Non-Associative

Local

Lie Groups

Peter J. Olver University of Minnesota http://www.math.umn.edu/~olver

P.J. Olver, Non-associative local Lie groups, J. Lie Theory 6 (1996) 23–51

Howard University, 2003

Lie's Theorems

Theorem. Every local Lie group L is contained in a global Lie group.

 $\implies \text{The result is only true for} \\ \text{sufficiently small local Lie groups!}$

Some History

Local Lie Groups & Lie Algebras: Lie, Killing, Cartan **Smoothness and Analyticity of Group Actions:** Hilbert's Fifth Problem **Global Lie Groups**: Weyl, Cartan, Chevalley **Globalizability of Topological Groups**: P.A. Smith, Mal'cev \implies associativity **Globalizability of Transformation Groups:** Mostow, Palais Hilbert's Fifth Problem (Global): Gleason, Montgomery, Zippin Hilbert's Fifth Problem (Local): 🏚 Jacoby 🏟 Hilbert's Fifth Problem (Semigroups): ? Brown, Houston, Hofmann, Weiss? **Globalizability of Local Groups**: van Est, Douady, Plaut \implies Isometries & metric convergence

Basic Definitions

Definition. Global Lie group G: (i) group (ii) smooth manifold

Multiplication:

$$\mu \colon G \times G \longrightarrow G \qquad \mu(g,h) = g \cdot h$$

Inversion:

$$\iota \colon G \longrightarrow G, \qquad \iota(g) = g^{-1}$$

 \implies smooth, globally defined.

Definition. Local Lie group L:

Multiplication:

$$\mu \colon \mathcal{U} \longrightarrow L, \qquad \mu(x, y) = x \cdot y$$
$$(\{e\} \times L) \cup (L \times \{e\}) \subset \mathcal{U} \subset L \times L$$

Inversion:

$$\iota: \mathcal{V} \longrightarrow L, \qquad \iota(g) = g^{-1}$$
$$e \in \mathcal{V} \subset L \qquad \mathcal{V} \times \iota(\mathcal{V}), \ \iota(\mathcal{V}) \times \mathcal{V} \subset \mathcal{U}$$

(i) Identity: $e \cdot x = x = x \in e, \quad x \in L$ (ii) Inverse: $x^{-1} \cdot x = e = x \cdot x^{-1}, \quad x \in \mathcal{V}$ (iii) Associativity: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ $(x, y), (y, z), (x \cdot y, z), (x, y \cdot z) \in \mathcal{U}.$

$$\ell$$
 5

Key Example of a Local Lie Group

 $\{\,e\,\}\subset N\subset G$

 $\implies \text{Open neighborhood of the identity in a global}$ Lie group.

Globalizability

Definition. A local Lie group L is called *globalizable* if there exists a local group homeomorphism $\Phi: L \to N$ mapping L onto a neighborhood of the identity of a global Lie group G.

 $\Phi(x \cdot y) = \Phi(x) \cdot \Phi(y) \qquad \Phi(x^{-1}) = \Phi(x)^{-1}$

Infinite Elements

Example.
$$L = \mathbb{R}$$
. Identity: $e = 0$
 $\mathcal{U} = \{ (x, y) \mid |x y| \neq 1 \} \subset L \times L$
 $\mathcal{V} = \{ x \mid x \neq \frac{1}{2}, x \neq 1 \} \subset L$

$$\mu(x,y) = \frac{2xy - x - y}{xy - 1} \qquad \iota(x) = \frac{x}{2x - 1}$$

 $\implies \tilde{L} = \left\{ \begin{array}{l} |x| < \frac{1}{2} \end{array} \right\} \text{ is globalizable via}$ $\Phi(x) = \frac{x}{x-1} : \quad \tilde{L} \longrightarrow \left\{ \begin{array}{l} -1 < x < \frac{1}{3} \end{array} \right\} \subset \mathbb{R}$ $\Phi(\mu(x, y)) = \Phi(x) + \Phi(y) \qquad \Phi(\iota(x)) = -\Phi(x)$

 ℓ 7

$$\mu(x,y) = \frac{2xy - x - y}{xy - 1} \qquad \iota(x) = \frac{x}{2x - 1}$$

But:

$$\mu(x, 1) = \mu(1, x) = 1 \text{ for all } x \neq 1$$

$$\implies \text{ infinite group element}$$

Also: $\iota(1) = 1$, but $\mu(1, \iota(1))$ not defined.
 $\mu(x, y) = 1$ if and only if $x = 1$ or $y = 1$
 $\implies \text{ inaccessible}$

Note: $L \subset \mathbb{RP}^1$, which is also a local Lie group with an infinite group element, containing a global Lie group as a dense open subset.

