Invariant Signatures

Peter J. Olver

University of Minnesota

http://www.math.umn.edu/ ~olver

$$
\text { Breckenridge, March, } 2007
$$

The Basic Equivalence Problem

M - smooth m-dimensional manifold.
G - transformation group acting on M

- finite-dimensional Lie group
- infinite-dimensional Lie pseudo-group

Transformation Groups

- Euclidean - rigid motions
- Similarity - rigid plus scaling
- Equi-affine - volume (area)-preserving
- Conformal - angle-preserving
- Projective
- Video
- Illumination \& Color
- Classical Invariant Theory
- Symmetries of differential equations, etc.
- Diffeomorphisms
- Canonical - symplectomorphisms
- Conformal - 2D

Equivalence:

Determine when two n-dimensional submanifolds

$$
N \text { and } \bar{N} \subset M
$$

are congruent:

$$
\bar{N}=g \cdot N \quad \text { for } \quad g \in G
$$

Symmetry:

Find all symmetries,
i.e., self-equivalences or self-congruences:

$$
N=g \cdot N
$$

Tennis, Anyone?

Invariants

Definition. An invariant is a real-valued function $I: M \rightarrow \mathbb{R}$ that is unaffected by the group transformations:

$$
I(g \cdot z)=I(g)
$$

Equivalence \& Invariants

- Equivalent submanifolds $N \approx \bar{N}$ must have the same invariants: $I=\bar{I}$.

Constant invariants provide immediate information:

$$
\text { e.g. } \quad \kappa=2 \quad \Longleftrightarrow \quad \bar{\kappa}=2
$$

Non-constant invariants are not useful in isolation, because an equivalence map can drastically alter the dependence on the submanifold parameters:

$$
\text { e.g. } \quad \kappa=x^{3} \quad \text { versus } \quad \bar{\kappa}=\sinh x
$$

Syzygies

However, a functional dependency or syzygy among the invariants is intrinsic:

$$
\tau=\kappa^{3}-1 \quad \Longleftrightarrow \quad \bar{\tau}=\bar{\kappa}^{3}-1
$$

- Universal syzygies - Gauss-Codazzi
- Distinguishing syzygies.

Signatures

By an invariant signature we mean a set parametrized by a complete system of "distinguishing invariants", that will rigorously resolve the equivalence problem.

Typically, there are not enough ordinary invariants to prescribe a signature. In particular, if G acts transitively on M, there are no ordinary invariants.

Constructing enough invariants for a signature requires that we increase the dimension of the underlying space via some kind of natural prolongation procedure.

- Prolonging to derivatives (jet space)

$$
G^{(n)}: \mathrm{J}^{n}(M, p) \quad \longrightarrow \quad \mathrm{J}^{n}(M, p)
$$

\Longrightarrow differential invariants

- Prolonging to Cartesian product actions

$$
G^{\times n}: M \times \cdots \times M \quad \longrightarrow \quad M \times \cdots \times M
$$

\Longrightarrow joint invariants

- Prolonging to "multi-space"

$$
G^{(n)}: M^{(n)} \quad \longrightarrow \quad M^{(n)}
$$

\Longrightarrow joint or semi-differential invariants
\Longrightarrow invariant numerical approximations

Basic Framework

$M-m$-dimensional manifold
$\mathrm{J}^{n}=\mathrm{J}^{n}(M, p)-n^{\text {th }}$ order jet space for
p-dimensional submanifolds $N \subset M$
$G \quad$ - transformation group acting on M
$G^{(n)} \quad$ - prolonged action
on the submanifold jet space J^{n}

Differential Invariants

Differential invariant $\quad I: \mathrm{J}^{n} \rightarrow \mathbb{R}$

$$
I\left(g^{(n)} \cdot\left(x, u^{(n)}\right)\right)=I\left(x, u^{(n)}\right)
$$

\Longrightarrow curvature, torsion, ...

