedure.



e Prolonging to derivatives (jet space)
G J"(M,p) — J"(M,p)

— differential invariants

e Prolonging to Cartesian product actions
G*": Mx---xM — Mx---xM

— joint invariants

e Prolonging to “multi-space”
g . pm o )

— joint or semi-differential invariants

—> Invariant numerical approximations



Basic Framework

M — m-dimensional manifold

Jv = J"(M,p) — n* order jet space for
p-dimensional submanifolds NV C M

G — transformation group acting on M

G —  prolonged action

on the submanifold jet space J"



Differential Invariants

Differential invariant [:J"— R
I(g"™ - (z,u™)) = I(z,u!™)

—> curvature, torsion, ...

Invariant differential operators:

Dy,...,D,

—> arc length derivative

Z(G) — the algebra of differential invariants



The Basis Theorem

Theorem. The differential invariant algebra Z(G) is generated
by a finite number of differential invariants

I, ... ],
and p = dim N invariant differential operators
Bhy aea 3B,

meaning that every differential invariant can be locally
expressed as a function of the generating invariants and
their invariant derivatives:

D;I,=D,D,,---D; I

In~ K°

= Lie, Tresse, QOuvsiannikov, Kumpera



Generating Differential Invariants

Plane curves C C R2:
curvature x and arc length derivatives K, K, . ..

Space curves C' C R3:
curvature s, torsion 7, and derivatives k., 7., k.., T

S) ' 8? S§S8? "8s8)* *

Euclidean surfaces S C R3:
Gauss curvature K, mean curvature H, and

invariant derivatives D, K, D, K, D, H, . ...
Equi-affine surfaces S C R3:

The Pick invariant P and derivatives D, P, D,P, D3P, .. ...



Equivalence & Syzygies

Theorem. (Cartan) Two submanifolds are (locally) equivalent
if and only if they have the same syzygies among all their
(joint) differential invariants.

@& There are, in general, an infinite number of differential
invariants and hence an infinite number of syzygies
must be compared to establish equivalence.

(¢ But the higher order syzygies are all consequences of a finite
number of low order syzygies!



Example — Plane Curves

If non-constant, both x and ~, depend on a single parame-
ter, and so, locally, are subject to a syzygy:

kg = H(r) (*)

But then

Kop = o H(x) = H'(x) 5, = H'() H()

and similarly for x___, etc.

CEER)

Consequently, all the higher order syzygies are generated by
the fundamental first order syzygy ().

—> Kk and K, serve as distinguishing invariants and are used to
parametrize the signature in this case.



Definition. The signature curve S C R? of a curve
C C R? is parametrized by the two lowest order
differential invariants:

{(-4)) < =

Theorem. Two curves C and C are equivalent:
C=gqg-C
if and only if their signature curves are identical:

—> Object recognition:
Calabi—O—-Shakiban—Tannenbaum—Haker



Symmetry and Signature

Theorem. The dimension of the symmetry group
of a (nonsingular) submanifold N equals the
codimension of its signature:

dimG,y = dim N —dim

Theorem. If N has only a discrete symmetry group
(dim G, = 0), the number of its symmetries
equals the index of its signature map > : N —



The Index



Object Recognition
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Signatures
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Classical Occlusions

Q) W




Possible Signature Metrics

Hausdorft
Monge-Kantorovich transport
Electrostatic repulsion

Latent semantic analysis
Histograms

Geodesic distance

Diffusion metric

Gromov—Hausdorft



Advantages of the Signature Curve

e Purely local — no ambiguities
e Symmetries and approximate symmetries

e Readily extends to surfaces and higher dimensional
submanifolds

e (cclusions and reconstruction

Main disadvantage: Noise sensitivity due to
dependence on high order derivatives.



