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History of Moving Frames

Classical contributions:
M. Bartels (~1800), J. Serret, J. Frénet, G. Darboux,

E. Cotton, Elie Cartan

Modern developments: (1970’s)
S.S. Chern, M. Green, P. Griffiths, G. Jensen, .

The equivariant approach: (1997 — )

PJO, M. Fels, G. Mari—Beffa, I. Kogan, J. Cheh,
J. Pohjanpelto, P. Kim, M. Boutin, D. Lewis, E. Mansfield,
E. Hubert, O. Morozov, R. McLenaghan, R. Smirnov, J. Yue,
A. Nikitin, J. Patera, F. Valiquette, R. Thompson, ...
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Moving Frame — Space Curves

t
tangent normal binormal
d
t = & op= s b=txn
ds 24 |

s — arc length

— point on the curve

Frénet—Serret equations
dt dn db
ds ds ds

kK — curvature T — torsion

K1 —kt+7hb —Tn



“I did not quite understand how he [Cartan]| does this
in general, though in the examples he gives the
procedure is clear.”

“Nevertheless, I must admit I found the book, like
most of Cartan’s papers, hard reading.”

— Hermann Weyl

“Cartan on groups and differential geometry”
Bull. Amer. Math. Soc. 44 (1938) 598-601



Applications of Moving Frames

Differential geometry

Equivalence

Symmetry groups and groupoids

Differential invariants

Rigidity

Joint invariants and semi-differential invariants
Invariant differential forms and tensors
Identities and syzygies

Classical invariant theory



Computer vision
— object recognition & symmetry detection

Invariant numerical methods

Invariant variational problems

Invariant submanifold flows

Poisson geometry & solitons

Killing tensors in relativity

Invariants of Lie algebras in quantum mechanics

Lie pseudo-groups



The Basic Equivalence Problem

M — smooth m-dimensional manifold.

(G — transformation group acting on M

e finite-dimensional Lie group

e infinite-dimensional Lie pseudo-group



Equivalence:

Determine when two p-dimensional submanifolds

N and N Cc M

are congruent:

Symmetry:
Find all symmetries,
i.e., self-equivalences or self-congruences:

N=g N



Classical Geometry — F. Klein

Euclidean group:

o { SE(m) = SO(m) x R™
| E(m)=0@m)xR™

2 Az + € SO(m) or O(m), eR™, zeR™
= isometries: rotations, translations , (reflections)
Equi-affine group: G = SA(m) = SL(m) x R™
€ SL(m) — volume-preserving
Affine group: G = A(m) =GL(m) x R™
€ GL(m)
Projective group: G =PSL(m+1)

acting on R™ C RP™

—> Applications in computer vision



Tennis, Anyone?




Moving Frames

Definition.

A moving frame is a G-equivariant map

p: M — G
Equivariance:
g-p(2) left moving frame
plg-2) = 1 . .
p(z)-g right moving frame

pleft(z) — pright(z)_l




The Main Result

Theorem. A moving frame exists in
a neighborhood of a point z € M if and
only if GG acts freely and regularly near z.



Isotropy & Freeness
Isotropy subgroup: G,={9lg-z=2} for ze M

free — the only group element ¢ € G which fixes one point
z € M is the identity
—> G, =A{e}forall ze M

— the orbits all have the same dimension as G
—> G, C G is discrete for all z € M

regular — the orbits form a regular foliation
% irrational flow on the torus

effective — the only group element which fixes every point in M
is the identity: g-z =z for all z € M iff g = e:

Gy = N G,={e}

zeM



Geometric Construction

Normalization = choice of cross-section to the group orbits
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Geometric Construction

Normalization = choice of cross-section to the group orbits




K — cross-section to the group orbits

O, — orbit through z € M

k € K N0, — unique point in the intersection
e £k is the canonical form of z

e the (nonconstant) coordinates of k are the fundamental
invariants

g € G — unique group element mapping k to z
— freeness

Then p;.;(2) = g is a left moving frame: p;, ¢ (h-2) = h-pj,,(2)