Invariant differential operators:

$$
\begin{aligned}
\mathcal{D}_{1}, \ldots & \mathcal{D}_{p} \\
& \text { arc length derivative }
\end{aligned}
$$

$\mathcal{I}(G)$ - the algebra of differential invariants

The Basis Theorem

Theorem. The differential invariant algebra $\mathcal{I}(G)$ is generated by a finite number of differential invariants

$$
I_{1}, \ldots, I_{\ell}
$$

and $p=\operatorname{dim} N$ invariant differential operators

$$
\mathcal{D}_{1}, \ldots, \mathcal{D}_{p}
$$

meaning that every differential invariant can be locally expressed as a function of the generating invariants and their invariant derivatives:

$$
\mathcal{D}_{J} I_{\kappa}=\mathcal{D}_{j_{1}} \mathcal{D}_{j_{2}} \cdots \mathcal{D}_{j_{n}} I_{\kappa} .
$$

\Longrightarrow Lie, Tresse, Ovsiannikov, Kumpera

Generating Differential Invariants

- Plane curves $C \subset \mathbb{R}^{2}$: curvature κ and arc length derivatives $\kappa_{s}, \kappa_{s s}, \ldots$
- Space curves $C \subset \mathbb{R}^{3}$:
curvature κ, torsion τ, and derivatives $\kappa_{s}, \tau_{s}, \kappa_{s s}, \tau_{s s}, \ldots$
- Euclidean surfaces $S \subset \mathbb{R}^{3}$:

Gauss curvature K, mean curvature H, and invariant derivatives $\mathcal{D}_{1} K, \mathcal{D}_{2} K, \mathcal{D}_{1} H, \ldots$.

- Equi-affine surfaces $S \subset \mathbb{R}^{3}$:

The Pick invariant P and derivatives $\mathcal{D}_{1} P, \mathcal{D}_{2} P, \mathcal{D}_{1}^{2} P, \ldots \ldots$

Equivalence \& Syzygies

Theorem. (Cartan) Two submanifolds are (locally) equivalent if and only if they have the same syzygies among all their (joint) differential invariants.
© There are, in general, an infinite number of differential invariants and hence an infinite number of syzygies must be compared to establish equivalence.
\bigcirc But the higher order syzygies are all consequences of a finite number of low order syzygies!

Example - Plane Curves

If non-constant, both κ and κ_{s} depend on a single parameter, and so, locally, are subject to a syzygy:

$$
\begin{equation*}
\kappa_{s}=H(\kappa) \tag{*}
\end{equation*}
$$

But then

$$
\kappa_{s s}=\frac{d}{d s} H(\kappa)=H^{\prime}(\kappa) \kappa_{s}=H^{\prime}(\kappa) H(\kappa)
$$

and similarly for $\kappa_{\text {sss }}$, etc.
Consequently, all the higher order syzygies are generated by the fundamental first order syzygy ($*$).
$\Longrightarrow \quad \kappa$ and κ_{s} serve as distinguishing invariants and are used to parametrize the signature in this case.

Definition. The signature curve $\mathcal{S} \subset \mathbb{R}^{2}$ of a curve $\mathcal{C} \subset \mathbb{R}^{2}$ is parametrized by the two lowest order differential invariants:

$$
\mathcal{S}=\left\{\left(\kappa, \frac{d \kappa}{d s}\right)\right\} \subset \mathbb{R}^{2}
$$

Theorem. Two curves \mathcal{C} and $\overline{\mathcal{C}}$ are equivalent:

$$
\overline{\mathcal{C}}=g \cdot \mathcal{C}
$$

if and only if their signature curves are identical:

$$
\overline{\mathcal{S}}=\mathcal{S}
$$

\Longrightarrow Object recognition:
Calabi-O-Shakiban-Tannenbaum-Haker

Symmetry and Signature

Theorem. The dimension of the symmetry group of a (nonsingular) submanifold N equals the codimension of its signature:

$$
\operatorname{dim} G_{N}=\operatorname{dim} N-\operatorname{dim} \mathcal{S}
$$

Theorem. If N has only a discrete symmetry group $\left(\operatorname{dim} G_{N}=0\right)$, the number of its symmetries equals the index of its signature map $\Sigma: N \rightarrow \mathcal{S}$.

