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Binary Forms
=⇒ R or C.

Homogeneous version:

Q(x, y) =
n∑

k=0

(
n

k

)

ak xkyn−k

Inhomogeneous (projective) version:

Q(p) = Q(p, 1) =
n∑

k=0

(
n

k

)

ak pk

Note:
Q(x, y) = yn Q

(
x

y

)



Equivalence of Binary Forms

Transformation group: g =
(
α β
γ δ

)

∈ GL(2)

Equivalence:
Q = g · Q

Symmetry = Self-equivalence:

Q = g · Q

=⇒ Galois theory???



Homogeneous transformation rule:

x̄ = αx + β y, ȳ = γx + δ y,

Q(x, y) = Q(αx + β y, γx + δ y)

Inhomogeneous transformation rule:

p̄ =
αp + β

γ p + δ
, Q(p) = (γ p + δ)n Q

(
αp + β

γ p + δ

)

• multiplier representation of GL(2)
• section of line bundle over CP1

• modular forms



Invariants
Definition. An invariant of a binary form Q of
degree n is a function I(a) = I(a0, . . . , an) depending
on its coefficients which satisfies

I(a) = (αδ − β γ)k I(a)
for some integer k under the action of GL(2).
• k = wt I — weight
• Strictly speaking, I is only an invariant of the

action of SL(2) and a relative invariant of GL(2)

♥ The vanishing of an invariant, I = 0, has
intrinsic meaning.



Examples of Invariants

Binary quadratic:

Q(x, y) = a2x
2 + 2a1xy + a0y

2,

Discriminant:
∆ = a0a2 − a2

1

Since
∆ = (αδ − βγ)2∆

the discriminant is an invariant of weight 2
=⇒ Boole, Cayley, . . .



Binary cubic:

Q(x, y) = a3x
3 + 3a2x

2y + 3a1xy2 + a0y
3.

Discriminant:

∆ = a2
0a

2
3 − 6a0a1a2a3 + 4a0a

3
2 − 3a2

1a
2
2 + 4a3

1a3

=⇒ weight 6

∆ = 0 ⇐⇒ multiple root



Binary quartic:

Q(x) = a4x
4 + 4a3x

3y + 6a2x
2y2 + 4a1xy3 + a0y

4.

Invariants:
i = a0a4 − 4a1a3 + 3a2

2 weight 4

j = det

∣∣∣∣∣∣∣

a4 a3 a2

a3 a2 a1

a2 a1 a0

∣∣∣∣∣∣∣
weight 6

Discriminant: ∆ = i3 − 27j2.

Absolute rational invariant: r =
j2

i3
.



Covariants

Definition. A covariant of weight k is a function

J(a,x) = J(a0, . . . , an, x, y)
which satisfies

J(a,x) = (αδ − β γ)k J(ā,x).
under the action of GL(2).



Hessian Covariant

H = QxxQyy −Q2
xy weight 2

Projective version:

H = n(n− 1)Q Qpp − (n− 1)2Q2
p

Theorem.
H ≡ 0 if and only if Q(x, y) = (ax + by)n.



Jacobian Covariants

If K, L are covariants, so is

J =
∂(K, L)
∂(x, y)

= KxLy −KyLx weight j + k + 1

Examples:
T = QxHy −QyHx weight 3

= −QyQyyQxxx + (2QyQxy + QxQyy)Qxxy −

− (QyQxx + 2QxQxy)Qxxy + QxQxxQyyy

U = QxTy −QyTx weight 4
...



Transvectants

(Q, R)(0) = Q R

(Q, R)(1) = QxRy −QyRx

(Q, R)(2) = QxxRyy − 2QxyRxy + QyyRxx

...