1

k= pleft(z)_ Te = pm'ght(z) "z



Algebraic Construction
—dimG < m=dimM

Coordinate cross-section

K= =@y co- 18, =C, )
left right
w(g,z) =g 1 2 w(g,2) =gz
=(g,,...,0,) — group parameters

z=1(zy,...,%2,) — coordinates on M



Choose » = dim G components to normalize:

w(nd=¢ ...  wlnd=c (¥

Solve (x) for the group parameters ¢ = (¢,,...,79,)

—> Implicit Function Theorem

The solution
= p(2)
is a (local) moving frame.



The Fundamental Invariants

Substituting the moving frame formulae

= p(2)

into the unnormalized components of w(¢, z) produces
the fundamental invariants

L(2) = w1 (p(2),2) oo Ly y(2) = wy(p(2), 2)

— These are the coordinates of the canonical form
ke K.



Completeness of Invariants

Theorem. Every invariant I(z) can be (locally)
uniquely written as a function of the fundamental
invariants:

I(z)=H(,(2), ... , I _.(2))

m-—r



Invariantization

Definition. The invariantization of a function
F: M — R with respect to a right moving frame
g = p(z) is the the invariant function I = «(F)

defined by

[’(zl) =Cpy - L(Zr) = Cpy [’(zr—l—l) — Il(z>7 <. L(Zm) — [m—r(z)'
cross-section variables fundamental invariants
“phantom invariants”

Invariantization respects all algebraic operations:

L F(zy,- oh2,)] = Fleyy. .oy, 1i(2),. .., L, (%))

)T >Tm—r




Invariantization amounts to restricting F' to the cross-
section

I|[K=F|K

and then requiring that I = «(F') be constant
along the orbits.

In particular, if I(z) is an invariant, then «(I) = I.

Invariantization defines a canonical projection

. : functions +—— Invariants




The Replacement Theorem

If I(zy,...,%,,) is any invariant, then

v I(2qy.-52,,)] = I(cq,..ye,11(2),..., 1 (2))

This “Rewrite Rule” trivially proves that any
invariant can be easily expressed (rewritten) in terms
of the fundamental invariants!



The Rotation Group

G = SO(2) acting on R*
z=(x,u) —> g-z=(xcosd—wusino , rsinod+ wcoso)

— TFree on M = R?\ {0}

Left moving frame:

1°Z:(y7v)

w(g,z) =g~
Yy = x cos ¢ + usin vV = — I sin @ + U Ccos

Cross-section:

K={u=0,z>0}



Normalization equation:
v=—xsino+wucosp =0
Left moving frame:

= tan_lg — o =p(z,u) € SO(2)

Fundamental invariant

Invariantization



The moving frame construction requires freeness of the group
action

e Most interesting group actions (Euclidean, affine, projective,
etc.) are not free!

e Freeness typically fails because the dimension of the underlying
manifold is not large enough, i.e., m < r = dimG.

Thus, to make the action free, we must increase the dimen-
sion of the space via some natural prolongation procedure.

An effective action can usually be made free by:



e Prolonging to derivatives (jet space)
G . JY(M,p) — J*(M,p)

— differential invariants

e Prolonging to Cartesian product actions

G - Mx---xM — Mx---xM

—> joint invariants

e Prolonging to “multi-space”
G . prn) s ppn)

—> joint or semi-differential invariants
—> invariant numerical approximations



e Prolonging to derivatives (jet space)
G™ . JYM,p) — JV(M,p)

— differential invariants

e Prolonging to Cartesian product actions

G : M x---xXxM — Mx---xM

—> joint invariants

e Prolonging to “multi-space”
G . prm) s ppn)

