Invariant Signatures

Peter J. Olver

University of Minnesota

http://www.math.umn.edu/ \sim olver

Breckenridge, March, 2007

The Basic Equivalence Problem

- M smooth *m*-dimensional manifold.
- G transformation group acting on M
 - finite-dimensional Lie group
 - infinite-dimensional Lie pseudo-group

Transformation Groups

- Euclidean rigid motions
- Similarity rigid plus scaling
- Equi-affine volume (area)-preserving
- Conformal angle-preserving
- Projective
- Video
- Illumination & Color
- Classical Invariant Theory
- Symmetries of differential equations, etc.
- Diffeomorphisms
- Canonical symplectomorphisms
- Conformal 2D

Equivalence:

Determine when two n-dimensional submanifolds

N and $\overline{N} \subset M$

are *congruent*:

$$\overline{N} = g \cdot N \qquad \text{for} \qquad g \in G$$

Symmetry:

Find all symmetries, i.e., self-equivalences or *self-congruences*:

$$N = g \cdot N$$

Tennis, Anyone?

Invariants

Definition. An invariant is a real-valued function $I: M \rightarrow \mathbb{R}$ that is unaffected by the group transformations:

$$I(g \cdot z) = I(g)$$

Equivalence & Invariants

• Equivalent submanifolds $N \approx \overline{N}$ must have the same invariants: $I = \overline{I}$.

Constant invariants provide immediate information:

e.g.
$$\kappa = 2 \iff \overline{\kappa} = 2$$

Non-constant invariants are not useful in isolation, because an equivalence map can drastically alter the dependence on the submanifold parameters:

e.g.
$$\kappa = x^3$$
 versus $\overline{\kappa} = \sinh x$

Syzygies

However, a functional dependency or syzygy among the invariants *is* intrinsic:

$$\tau = \kappa^3 - 1 \quad \Longleftrightarrow \quad \overline{\tau} = \overline{\kappa}^3 - 1$$

- Universal syzygies Gauss–Codazzi
- Distinguishing syzygies.

Signatures

By an invariant signature we mean a set parametrized by a complete system of "distinguishing invariants", that will rigorously resolve the equivalence problem.

Typically, there are not enough ordinary invariants to prescribe a signature. In particular, if G acts transitively on M, there are *no* ordinary invariants.

Constructing enough invariants for a signature requires that we increase the dimension of the underlying space via some kind of natural prolongation procedure. • Prolonging to derivatives (jet space)

$$G^{(n)}: \mathbf{J}^n(M,p) \longrightarrow \mathbf{J}^n(M,p)$$

$$\implies$$
 differential invariants

• Prolonging to Cartesian product actions

 $G^{\times n}: M \times \cdots \times M \longrightarrow M \times \cdots \times M$

 \implies joint invariants

• Prolonging to "multi-space"

$$G^{(n)}: M^{(n)} \longrightarrow M^{(n)}$$

- \implies joint or semi-differential invariants
- \implies invariant numerical approximations

Basic Framework

$$M - m$$
-dimensional manifold
 $\mathbf{J}^n = \mathbf{J}^n(M, p) - n^{\text{th}}$ order jet space for
 p -dimensional submanifolds $N \subset M$

G — transformation group acting on M

 $G^{(n)}$ — prolonged action on the submanifold jet space J^n

Differential Invariants

Differential invariant
$$I: J^n \to \mathbb{R}$$

 $I(g^{(n)} \cdot (x, u^{(n)})) = I(x, u^{(n)})$
 \implies curvature, torsion, ...

Invariant differential operators: $\mathcal{D}_1, \dots, \mathcal{D}_p$ \implies arc length derivative

$\mathcal{I}(G)$ — the algebra of differential invariants

The Basis Theorem

Theorem. The differential invariant algebra $\mathcal{I}(G)$ is generated by a finite number of differential invariants

 $I_1, \ \dots, I_\ell$ and $p = \dim N$ invariant differential operators

 $\mathcal{D}_1, \ \ldots, \mathcal{D}_p$

meaning that *every* differential invariant can be locally expressed as a function of the generating invariants and their invariant derivatives:

$$\mathcal{D}_J I_{\kappa} = \mathcal{D}_{j_1} \mathcal{D}_{j_2} \cdots \mathcal{D}_{j_n} I_{\kappa}.$$

 \implies Lie, Tresse, Ovsiannikov, Kumpera

 $\star \star$ Moving frames $\star \star$

Generating Differential Invariants

• Plane curves $C \subset \mathbb{R}^2$:

curvature κ and arc length derivatives $\kappa_s, \kappa_{ss}, \ldots$

• Space curves $C \subset \mathbb{R}^3$:

curvature κ , torsion τ , and derivatives $\kappa_s, \tau_s, \kappa_{ss}, \tau_{ss}, \ldots$

• Euclidean surfaces $S \subset \mathbb{R}^3$:

Gauss curvature K, mean curvature H, and invariant derivatives $\mathcal{D}_1 K, \mathcal{D}_2 K, \mathcal{D}_1 H, \ldots$

• Equi-affine surfaces $S \subset \mathbb{R}^3$:

The Pick invariant P and derivatives $\mathcal{D}_1 P, \mathcal{D}_2 P, \mathcal{D}_1^2 P, \ldots$

Equivalence & Syzygies

Theorem. (Cartan) Two submanifolds are (locally) equivalent if and only if they have the same syzygies among *all* their (joint) differential invariants.