(Q, R)(r) =
r∑

i=0

(−1)i

(
r

i

)
∂rQ

∂xr−i∂yi

∂rR

∂xi∂yr−i

Note:
H = 1

2 (Q, Q)(2) = QxxQyy −Q2
xy



Transvectants
Projective version: deg Q = n, deg R = m

(Q, R)(r) = r!
r∑

k=0

(−1)k

(
n− r + k

k

)(
m− k

r − k

)

Q(r−k)(p)R(k)(p)

(Q, R)(0) = QR

(Q, R)(1) = mQ′R− n QR′

(Q, R)(2) = m(m− 1)Q′′R− 2(m− 1)(n− 1)Q′R′ + n(n− 1)QR′′

(Q, R)(3) = m(m− 1)(m− 2)Q′′′R− 3(m− 1)(m− 2)(n− 2)Q′′R′ +

+ 3(m− 2)(n− 1)(n− 2)Q′R′′ − n(n− 1)(n− 2)QR′′′



The First Fundamental Theorem

Theorem. All polynomial covariants and invariants
of any system of binary forms can be expressed as
linear combinations of iterated transvectants.

Gordan’s Theorem

Theorem. The invariants and covariants of a binary
form admit a finite generating basis.

=⇒ Constructive
=⇒ Hilbert!



Counting Invariants and Covariants

Sylvester’s Table

degree 2 3 4 5 6 7 8 9 10 12

# invariants 1 1 2 4 5 26 (30) 9 89 104 109
# covariants 2 4 5 23 26 124 (130) 69 415 475 949

• degree 7 — Dixmier & Lazard (1986)
• degree 8 — Shioda (1967), Bedratyuk (2006)



A Rational Basis for Covariants
Let

Sj = (Q, Q)(2j) j = 1, . . .m

Tk = (Sk, Q)(1) k = 1, . . . m′

where

4 ≤ deg Q = n = m + m′ =
{ 2m even

2m + 1 odd

Theorem. (Stroh, Hilbert)
Every polynomial covariant C can be written as

C =
1

QN
P (Q,S1, . . . , Sm, T1, . . . , Tm′)

where P is a polynomial and N an integer.



Moving Frames

Definition.
A moving frame is a G-equivariant map

ρ : M −→ G

Equivariance:

ρ(g·z) =






g · ρ(z) left moving frame

ρ(z) · g−1 right moving frame

ρleft(z) = ρright(z)−1



The Main Result

Theorem. A moving frame exists in
a neighborhood of a point z ∈ M if and
only if G acts freely and regularly near z.



Isotropy & Freeness

Isotropy subgroup: Gz = { g | g · z = z } for z ∈M

• free — the only group element g ∈ G which fixes one point
z ∈ M is the identity: =⇒ Gz = {e} for all z ∈M .

• locally free — the orbits all have the same dimension as G:
=⇒ Gz is a discrete subgroup of G.

• regular — all orbits have the same dimension and intersect
sufficiently small coordinate charts only once

*≈ irrational flow on the torus



Geometric Construction

z

Oz

Normalization = choice of cross-section to the group orbits
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Geometric Construction

z

Oz

K

k

g = ρright(z)

Normalization = choice of cross-section to the group orbits



Algebraic Construction
r = dim G ≤ m = dim M

Coordinate cross-section
K = { z1 = c1, . . . , zr = cr }

left right

w(g, z) = g−1 · z w(g, z) = g · z

g = (g1, . . . , gr) — group parameters

z = (z1, . . . , zm) — coordinates on M



Choose r = dim G components to normalize:

w1(g, z)= c1 . . . wr(g, z)= cr

Solve for the group parameters g = (g1, . . . , gr)

=⇒ Implicit Function Theorem

The solution
g = ρ(z)

is a (local) moving frame.



The Fundamental Invariants
Substituting the moving frame formulae

g = ρ(z)

into the unnormalized components of w(g, z) produces the
fundamental invariants

I1(z) = wr+1(ρ(z), z) . . . Im−r(z) = wm(ρ(z), z)

=⇒ These are the coordinates of the canonical form k ∈ K.



Completeness of Invariants

Theorem. Every invariant I(z) can
be (locally) uniquely written as a
function of the fundamental invariants:

I(z) = H(I1(z), . . . , Im−r(z))



Prolongation

Most interesting group actions (Euclidean, affine,
projective, etc.) are not free!

Freeness typically fails because the dimension
of the underlying manifold is not large enough, i.e.,
m < r = dim G.

Thus, to make the action free, we must increase
the dimension of the space via some natural prolonga-
tion procedure.