—> joint or semi-differential invariants
—> invariant numerical approximations



Euclidean Plane Curves

Special Euclidean group: G = SE(2) = SO(2) x R?
acts on M = R? via rigid motions: w = /7 z +

To obtain the classical (left) moving frame we invert the group

transformations:
y= coso(x—a)+sinod(u—D>)
w= "1z —0)
v=—sino(x—a)+coso(u—>h)

Assume for simplicity the curve is (locally) a graph:

C={u=flz);

—> extensions to parametrized curves are straightforward



Prolong the action to J” via implicit differentiation:

y= coso(xr—a)+sino(u—>)
v=—sino(x—a)+coso(u—D0)

—sino + U, COS

Y coso 4+ u,sin

umm

Y (cosd +u,sing )3

R (cos & +u sino)u,  — 3u?_sin
yvy (cosd + u, sin ¢ )d




Normalization: r=dimG =3
y= coso(x—a)+sino(u—>0) =0
v=—sino(x—a)+coso(u—>b) =0
. — Sin —kzgnéos — 0
Y cos¢ +u,sin
v — U’mm
Y9 (cos + u,sino )3
. _ (cos & +u,sin 0 Ju,,, — 3ug, sin
yyy

(cos

+ u, sin ¢ )°



Solve for the group parameters:

y= coso(x—a)+sino(u—>0) =0
v=—sino(x—a)+coso(u—>0) =0
—sin ¢ + u,, cos
v, = - =0
Y cos¢ +u,sin
— Left moving frame p:Jt — SE(2)

= =u = tan~! U,



= = U = tan_l u,

Differential invariants — invariantization
U U
Trr Txr
v — . : > L(UZUZU) — = K
Yo (coso +uy,sing )3 (1 +u2)3/2
v - — L(uxa:a:) - 2 —
yuy (1+wu2)3 ds
d?k
D— . . . D— . . . — —— — 3
Uyyyy - I L(u:cscscsc) - - d82 3K

— recurrence formulae

Invariant one-form — arc length

dy = (cos® +u,sino)dr +—— (dx) =/1+u2 dx=ds



Dual invariant differential operator
— arc length derivative

d 1 d d 1 d

J— I \

dy coso+wu,sino dx T ds /1 + u2 dx

Theorem. All differential invariants are functions of the
derivatives of curvature with respect to
arc length:

dr d’k

ds’ ds?’

K,



The Classical Picture: t
/I

Moving frame p: (r,u,u,) —> (R,a) € SE(2)

el F)em ()



Frenet frame

t:d_xz<ms>, n:tJ‘:<_ys>
ds Y X

Frenet equations = Pulled-back Maurer—Cartan forms:
dx dt dn

— =1t — = KN — = —Kt.
ds ’ ds i, ds 4



Equi-affine Plane Curves G = SA(2)

z— Az 4+ e SL(2), c R?
Invert for left moving frame:
y=0(r—a)=pFu—-"0)
w= A"1(z—0)
v==7 (- a)+alu=h
— =1




Prolongation:

N
Uy = — ’U,x
_ Uy
T T 0= )3
Vyyy = ( _ Um)5
_ uscscscsc( o um)z + 10 ( T usc) Upr Upga + 15 ’ uzgmz
Yyyyy = ( _ um)7

Yyyyyy



Normalization: r=dimG =5
y=0(x—a)—J(u—"0)=0
v=—7(x—a)+a(u—>0) =0

- /u/x -
Uy = = ", =0
umm -
RN CE PR
Uyyy = — ( — Bu )5
uscscscsc( T ux)2+10 ( T ux)uxxuxxx+15 2u:3m:
Vyyyy = (0= Fu, )T
v _

Yyyyyy



Equi-affine Moving Frame

p: (z,u,u,,u, ., u,.) — (A b) e SA(2)
A= o Y Uy o %uaja?/e) Upra
— = u 3y u_1/3 - %u—5/3u .