The Index

Object Recognition

Nut 1

Nut 2

Closeness: 0.137673

Signature Curve Nut 1

Hook 1

Nut 1

Closeness: 0.031217

Signature Curve Hook 1

Signature Curve Nut 1

Signatures

Original curve

Classical Signature

Differential invariant signature

Signatures

Original curve

Classical Signature

Differential invariant signature

Occlusions

Original curve

Differential invariant signature

Classical Occlusions

$$
\longrightarrow
$$

Possible Signature Metrics

- Hausdorff
- Monge-Kantorovich transport
- Electrostatic repulsion
- Latent semantic analysis
- Histograms
- Geodesic distance
- Diffusion metric
- Gromov-Hausdorff

Advantages of the Signature Curve

- Purely local - no ambiguities
- Symmetries and approximate symmetries
- Readily extends to surfaces and higher dimensional submanifolds
- Occlusions and reconstruction

Main disadvantage: Noise sensitivity due to dependence on high order derivatives.

Noise Reduction

Strategy \#1:
Use lower order invariants to construct a signature:

- joint invariants
- joint differential invariants
- integral invariants
- topological invariants

Joint Invariants

A joint invariant is an invariant of the k-fold Cartesian product action of G on $M \times \cdots \times M$:

$$
I\left(g \cdot z_{1}, \ldots, g \cdot z_{k}\right)=I\left(z_{1}, \ldots, z_{k}\right)
$$

A joint differential invariant or semi-differential invariant is an invariant depending on the derivatives at several points $z_{1}, \ldots, z_{k} \in N$ on the submanifold:

$$
I\left(g \cdot z_{1}^{(n)}, \ldots, g \cdot z_{k}^{(n)}\right)=I\left(z_{1}^{(n)}, \ldots, z_{k}^{(n)}\right)
$$

Joint Euclidean Invariants

Theorem. Every joint Euclidean invariant is a function of the interpoint distances

$$
d\left(z_{i}, z_{j}\right)=\left\|z_{i}-z_{j}\right\|
$$

Joint Equi-Affine Invariants

Theorem. Every planar joint equi-affine invariant is a function of the triangular areas

$$
[i j k]=\frac{1}{2}\left(z_{i}-z_{j}\right) \wedge\left(z_{i}-z_{k}\right)
$$

Joint Projective Invariants

Theorem. Every joint projective invariant is a function of the planar cross-ratios

$$
\left[z_{i}, z_{j}, z_{k}, z_{l}, z_{m}\right]=\frac{A B}{C D}
$$

- Three-point projective joint differential invariant
- tangent triangle ratio:

$$
\frac{\left[\begin{array}{lll}
0 & 2 & \dot{0}
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & \dot{1}
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & \dot{2}
\end{array}\right]}{\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & \dot{1}
\end{array}\right]\left[\begin{array}{lll}
0 & 2 & \dot{2}
\end{array}\right]} .
$$

Joint Invariant Signatures

If the invariants depend on k points on a p-dimensional submanifold, then you need at least

$$
\ell>k p
$$

distinct invariants I_{1}, \ldots, I_{ℓ} in order to construct a syzygy. Typically, the number of joint invariants is

$$
\ell=k m-r=(\# \text { points })(\operatorname{dim} M)-\operatorname{dim} G
$$

Therefore, a purely joint invariant signature requires at least

$$
k \geq \frac{r}{m-p}+1
$$

points on our p-dimensional submanifold $N \subset M$.

Joint Euclidean Signature

Joint signature map:

$$
\begin{array}{lcl}
& \Sigma: \mathcal{C}^{\times 4} \longrightarrow \mathcal{S} \subset \mathbb{R}^{6} \\
a=\left\|z_{0}-z_{1}\right\| & b=\left\|z_{0}-z_{2}\right\| & c=\left\|z_{0}-z_{3}\right\| \\
d=\left\|z_{1}-z_{2}\right\| & e=\left\|z_{1}-z_{3}\right\| & f=\left\|z_{2}-z_{3}\right\|
\end{array}
$$