• An effective action can usually be made free by:



• Prolonging to derivatives (jet space)

G(n) : Jn(M, p) −→ Jn(M, p)

=⇒ differential invariants

• Prolonging to Cartesian product actions

G×n : M × · · ·×M −→ M × · · ·×M

=⇒ joint invariants

• Prolonging to “multi-space”

G(n) : M (n) −→ M (n)

=⇒ joint or semi-differential invariants
=⇒ invariant numerical approximations
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Euclidean Plane Curves

Special Euclidean group: G = SE(2) = SO(2) ! R2

acts on M = R2 via rigid motions: w = R z + c

To obtain the classical (left) moving frame we invert
the group transformations:
y = cos θ (x− a) + sin θ (u− b)

v = − sin θ (x− a) + cos θ (u− b)




 w = R−1(z − c)

Assume for simplicity the curve is (locally) a graph:
C = {u = f(x)}

=⇒ extensions to parametrized curves are straightforward



Prolong the action to Jn via implicit differentiation:

y = cos θ (x− a) + sin θ (u− b)

v = − sin θ (x− a) + cos θ (u− b)

vy =
− sin θ + ux cos θ
cos θ + ux sin θ

vyy =
uxx

(cos θ + ux sin θ )3

vyyy =
(cos θ + ux sin θ )uxxx − 3u2

xx sin θ
(cos θ + ux sin θ )5

...



Choice of cross-section: r = dim G = 3

y = cos θ (x− a) + sin θ (u− b) = 0

v = − sin θ (x− a) + cos θ (u− b) = 0

vy =
− sin θ + ux cos θ
cos θ + ux sin θ

= 0

vyy =
uxx

(cos θ + ux sin θ )3

vyyy =
(cos θ + ux sin θ )uxxx − 3u2

xx sin θ
(cos θ + ux sin θ )5

...



Solve for the group parameters:

y = cos θ (x− a) + sin θ (u− b) = 0

v = − sin θ (x− a) + cos θ (u− b) = 0

vy =
− sin θ + ux cos θ
cos θ + ux sin θ

= 0

=⇒ Left moving frame ρ : J1 −→ SE(2)

a = x b = u θ = tan−1 ux



a = x b = u θ = tan−1 ux

Differential invariants
vyy =

uxx

(cos θ + ux sin θ )3
-−→ κ =

uxx

(1 + u2
x)3/2

vyyy = · · · -−→ dκ

ds
=

(1 + u2
x)uxxx − 3uxu2

xx

(1 + u2
x)3

vyyyy = · · · -−→ d2κ

ds2
− 3κ3 = · · ·

Invariant one-form — arc length

dy = (cos θ + ux sin θ) dx -−→ ds =
√

1 + u2
x dx



Dual invariant differential operator
— arc length derivative

d

dy
=

1
cos θ + ux sin θ

d

dx
-−→ d

ds
=

1
√

1 + u2
x

d

dx

Theorem. All differential invariants are functions of
the derivatives of curvature with respect to arc
length:

κ,
dκ

ds
,

d2κ

ds2
, · · ·



Equivalence & Invariants

• Equivalent submanifolds N ≈ N
must have the same invariants: I = I.

However, unless an invariant is constant

e.g. κ = 2 ⇐⇒ κ = 2

it carries little information in isolation, since an
equivalence map can drastically alter the dependence
on the submanifold parameters:

e.g. κ = x3 versus κ = sinh x



However, a functional dependency or syzygy among
multiple invariants is intrinsic

e.g. κs = κ3 − 1 ⇐⇒ κs̄ = κ3 − 1



Equivalence & Syzygies

Theorem. (Cartan) Two submanifolds are (locally)
equivalent if and only if they have identical
syzygies among all their differential invariants.

♠ There are, in general, an infinite number of differ-
ential invariants and hence an infinite number
of syzygies must be compared to establish
equivalence.

♥ But the higher order syzygies are all consequences
of a finite number of low order syzygies!



Example — Plane Curves

If non-constant, both κ and κs depend on a single
parameter, and so, locally, are subject to a syzygy:

κs = H(κ) (∗)

But then

κss =
d

ds
H(κ) = H ′(κ)κs = H ′(κ)H(κ)

and similarly for κsss, etc.
Consequently, all the higher order syzygies are generated

by the fundamental first order syzygy (∗).

Thus, we need only know a single syzygy between κ and
κs in order to establish equivalence!