Regularity

Definition. A local Lie group L is called *regular* if, for each $x \in L$, the left and right multiplication maps

$$\lambda_x(y)=\mu(x,y),\quad \rho_x(y)=\mu(y,x).$$

are diffeomorphisms on their respective domains of definition.

Inversional Local Groups

Given $U \subset L$, let $U^{(n)}$ denote the set of all welldefined *n*-fold products of elements $x_1, \ldots, x_n \in U$.

Definition. U generates L if $L = \bigcup_{n=1}^{\infty} U^{(n)}$.

- **Definition.** A local Lie group L is called *globally inversional* if the inversion map ι is defined everywhere, so that $\mathcal{V} = L$.
- **Definition.** A local Lie group L is called *inver*sional if \mathcal{V} generates L, i.e., every $x \in L$ can be written as a product of invertible elements.

Theorem. Every inversional local Lie group is regular.

Definition. L is a connected local Lie group if

- (i) L is a connected manifold,
- (*ii*) the domains of definition of the multi- plication and inversion maps are connected,
- (*iii*) if $U \subset L$ is any neighborhood of the identity, then U generates L.

 \implies Plaut

- **Proposition.** Any connected local Lie group is inversional, and hence regular.
- \implies From now on all local Lie groups are be assumed to be connected.

Higher Associativity

Definition. A local Lie group is

associative to order n

if, for every $3 \le m \le n$, and every $(x_1, \ldots, x_m) \in L^{\times m}$, all well-defined *m*-fold products are equal.

Example.

$$\begin{aligned} x_1 \cdot (x_2 \cdot (x_3 \cdot x_4)) &= x_1 \cdot ((x_2 \cdot x_3) \cdot x_4) \\ &= (x_1 \cdot x_2) \cdot (x_3 \cdot x_4) = (x_1 \cdot (x_2 \cdot x_3)) \cdot x_4 \\ &= ((x_1 \cdot x_2) \cdot x_3) \cdot x_4 \\ &\implies \text{Catalan number } C_n = \frac{1}{n} \begin{pmatrix} 2n-2\\ n-1 \end{pmatrix} \end{aligned}$$

A local group is called *globally associative* if it is associative to every order $n \ge 3$.

Globalizability

Theorem. A connected local Lie group L is globalizable if and only if it is globally associative.

 \implies Mal'cev

 $\star \star \star$ There exist local Lie groups that are associative to order *n* but not order n + 1!

The Simplest non-Globalizable Example

 $\pi : L \longrightarrow M - \text{covering map.}$ $\pi(\hat{z}) = z \qquad \hat{z} = (z, n)$ $L \simeq \{ (r, \theta) \mid r > 0 \}$ $z = \pi(r, \theta) = re^{i\theta} - 1 \qquad (2n - 1)\pi < \theta \le (2n + 1)\pi$

 ℓ 14

$$\begin{split} L_0 = \{ \, (r,\theta) \, | \ \ \frac{1}{2} \sec \theta < r < \frac{3}{2} \sec \theta, -\frac{1}{2}\pi < \theta < \frac{1}{2}\pi \, \} \\ \text{lies above } M_0 = \{ \, -\frac{1}{2} < \operatorname{Re} \, z < \frac{1}{2} \, \} \end{split}$$

 $L_1=\{\,(r,\theta)\,|\,-\tfrac12\pi<\theta<\tfrac12\pi\,\}$ lies above $M_1=\{{\rm Re}\;z>-1\}$

$$\alpha(z, w) = \arg(w+1) - \arg(z+1)$$
$$-\pi < \alpha(z, w) \le \pi$$

 \implies angle from z to w wrt -1

$$H_z = \{ \, \hat{w} \in L_0 \, | \, -\frac{1}{2}\pi < \alpha(z, z+w) < \frac{1}{2}\pi \, \}$$

Domain of definition of multiplication:

$$\mathcal{U} = \{ (\hat{z}, \hat{w}) \in L \times L \mid \hat{z} \in H_w \quad \text{or} \quad \hat{w} \in H_z \}.$$

Domain of definition of inversion: $\mathcal{V} = L_0$

Theorem. Under the above constructions, the product $\mu: \mathcal{U} \to L$ and inversion $\iota: \mathcal{V} \to L$ endow L with the structure of a regular, connected, associative, local Lie group which is not globally associative.