Nondegeneracy condition: U, 7 0.



Equi-affine arc length

dy=(0—u,)de r— ds=(dzx)= {|u,, dx

Equi-affine curvature

2
v } L(u ) _ 5 UprUpraer — 3uscscsc — k
yyyy TIXILT 9 u8/3
dk
Uyyyyy } L(u:cscscscsc) - = %
d2
Vyyyyyy 3 L(uscscsc:ca:sc) - = g2 - 5K3



The Classical Picture:

3 _1,-5/3
. ( ua;a: 3 umm ua;a:a:
B 3 -1/3 1, -5/3
um ua;a: ua;a: 3 ua;a: u

s




Frenet frame

B dz d?z

t=—, n=__.
ds ds?

Frenet equations = Pulled-back Maurer—Cartan forms:

& _
ds

dt
ds

¢ dn _ .
: n, — =k t.
ds



The Recurrence Formula

*  While invariantization respects all algebraic operations
it does not commute with differentiation!

For any function or differential form €2:

di(2) = 1(dQ2) + kil A L[VL(Q)]

.,v.. — basis for g — infinitesimal generators
e — dual invariantized Maurer—Cartan forms

* The /* are uniquely determined by the recurrence
formulae for the phantom differential invariants



die(2) = 1(dQ) + ];?“:1 FALVL(Q)]

* % % All identities, commutation formulae, syzygies, etc.,
among differential invariants and, more generally, the
invariant differential forms follow from this universal
recurrence formula by letting 2 range over the basic
functions and differential forms!

% x % Therefore, the entire structure of the differential invari-
ant algebra and invariant variational bicomplex can be
completely determined using only linear differential al-
gebra; this does not require explicit formulas for the
moving frame, the differential invariants, the invariant
differential forms, or the group transformations!



The Basis Theorem

Theorem. The differential invariant algebra

Z(@G) is generated by a finite number of differential
invariants

I, ... I,
and p = dim NV invariant differential operators
Dy, ..., D,

meaning that every differential invariant can be locally
expressed as a function of the generating invariants
and their invariant derivatives:

D,l,=D,D, D, I,
—> Lie, Tresse, QOusiannikov, Kumpera

— Moving frames provides a constructive proof.



The Differential Invariant Algebra

Thus, remarkably, the structure of Z(G) can be determined
without knowing the explicit formulae for either the moving
frame, or the differential invariants, or the invariant differ-
ential operators!

The only required ingredients are the specification of the cross-
section, and the standard formulae for the prolonged
infinitesimal generators.

Theorem. If G acts transitively on M, or if the infinitesimal
generator coefficients depend rationally in the coordinates,
then all recurrence formulae are rational in the basic
differential invariants and so Z(G) is a rational, non-
commutative differential algebra.



Curves

Theorem. Let G be an ordinary™ Lie group acting on the m-
dimensional manifold M. Then, locally, there exist m — 1

generating differential invariants x,...,k Every other

m—1-
differential invariant can be written as a function of the
generating differential invariants and their derivatives with

respect to the G-invariant arc length element ds.

* ordinary = transitive + no pseudo-stabilization.



Minimal Generating Invariants

A set of differential invariants is a generating system if all
other differential invariants can be written in terms of them and
their invariant derivatives.

Euclidean space curves C' C R3:
e curvature x and torsion 7

Equi-affine space curves C' C R3:
e afline curvature k and torsion 7

Euclidean surfaces S ¢ R3:
e 1mean curvature H

Gauss curvature K = ®(DWH).

Equi-affine surfaces S C R3:
e Pick invariant P.



Curves

Theorem. Let G be an ordinary™ Lie group acting on the m-
dimensional manifold M. Then, locally, there exist m — 1

generating differential invariants x,...,k Every other

m—1-
differential invariant can be written as a function of the
generating differential invariants and their derivatives with

respect to the G-invariant arc length element ds.