- ♠ There are, in general, an infinite number of differential invariants and hence an infinite number of syzygies must be compared to establish equivalence.
- But the higher order syzygies are all consequences of a finite number of low order syzygies!

Example — Plane Curves

If non-constant, both κ and κ_s depend on a single parameter, and so, locally, are subject to a syzygy:

$$\kappa_s = H(\kappa) \tag{*}$$

But then

$$\kappa_{ss} = \frac{d}{ds} H(\kappa) = H'(\kappa) \, \kappa_s = H'(\kappa) \, H(\kappa)$$

and similarly for κ_{sss} , etc.

Consequently, all the higher order syzygies are generated by the fundamental first order syzygy (*).

 $\implies \kappa \text{ and } \kappa_s \text{ serve as distinguishing invariants and are used to} \\ \text{parametrize the signature in this case.}$

Definition. The signature curve $S \subset \mathbb{R}^2$ of a curve $\mathcal{C} \subset \mathbb{R}^2$ is parametrized by the two lowest order differential invariants:

$$\mathcal{S} = \left\{ \left(\kappa , \frac{d\kappa}{ds} \right) \right\} \quad \subset \quad \mathbb{R}^2$$

Theorem. Two curves C and \overline{C} are equivalent: $\overline{C} = g \cdot C$ if and only if their signature curves are identical: $\overline{S} = S$

 \implies Object recognition:

Calabi-O-Shakiban-Tannenbaum-Haker

Symmetry and Signature

Theorem. The dimension of the symmetry group of a (nonsingular) submanifold N equals the codimension of its signature:

 $\dim G_N = \dim N - \dim S$

Theorem. If N has only a discrete symmetry group $(\dim G_N = 0)$, the number of its symmetries equals the index of its signature map $\Sigma: N \to S$.

Object Recognition

Differential invariant signature

s

 κ

Differential invariant signature

s

 κ

Differential invariant signature

Classical Occlusions

Possible Signature Metrics

- Hausdorff
- Monge–Kantorovich transport
- Electrostatic repulsion
- Latent semantic analysis
- Histograms
- Geodesic distance
- Diffusion metric
- Gromov–Hausdorff

Advantages of the Signature Curve

- Purely local no ambiguities
- Symmetries and approximate symmetries
- Readily extends to surfaces and higher dimensional submanifolds
- Occlusions and reconstruction

Main disadvantage: Noise sensitivity due to dependence on high order derivatives.

Noise Reduction

Strategy #1:

• . . .

Use lower order invariants to construct a signature:

- joint invariants
- joint differential invariants
- integral invariants
- topological invariants

Joint Invariants

A joint invariant is an invariant of the k-fold Cartesian product action of G on $M \times \cdots \times M$:

$$I(g \cdot z_1, \dots, g \cdot z_k) = I(z_1, \dots, z_k)$$

A joint differential invariant or semi-differential invariant is an invariant depending on the derivatives at several points $z_1, \ldots, z_k \in N$ on the submanifold:

$$I(g \cdot z_1^{(n)}, \dots, g \cdot z_k^{(n)}) = I(z_1^{(n)}, \dots, z_k^{(n)})$$

Joint Euclidean Invariants

Theorem. Every joint Euclidean invariant is a function of the interpoint distances

$$d(z_i,z_j) = \parallel z_i - z_j \mid$$

Joint Equi–Affine Invariants

Theorem. Every planar joint equi–affine invariant is a function of the triangular areas

$$\left[\begin{array}{cc} i \hspace{0.1cm} j \hspace{0.1cm} k \hspace{0.1cm} \right] = \frac{1}{2} \left(z_i - z_j \right) \wedge \left(z_i - z_k \right)$$

Joint Projective Invariants

Theorem. Every joint projective invariant is a function of the planar cross-ratios

$$[z_i, z_j, z_k, z_l, z_m] = \frac{AB}{CD}$$

• Three-point projective joint differential invariant — tangent triangle ratio:

Joint Invariant Signatures

If the invariants depend on k points on a p-dimensional submanifold, then you need at least

$$\ell > k \, p$$

distinct invariants I_1, \ldots, I_ℓ in order to construct a syzygy. Typically, the number of joint invariants is

$$\ell = k m - r = (\# \text{points}) (\dim M) - \dim G$$

Therefore, a purely joint invariant signature requires at least

$$k \ge \frac{r}{m-p} + 1$$

points on our *p*-dimensional submanifold $N \subset M$.