\Longrightarrow six functions of four variables
Syzygies:

$$
\Phi_{1}(a, b, c, d, e, f)=0 \quad \Phi_{2}(a, b, c, d, e, f)=0
$$

Universal Cayley-Menger syzygy

$$
\operatorname{det}\left|\begin{array}{ccc}
2 a^{2} & a^{2}+b^{2}-d^{2} & a^{2}+c^{2}-e^{2} \\
a^{2}+b^{2}-d^{2} & 2 b^{2} & b^{2}+c^{2}-f^{2} \\
a^{2}+c^{2}-e^{2} & b^{2}+c^{2}-f^{2} & 2 c^{2}
\end{array}\right|=0
$$

Joint Equi-Affine Signature
Requires 7 triangular areas:

$$
\left[\begin{array}{lll}
0 & 1 & 2
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 3
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 4
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 5
\end{array}\right],\left[\begin{array}{lll}
0 & 2 & 3
\end{array}\right],\left[\begin{array}{lll}
0 & 2 & 4
\end{array}\right],\left[\begin{array}{lll}
0 & 2 & 5
\end{array}\right]
$$

Joint Invariant Signatures

- The joint invariant signature subsumes other signatures, but resides in a higher dimensional space and contains a lot of redundant information.
- Identification of landmarks can significantly reduce the redundancies (Boutin)
- It includes the differential invariant signature and semidifferential invariant signatures as its "coalescent boundaries". (Discrete \Longrightarrow continuous)
- Invariant numerical approximations to differential invariants and semi-differential invariants are constructed (using moving frames) near these coalescent boundaries.

Statistical Sampling

Idea: Replace high dimensional joint invariant signatures by increasingly dense point clouds obtained by multiply sampling the original submanifold.

- The equivalence problem requires direct comparison of signature point clouds. \Longrightarrow Compressed sampling?
- Continuous symmetry detection relies on determining the underlying dimension of the signature point clouds.
- Discrete symmetry detection relies on determining densities of the signature point clouds.
\Longrightarrow Natural signature statistics

* \star Moving Frames $\star \star$

The construction of signatures relies on:
A new, equivariant approach to the classical theory of moving frames developed over the past decade in collaboration with:
M. Fels, G. Marí-Beffa, I. Kogan, M. Boutin, J. Cheh, J. Pohjanpelto, D. Lewis, E. Mansfield, E. Hubert
$\star \star$ Completely constructive $\star \star$

Additional applications of moving frames:

Symmetry-Preserving Numerical Methods

- Invariant numerical approximations to differential invariants.
- Invariantization of numerical integration methods.

Invariantization of Crank-Nicolson for Burgers' Equation

$$
u_{t}=\varepsilon u_{x x}+u u_{x}
$$

\Longrightarrow Pilwon Kim

Evolution of Invariants and Signatures

Theorem. Under the curve shortening flow $C_{t}=-\kappa \mathbf{n}$, the signature curve $\kappa_{s}=H(t, \kappa)$ evolves according to the parabolic equation

$$
\frac{\partial H}{\partial t}=H^{2} H_{\kappa \kappa}-\kappa^{3} H_{\kappa}+4 \kappa^{2} H
$$

\Longrightarrow Signature Noise Reduction Strategy \#2
\Longrightarrow Solitons and bi-Hamiltonian systems

Invariant Variational Problems

Problem: Given an invariant variational problem written in terms of the differential invariants, directly construct the invariant form of its Euler-Lagrange equations.

$$
\Longrightarrow \text { Willmore, } \int K^{2} \text {, etc. }
$$

Example. Euclidean plane curves:
Invariant variational problem:

$$
\int P\left(\kappa, \kappa_{s}, \kappa_{s s}, \ldots\right) d s
$$

Invariant Euler-Lagrange formula

$$
\mathbf{E}(L)=\left(\mathcal{D}^{2}+\kappa^{2}\right) \mathcal{E}(P)+\kappa \mathcal{H}(P) .
$$

$\mathcal{E}(P)$ - invariantized Euler-Lagrange expression
$\mathcal{H}(P)$ - invariantized Hamiltonian