General Examples

G — connected, simply connected global Lie group $e \notin S \subset G$ — closed subset $M = G \setminus S$ — globalizable local Lie group $L = \widetilde{M}$ — nontrivial covering group \Longrightarrow non-globalizable local Lie group

 $\implies A \text{ (generalized) } covering map is a local diffeo$ $morphism <math>\Phi: L \to \widetilde{M}$

$$\ell$$
 16

Frames

M — smooth *m*-dimensional manifold.

Definition. A *frame* is an ordered set of vector fields $\{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$ that form a basis for the tangent space $TM|_x$ at each $x \in M$.

Structure equations:

$$[\mathbf{v}_i, \mathbf{v}_j] = \sum_{k=1}^m C_{ij}^k \mathbf{v}_k, \quad i, j = 1, \dots, m.$$

The frame has $rank \ 0$ if the structure coefficients C_{ij}^k are all constant, and are hence the structure constants of a Lie algebra \mathfrak{g} .

Theorem. If L is a regular, locally associative, local Lie group, then it admits a right-invariant frame of rank 0. Conversely, if M is a manifold that admits a rank 0 frame, then M can be endowed with the structure of a regular, locally associative local Lie group having the given frame as right-invariant Lie algebra elements.

Coframes

Definition. A coframe on M is an ordered set of one-forms $\boldsymbol{\theta} = \{\theta^1, \dots, \theta^m\}$ which form a basis for the cotangent space $T^*M|_x$ at each $x \in M$:

$$\theta^1 \wedge \theta^2 \wedge \cdots \wedge \theta^m \neq 0$$

Structure equations:

$$d\theta^k = -\sum_{1 \le i < j \le m} C^k_{ij} \,\theta^i \wedge \theta^j,$$

 \implies Maurer–Cartan forms

Main Theorem

Theorem. Let L be a connected local Lie group. Then there exists a local covering group $\overline{L} \to L$ which is also a local covering group $\overline{L} \to M$ of an open subset $e \in M \subset G$ of a global Lie group G.

 $\implies \qquad \text{The proof is based on the} \\ \text{Cartan equivalence method, using the Frobe-} \\ \text{nius Existence Theorem for first order systems of} \\ \text{partial differential equations and Cartan's technique} \\ \text{of the graph.} \end{aligned}$

Another Example

$$L = \{ (r, \varphi) \mid r > 0 \}$$

Frame vector fields:

$$\mathbf{v}_1 = \cos \varphi \, \frac{\partial}{\partial r} - \frac{\sin \varphi}{r} \, \frac{\partial}{\partial \varphi} \qquad \mathbf{v}_2 = \sin \varphi \, \frac{\partial}{\partial r} + \frac{\cos \varphi}{r} \, \frac{\partial}{\partial \varphi}$$

in rectangular coordinates: $\mathbf{v}_1 \mapsto \frac{\partial}{\partial x}, \ \mathbf{v}_2 \mapsto \frac{\partial}{\partial y}$

The vector fields commute: $[\mathbf{v}_1, \mathbf{v}_2] = 0$

but their flows do not commute!

$$\exp(\sqrt{2}\,\mathbf{v}_1)\exp(\sqrt{2}\,\mathbf{v}_2)\left(1,\frac{5}{4}\pi\right) = \exp(\sqrt{2}\,\mathbf{v}_1)\left(1,\frac{3}{4}\pi\right) = \left(1,\frac{1}{4}\pi\right)$$
$$\exp(\sqrt{2}\,\mathbf{v}_2)\exp(\sqrt{2}\,\mathbf{v}_1)\left(1,\frac{5}{4}\pi\right) = \exp(\sqrt{2}\,\mathbf{v}_2)\left(1,\frac{7}{4}\pi\right) = \left(1,\frac{9}{4}\pi\right)$$

Indeed,

 \Longrightarrow

$$\exp(s\mathbf{v}_1)\exp(t\mathbf{v}_2)x_0=\exp(t\mathbf{v}_2)\exp(s\mathbf{v}_1)x_0,$$

only for (s,t) in the *connected component* of $V = \{ (s,t) | \text{both sides are defined } \} \subset \mathbb{R}^2$.

 $\ell~20$