Strategy #1:

Use lower order invariants to construct a signature:

e joint invariants
e joint differential invariants
e integral invariants

e topological invariants



Joint Invariants

A joint invariant is an invariant of the k-fold
Cartesian product action of G on M x --- x M:

I(g-24,...,9 %) = I(2q,...,2)

A joint differential invariant or
is an invariant depending on the derivatives
at several points z,..., 2, € N on the submanifold:

Ig-#7,...,9- 28 = I, ..., )




Joint Euclidean Invariants

Theorem. Every joint Euclidean invariant is a
function of the interpoint distances

d(z;, Zj) = || z; — <j |

Z o

(/



Joint Equi—Affine Invariants

Theorem. Every planar joint equi—affine invariant is
a function of the triangular areas

i ] k] :%(zi_zﬂ/\(zi_zk)



Joint Projective Invariants

Theorem. Every joint projective invariant is a
function of the planar cross-ratios

AB

[Zivzj7zkvzl7zm] — N

v



e Three—point projective joint differential invariant
— tangent triangle ratio:

(020][011][122]
[010][121][022]"°

2o 2o



Joint Invariant Signatures

If the invariants depend on k points on a p-dimensional
submanifold, then you need at least

{>kp

distinct invariants I,...,I, in order to construct a syzygy.
Typically, the number of joint invariants is

¢ =km —r = (#points) (dim M) — dim G

Therefore, a purely joint invariant signature requires at least

k > +1

m —p

points on our p-dimensional submanifold N C M.



Joint Euclidean Signature




Joint signature map:

»:C0** — SCRS

a=|z— 2| b=|lz— 2] c= |z — 2|
d=llzy -zl  e=lz—zl|  f=I2z—2]
— six functions of four variables
Syzygies:
®,(a,b,c,d,e, f) =0 ®,(a,b,c,d,e, f) =0

Universal Cayley-Menger syzygy <= C C R?
2 a? a’+b% —d? a’>+4c?—¢€?
det | a? + b% — d? 2 b2 +c2—f2=0
a?+c2—e? b2+ — f? 2 c?



Joint Equi—Affine Signature

Requires 7 triangular areas:

[(012],[013],[014],[015],[023], [024], [025]




Joint Invariant Signatures

The joint invariant signature subsumes other signatures, but
resides in a higher dimensional space and contains a lot of
redundant information.

Identification of landmarks can significantly reduce the
redundancies (Boutin)

It includes the differential invariant signature and semi-
differential invariant signatures as its “coalescent bound-
aries”. (Discrete = continuous)

Invariant numerical approximations to differential invariants
and semi-differential invariants are constructed (using
moving frames) near these coalescent boundaries.



Statistical Sampling

Idea: Replace high dimensional joint invariant signatures by
increasingly dense point clouds obtained by multiply
sampling the original submanifold.

e The equivalence problem requires direct comparison of signa-
ture point clouds. —> Compressed sampling?

e Continuous symmetry detection relies on determining the
underlying dimension of the signature point clouds.

e Discrete symmetry detection relies on determining densities of
the signature point clouds.

—> Natural signature statistics



The construction of signatures relies on:

A new, equivariant approach to the classical
theory of moving frames developed over the past
decade in collaboration with:

M. Fels, G. Mari—Beffa, I. Kogan, M. Boutin, J. Cheh,
J. Pohjanpelto, D. Lewis, E. Mansfield, E. Hubert

* *x Completely constructive * %

Additional applications of moving frames:



Symmetry—Preserving Numerical Methods

e Invariant numerical approximations to differential
invariants.

e Invariantization of numerical integration methods.

—> Structure-preserving algorithms



Invariantization of Crank—Nicolson

for Burgers’ Equation

Uy = EU,, T UU,

1 1 1 1 1 1
05 05 05 05 05 05
0 0 0 0 0 0
-05 -05 -05 -05 -05 -05
-1 -1 -1 -1 -1 -1
% 05 17% 05 17% 0.5 1 % 05 17% 05 175 0.5

—> Pilwon Kim



Evolution of Invariants and Signatures

Theorem. Under the curve shortening flow €, = —kn,
the signature curve K, = H(t,k) evolves according to the
parabolic equation

OH
5 = H*H_ —r’H_+4r*H

—> Signature Noise Reduction Strategy #2

—> Solitons and bi-Hamiltonian systems



Invariant Variational Problems

Problem: Given an invariant variational problem written
in terms of the differential invariants, directly construct the
invariant form of its Euler—Lagrange equations.

—> Willmore, /K2 , etc.

Example. FEuclidean plane curves:

Invariant variational problem:
/P(K‘,, KgyRggy -+ )ds
Invariant Euler-Lagrange formula
E(L) = (D* + k%) £(P) + k H(P).

(P) — invariantized Euler-Lagrange expression
(P) — invariantized Hamiltonian

&
H