Definition. The signature curve S ⊂ R2 of a curve
C ⊂ R2 is parametrized by the two lowest order
differential invariants:

S =
{ (

κ ,
dκ

ds

) }

⊂ R2

Theorem. Two curves C and C are equivalent:

C = g · C
if and only if their signature curves are identical:

S = S

=⇒ object recognition



Symmetry and Signature

Theorem. Let S denote the signature of the
p-dimensional submanifold N . Then the dimen-
sion of its symmetry group

GN = { g | g · N ⊂ N }
equals

dimGN = dim N − dimS

Corollary. For a regular submanifold N ⊂M ,
0 ≤ dim GN ≤ dim N

=⇒ Only totally singular submanifolds can have larger
symmetry groups!



Maximally Symmetric Submanifolds

Theorem. The following are equivalent:
• The submanifold N has a p-dimensional symmetry group
• The signature S degenerates to a point: dimS = 0
• The submanifold has all constant differential invariants
• N = H · {z0} is the orbit of a p-dimensional subgroup H ⊂ G

=⇒ Euclidean geometry: circles, lines, helices, spheres, cylinders & planes.
=⇒ Equi-affine plane geometry: conic sections.
=⇒ Projective plane geometry: W curves (Lie & Klein)



Discrete Symmetries

Definition. The index of a submanifold N equals
the number of points in N which map to a generic
point of its signature:

ιN = min
{

# Σ−1{w}
∣∣∣ w ∈ S

}

=⇒ Self–intersections

Theorem. The cardinality of the symmetry group of
a submanifold N equals its index ιN .

=⇒ Approximate symmetries



The Index

Σ

−→

N S



The polar curve r = 3 + 1
10 cos 3θ
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The Curve x = cos t + 1
5 cos2 t, y = sin t + 1

10 sin2 t
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The Curve x = cos t + 1
5 cos2 t, y = 1

2 x + sin t + 1
10 sin2 t
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“Industrial Mathematics”

=⇒ Steve Haker
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Moving Frames and Binary Forms

Projective equivalence of binary forms of degree n:

Q(x) = (γx + δ)n Q

(
αx + β

γx + δ

)

Transformation group:

g : (x, u) -−→
(
αx + β

γx + δ
,

u

(γx + δ)n

)

Equivalence of functions ⇐⇒ equivalence of their graphs

ΓQ = { (x, u) = (x, Q(x)) } ⊂ C2



Moving Frame Calculation

M = R2 \ {u = 0}

G = GL(2) =
{ (

α β
γ δ

) ∣∣∣∣∣ ∆ = α δ − β γ *= 0
}

(x, u) -−→
(
αx + β

γx + δ
,

u

(γx + δ)n

)

n *= 0, 1



Prolongation:

y =
αx + β

γx + δ
σ = γx + δ

v = σ−n u ∆ = α δ − β γ

vy =
σ ux − n γ u

∆ σn−1

vyy =
σ2 uxx − 2(n− 1)γ σ ux + n(n− 1)γ2 u

∆2 σn−2

vyyy = · · ·



Choice of cross-section: r = dim G = 4

y =
αx + β

γx + δ
= 0 σ = γx + δ

v = σ−n u = 1 ∆ = α δ − β γ

vy =
σ ux − n γ u

∆ σn−1
= 0

vyy =
σ2 uxx − 2(n− 1)γ σ ux + n(n− 1)γ2 u

∆2 σn−2
=

1
n(n− 1)

vyyy = · · ·



Moving frame:

α = u(1−n)/n
√

H β = −xu(1−n)/n
√

H

γ = 1
n u(1−n)/n δ = u1/n − 1

n xu(1−n)/n

Hessian:
H = n(n− 1)uuxx − (n− 1)2u2

x *= 0

Note: H ≡ 0 if and only if Q(x) = (ax + b)n

=⇒ Totally singular forms

Differential invariants:

vyyy -−→
J

n2(n− 1)
≈ κ vyyyy -−→

K + 3(n− 2)
n3(n− 1)

≈ dκ

ds



Absolute rational covariants:

J2 =
T 2

H3
K =

U

H2

H = 1
2 (Q, Q)(2) = n(n− 1)QQ′′ − (n− 1)2Q′2 ∼ QxxQyy −Q2

xy

T = (Q, H)(1) = (2n− 4)Q′H − nQH ′ ∼ QxHy −QyHx

U = (Q, T )(1) = (3n− 6)Q′T − nQT ′ ∼ QxTy −QyTx

deg Q = n deg H = 2n− 4 deg T = 3n− 6 deg U = 4n− 8



Signatures of Binary Forms
Signature curve of a nonsingular binary form Q(x):

SQ =
{

(J(x)2, K(x)) =
(

T (x)2

H(x)3
,

U(x)
H(x)2

)}

Nonsingular : H(x) *= 0 and (J ′(x),K ′(x)) *= 0.
Signature map:

Σ : ΓQ −→ SQ Σ(x) = (J(x)2, K(x))

Theorem. Two nonsingular binary forms are equivalent if and
only if their signature curves are identical.



Theorem. A binary form of degree n ≥ 3 is complex-
equivalent to a sum of two nth powers

Q(x, y) ∼ xn + yn

if and only if its signature curve is a straight line:

K = − n− 3
n− 2

J2 +
2n(n− 2)
(n− 1)2

or, equivalently,

H U − n− 3
n− 2

T 2 +
2n(n− 2)
(n− 1)2

H3 = 0.

=⇒ In particular, a quartic is the sum of two fourth powers if
and only if j = 0.



Complex Binary Cubics

• H ≡ 0 Q ∼ x3 or 1

=⇒ degenerate

• T 2 = −H3 Q ∼ x2 or x SQ = {(−1, 0)}

=⇒ point

• U = − 3
2 H2: Q ∼ x2 − 1 SQ = { ( t,− 3

2 ) }

=⇒ line



Real Binary Cubics
Syzygy: T 2 + H3 = 24 36 ∆Q2

∆ — discriminant of Q

∆ < 0: H < 0 Q ∼ x2 − 1

SQ =
{ (

t,− 3
2

) ∣∣∣ −1 ≤ t ≤ 0
}

∆ > 0: H indefinite Q ∼ x2 + 1

SQ =
{ (

t,− 3
2

) ∣∣∣ t ≥ 0
}
∪

{ (
t, 3

2

) ∣∣∣ t < −1
}



Complex Binary Quartics
Syzygies:

T 2 = −16
9 H3 + 21032 i Q2H − 21434 j Q3,

U = −8
3H

2 + 2932 iQ2.
where

i = a0a4 − 4a1a3 + 3a2
2 j = det

∣∣∣∣∣∣∣

a4 a3 a2

a3 a2 a1

a2 a1 a0

∣∣∣∣∣∣∣

s = 48Q/H, J = T 2/H3, K = U/H2, r = j2/i3.
Signature curve:

J2 = −16
9 + 4 i s2 − 12 j s3, K = −8

3 + 2 i s2.

or
9
2 r

(
K + 8

3

)3
=

(
K − 1

2 J2 + 16
9

)2
.



Classification of Complex Quartics

Type I: Q ∼ x4 + µ x2 + 1, µ *= ±2
=⇒ J not constant

r =
j2

i3
=

µ2(36− µ2)2

27(12 + µ2)3
.

Note:
±µ, ± 12− 2µ

2 + µ
, ± 12 + 2µ

2− µ
,

all give the same value for r, so the associated quartics
are equivalent.



Type II: Q ∼ p2 + 1 J not constant r = 1
27

Type III: Q ∼ p2 J = 0 K = 0 (µ = ±2)

Type IV: Q ∼ p J2 = − 16
9 K = − 8

3

Type V: Q ∼ 1 degenerate



Rational Basis for Covariants
Q — binary form of degree n ≥ 4

Sj = (Q, Q)(2j) j = 1, . . .m

Tk = (Sk, Q)(1) k = 1, . . . m′

where

n = m + m′ =
{ 2m even

2m + 1 odd

Theorem. (Stroh, Hilbert)
Every polynomial covariant C can be written as

C =
1

QN
P (Q,S1, . . . , Sm, T1, . . . , Tm′)

where P is a polynomial and N an integer.



sj =
Q2j−2Sj

Hj
tk =

Q2k−2Tk

Hk+1/2

Then
J2 =

T 2

H3
= t21, K = − 1

2
− J2 +

n− 3
6(n− 2)

s2

Independent invariants:
iν = Ψν(s1, . . . , sm, t1, . . . , tm′)

The signature curve is obtained by eliminating the parameters
s1, . . . , sm, t1, . . . , tm′.