* ordinary = transitive + no pseudo-stabilization.

— m=3 — curvature k & torsion T



Euclidean Surfaces

Theorem.

The algebra of Euclidean differential invariants for
a non-degenerate surface is generated by the
mean curvature through invariant differentiation.




Euclidean Surfaces

Theorem.

The algebra of Euclidean differential invariants for
a non-degenerate surface is generated by the
mean curvature through invariant differentiation.

K = ®(H,D,H,D,H, ...)



Euclidean Proof

Commutation relation:
[D17D2] — D11)2 - D2D1 — ZQD1 - leza
Commutator invariants:

D1k, Z, =

Dysy Doty

Z, =



Euclidean Proof

Commutation relation:

| D1, Dy =D Dy =Dy Dy = 2, Dy — Z, Dy,
Commutator invariants:
Dyky Z, = Dk

Z, =
K1 — kKo Ko — Ky

Codazzi relation:

K = kykyg =—(Dy+ 2,) 2, — (Dy + 2,) Z,



Euclidean Proof

Commutation relation:
[D17D2] — D11)2 - D2D1 — ZQD1 - leza
Commutator invariants:

Dk, 7
— 2 o —
K1 — Koy Ko — Ky

Z, =

Codazzi relation:
K = kikyg =—(Dy+ 2,) 2, — (Dy + 2,) Z,

—> Gauss’

(Guggenheimer)



To determine the commutator invariants:

D,D,H — D,D,H = Z,D,H — 7, D,H

()
D,D,D,H — D,D,D,H = Z,D,D,H — 7, D,D,H

Nondegenerate surface:

D.H D,H
det(DlDJH DQDJH> 70,

Solve (%) for Z,, Z, in terms of derivatives of H.

Q.E.D.

* A surface is mean curvature degenerate if
D,H = FJ(H) for 7 =1,2.
Totally umbilic and constant mean curvature surfaces,
including minimal surfaces are degenerate. Geometry?



e Prolonging to derivatives (jet space)

G . J"(M,p) — J"(M,p)

— differential invariants

e Prolonging to Cartesian product actions

G : M x---xM — Mx---xM

—> joint invariants

e Prolonging to “multi-space”

am .y )

—> joint or semi-differential invariants
—> invariant numerical approximations



Joint Invariants

A joint invariant is an invariant of the k-fold
Cartesian product action of G on M x --- x M:

I(g-2yyooh9-2,) = I(zg,...,2)

A joint differential invariant or
is an invariant depending on the derivatives
at several points z,..., 2, € N on the submanifold:

I(g-2™M, . ..g- 20"y = 1z, .., 2)




Joint Euclidean Invariants

Theorem. Every joint Euclidean invariant is a
function of the interpoint distances

d(z;; Zj) = |l z; — 2 I

Z -

1



Joint Equi—Affine Invariants

Theorem. Every planar joint equi—affine invariant is
a function of the triangular areas

[0 k] =35 (z—2) Nz — 2)



Joint Projective Invariants

Theorem. Every planar joint projective invariant is
a function of the planar cross-ratios

AB

[Zivzjvzkzvzlvzm] — CD

v



Projective joint differential invariant:
— tangent triangle ratio

20

Z9

3| =
= &
| Q



e Prolonging to derivatives (jet space)
G . JYM,p) — J*(M,p)

— differential invariants

e Prolonging to Cartesian product actions
G*": Mx- XM — Mx---xM

—> joint invariants

e Prolonging to “multi-space”
eSOV ((O NN Vi ¢

— joint or semi-differential invariants
—> invariant numerical approximations



Symmetry—Preserving Numerical Methods

e Invariant numerical approximations to differential
invariants.

e Invariantization of numerical integration methods.