Joint Euclidean Signature

Joint signature map:

$$\begin{split} \Sigma \colon \mathcal{C}^{\times 4} &\longrightarrow \mathcal{S} \subset \mathbb{R}^6\\ a = \| \, z_0 - z_1 \,\| & b = \| \, z_0 - z_2 \,\| & c = \| \, z_0 - z_3 \,\|\\ d = \| \, z_1 - z_2 \,\| & e = \| \, z_1 - z_3 \,\| & f = \| \, z_2 - z_3 \,\|\\ & \Longrightarrow & \text{six functions of four variables} \end{split}$$

Syzygies:

$$\Phi_1(a, b, c, d, e, f) = 0 \qquad \qquad \Phi_2(a, b, c, d, e, f) = 0$$

Universal Cayley–Menger syzygy $\iff \mathcal{C} \subset \mathbb{R}^2$

$$\det \begin{vmatrix} 2a^2 & a^2 + b^2 - d^2 & a^2 + c^2 - e^2 \\ a^2 + b^2 - d^2 & 2b^2 & b^2 + c^2 - f^2 \\ a^2 + c^2 - e^2 & b^2 + c^2 - f^2 & 2c^2 \end{vmatrix} = 0$$

Joint Equi–Affine Signature

Requires 7 triangular areas: $[0\ 1\ 2], [0\ 1\ 3], [0\ 1\ 4], [0\ 1\ 5], [0\ 2\ 3], [0\ 2\ 4], [0\ 2\ 5]$

Joint Invariant Signatures

- The joint invariant signature subsumes other signatures, but resides in a higher dimensional space and contains a lot of redundant information.
- Identification of landmarks can significantly reduce the redundancies (Boutin)
- It includes the differential invariant signature and semidifferential invariant signatures as its "coalescent boundaries". (Discrete ⇒ continuous)
- Invariant numerical approximations to differential invariants and semi-differential invariants are constructed (using moving frames) near these coalescent boundaries.

Statistical Sampling

Idea: Replace high dimensional joint invariant signatures by increasingly dense point clouds obtained by multiply sampling the original submanifold.

- The equivalence problem requires direct comparison of signature point clouds. \implies Compressed sampling?
- Continuous symmetry detection relies on determining the underlying dimension of the signature point clouds.
- Discrete symmetry detection relies on determining densities of the signature point clouds.

 \implies Natural signature statistics

****** Moving Frames ******

The construction of signatures relies on:

A new, equivariant approach to the classical theory of moving frames developed over the past decade in collaboration with:

M. Fels, G. Marí–Beffa, I. Kogan, M. Boutin, J. Cheh, J. Pohjanpelto, D. Lewis, E. Mansfield, E. Hubert

 $\star \star$ Completely constructive $\star \star$

Additional applications of moving frames:

Symmetry–Preserving Numerical Methods

- Invariant numerical approximations to differential invariants.
- Invariantization of numerical integration methods.

 \implies Structure-preserving algorithms

Invariantization of Crank–Nicolson for Burgers' Equation

 $u_t = \varepsilon \, u_{xx} + u \, u_x$

 \implies Pilwon Kim

Evolution of Invariants and Signatures

Theorem. Under the curve shortening flow $C_t = -\kappa \mathbf{n}$, the signature curve $\kappa_s = H(t, \kappa)$ evolves according to the parabolic equation

$$\frac{\partial H}{\partial t} = H^2 H_{\kappa\kappa} - \kappa^3 H_{\kappa} + 4 \kappa^2 H$$

 \implies Signature Noise Reduction Strategy #2

 \implies Solitons and bi-Hamiltonian systems

Invariant Variational Problems

Problem: Given an invariant variational problem written in terms of the differential invariants, *directly* construct the invariant form of its Euler–Lagrange equations.

 \implies Willmore, $\int K^2$, etc.

Example. Euclidean plane curves:

Invariant variational problem:

$$\int P(\kappa,\kappa_s,\kappa_{ss},\ \dots\)\,ds$$

Invariant Euler-Lagrange formula

$$\mathbf{E}(L) = (\mathcal{D}^2 + \kappa^2) \,\mathcal{E}(P) + \kappa \,\mathcal{H}(P).$$

 $\mathcal{E}(P)$ — invariantized Euler–Lagrange expression $\mathcal{H}(P)$ — invariantized Hamiltonian