A null form in one with all zero invariants.

Theorem. Two non-null binary forms are equivalent if
and only if they have the same absolute rational invariants.



Symmetries of Binary Forms
Theorem. The symmetry group of a nonzero binary form

Q(x) *≡ 0 of degree n is:

• A two-parameter group if and only if H ≡ 0 if and only if
Q is equivalent to a constant. =⇒ totally singular

• A one-parameter group if and only if H *≡ 0 and T 2 = cH3

if and only if Q is complex-equivalent to a monomial xk,
with k *= 0, n. =⇒ maximally symmetric

• In all other cases, a finite group whose cardinality equals
the index of the signature curve, and is bounded by

ιQ ≤




6n− 12 U = cH2

4n− 8 otherwise



Equations for Symmetries
=⇒ Irina Kogan

Theorem. Let Q(x) be a binary form of degree n which is
not complex equivalent to a monomial. Then the projective
symmetries

y = ϕ(x) =
αx + β

γx + δ

of Q(x) are the common solutions to the two rational equations

J(y) = J(x), K(y) = K(x).



Or, equivalently, the common roots

y = ϕ(x) =
αx + β

γx + δ

to the polynomial equations

degree

H(y)3 T (x)2 = T (y)2 H(x)3 6(n− 2)

H(y)2 U(x) = U(y) H(x)2 4(n− 2)
where

H = 1
2 (Q, Q)(2) T = (Q, H)(1) U = (Q, T )(1)



Cubic Example #1

Q = p3 + 1

Projective symmetry group:

p
1
p

ω p ω2 p
ω

p

ω2

p

ω = − 1
2

+ i
√

3
2

Matrix generators:
(
ω 0
0 ω

) (
0 1
1 0

) (
ω 0
0 ω2

)

# symmetries = 18



Cubic Example #2

Q(p) = p3 + p

Projective symmetry group:

p, −p,
i p + 1
3p + i

,
i p− 1
−3p + i

,
− i p + 1
−3p + i

,
− i p + 1
3p + i

.

Matrix generators:
(
ω 0
0 ω

)

,

(
1 0
0 −1

)

, −1
2

(
1 − i
−3 i 1

)

.

# symmetries = 18



Finite Subgroups of PSL(2)
• Abelian #An = n

α : p -−→ ω p, ωn = 1 — primitive
• Dihedral #Dn = 2n

α, p -−→ 1/p

• Tetrahedral #T = 12

σ : p -−→ −p, τ : p -−→ i (p + 1)
p− 1

,

• Octahedral #O = 24

τ : p -−→ i (p + 1)
p− 1

, ι : p -−→ i p

• Icosahedral #I = 60

σ, τ, ρ : p -−→ 2p− (1−
√

5) i − (1 +
√

5)
[
(1−

√
5) i − (1 +

√
5)

]
p− 2



Quartics

Q(p) = p4 + µ p2 + 1 or p2 + 1 where µ *= ±2.

General µ : the projective symmetry group is a dihedral group

D2, generated by −p and 1/p.

µ = 0 : dihedral group D4, generated by i p and 1/p.

µ = ±2 i
√

3 : the projective symmetry group is the 12 element

octahedral group O, generated by −p and i (p− 1)/(p + 1).



Projective Symmetry Groups of Quintics

p5 + 1 D5

p5 + p A4

p5 + p2 A3

p5 + p3 A2

p5 + p2 + 1 {e}

p5 − 4p− 2 {e}



Quintic Computation

Q(p) = p5 + p

Initially Maple produces symmetries which involve square roots
and so do not look like linear fractional transformations.
However, after some simplifications under the radical,
we obtain the group of linear fractional transformations
generated by

i p

√
2 (1 + i )p− 2√
2 (1− i ) + 2p

with corresponding matrices
(

i 5/6 0
0 i−1/6

)
1
2

(
1 + i −

√
2√

2 1− i

)

.



Ternary forms
— see work of Irina Kogan and Marc Moreno Maza.