—> Structure-preserving algorithms



Numerical approximation to curvature

Heron’s formula

k(A,B,C) = 4% _4 \/S(s — a)isbc_ b)(s — c)

_a+t+b+ec
T2

’ —  semi-perimeter



Invariantization of Numerical Schemes

—> Pilwon Kim

Suppose we are given a numerical scheme for integrating
a differential equation, e.g., a Runge—Kutta Method for ordi-
nary differential equations, or the Crank—Nicolson method for
parabolic partial differential equations.

If G is a symmetry group of the differential equation,
then one can use an appropriately chosen moving frame to
the numerical scheme, leading to an invariant nu-
merical scheme that preserves the symmetry group. In challeng-
ing regimes, the resulting invariantized numerical scheme can,
with an inspired choice of moving frame, perform significantly
better than its progenitor.



-3r _ ~ Nolnvj

4+ |
— V=8
= u=
o V=07
g-6

-7+

-8

0 : 2 3 5
X
Invariant Runge-Kutta schemes
Uy, +xu, —(x+Du=sinz, u(0)=wu,0)



— — - RK
AF|—— K . 4
RK on Reduced Egn .

Comparison of symmetry reduction and invariantization for

U, +xu, —(x+1)u=sinzx, u(0)=1u,(0)=1.



Invariantization of Crank—Nicolson
for Burgers’ Equation

ut — gua:a: +uug:

1 1 1 1 | ;
0.5 0.5 0.5 0.5 0.5 0.5
0 0 0 0 0 o
-0.5 -0.5 -0.5 -0.5 -05 05
-1 -1 -1 -1 -1 -1
-15 o5 1-150 o5 1-150 o5 y -1.5 -1.5 15

0 0.5 170 05 170 0.5



The Calculus of Variations

T[u] = /L(m,u(”))dx — variational problem

L(z,u™) — Lagrangian

To construct the Euler-Lagrange equations: E(L) =0

e Take the first variation:

oL
d(Ldx) = O;] us dug dx
e Integrate by parts:
L
S(Ldx)=>_ 8—aDJ(5uO‘) dx
a,J 8uJ
=Y (-D)’ oL — Ju*dx = Z E_(
o, J 8uJ =1

L) du® dx



Invariant Variational Problems

According to Lie, any G—invariant variational problem can
be written in terms of the differential invariants:

I[u]:/L(a:,u("))dx:/P(... DI .. ) w

I, ... If — fundamental differential invariants
D,,. ,Dp — invariant differential operators
DI — differentiated invariants

Ww=wA---AwP — invariant volume form



If the variational problem is G-invariant, so
Tlu] = /L(m,u(”))dx: /P( DRI ) w

then its Euler-Lagrange equations admit G as a symmetry
group, and hence can also be expressed in terms of the differ-
ential invariants:

Main Problem:

Construct F' directly from P.
(P. Griffiths, 1. Anderson )



Planar Euclidean group G = SE(2)

K= q _:655)3/2 curvature (differential invariant)
ds = /1 +u2dx — arc length

d 1 d
D=—= — arc length derivative

ds /1 + u2 dx

Euclidean—invariant variational problem

/Lazu da?—/Pli,/is,liss,.. ) ds

Fuler-Lagrange equations

E(L) ~ F(k,kyKygy ... ) =0

)78 77ss)



Euclidean Curve Examples

Minimal curves (geodesics):

I[u]:/ds:/\/1+ug dx

E(L)=—xk=0

—> straight lines

The Elastica (Euler):




General Euclidean—invariant variational problem

Tlu] = /L(aﬁ,u("))daﬁ = /P(lﬁ KgyRggy -+ )ds

Y S

To construct the invariant Euler-Lagrange equations:

Take the first variation:

S(Pds) =) a—P5/<;j ds + P d(ds)

7 Ok
Invariant variation of curvature:
ok = A, (du) A, =D? +kK?

Invariant variation of arc length:

d(ds) = B(du) ds B=—-k

—> moving frame recurrence formulae



Integrate by parts:
§(Pds)=[E(P)A(du) — H(P)B(du) | ds

= [A*E(P) — B*H(P)]éuds = E(L) Suds

Invariantized Euler—Lagrange expression

6P d
D= —
z:: (‘9/1 ds
Invariantized Hamiltonian
- OP
— .. (=D)Y — P
g:j iy (7P) Or;

Fuclidean—invariant Euler-Lagrange formula

E(L) = A*E(P) — B*H(P) = (D* + k?) £(P) + s H(P)

= 0.



The Elastica:



The shape of a Mobius strip

E. L. STAROSTIN AND G. H. M. VAN DER HELIDEN®

Cesite bor Hosfinesar Dynemics, Degariment of Civil and Emviransentsl Enginezring, Usiversity College Londas, Londsn WE1E 5T, LK

*g-mail; g.heljdan@iuctan ok

Fushsnng oning: 15 July 2007, ool 10 103RRmat1 229

The Mobius sirip, obtzined by wking a rectangelar stdp of
plastic or paper. twisting one end theough 180", and then
joining the ends, is the canonic exanmple of u one-sided surface.
Finding its characteristic developable shape has been an open
problem ever since s first formulation in refs 1,2, Here we
wse the imvariant varigtional bicomplex formalism to derive
the first eguilibrivm eguations for 2 wide developable strip
undergoing large deformations, theceby giving the frst non-
trivial demonstration of the potential of this approach. We then
formulate the boundary-value problem for the Mobies steip and
salve it numerically. Solutions for increasing width show the
formation of creases bounding nearly flat riangular regions, a
feature also familiar from fabric draging” and paper crumpling™,
This could give new insight nte enespy localization phenomena
in unstectchable sheers®, which might help to predicl points
dmo{mmtg. It coubd also eid our understanding of the

1l mﬂp}rm:-al prupertios of rana-
md mu'rn&mpk Mabius m—lp structures”

11 s Exir to day that the Mobius steip 3 one of the few wons
of mathematics that have been absorbed into wider culture. It
s mrthematical bezuty and inspired artists such as Escher™, In
engineering, pulley belts are often used in the form of Ml itrips
Lo wear "ok’ sdces equally. At a mocl: sorsller seabe, Miibius stzips
have recently been formed in ribbon-shaped Nhle; crystals under
certadn erowtl conditions invalvine a Bree temperature eradient™.

Figure 1 Phato of 2 paper Mabius strip of aspect ratin 2. Trg sinp adopts a
hermelersic shape netenshity of e rateral causes the surtacs 1o be
deveiopabie, Bs stright genaratoss A ciwn 2nd e colourng wirns acoondiog o
1z bending enargy cansty.
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Evolution of Invariants and Signatures

G — Lie group acting on R?
C'(t) — parametrized family of plane curves

G—invariant curve flow:

dC
— =V =1t+Jn
dt

e [, J — differential invariants

e t — ‘“unit tangent”

e n — “unit normal”

e The tangential component It only affects the underlying
parametrization of the curve. Thus, we can set I to be
anything we like without affecting the curve evolution.



Normal Curve Flows

C,=Jn
Examples — Euclidean—invariant curve flows
e C,=n — geometric optics or grassfire flow;
o U, =kKn — curve shortening flow;
e C,=r'Y3n — equi-affine invariant curve shortening flow:

¢
¢,

C,=n

equi—affine »

modified Korteweg—deVries flow;

thermal grooving of metals.



Intrinsic Curve Flows

Theorem. The curve flow generated by
v=It+Jn

preserves arc length if and only if

B(J)+DI=0.
D — invariant arc length derivative
B — invariant arc length variation

d(ds) = B(du) ds



Normal Evolution of Differential Invariants

Theorem. Under a normal flow C, = Jn,

0K 0K

- = = = J).

Foalh, Taoaw)
Invariant variations:

ok = A_(0u), ory = A, (0u).
A_= A — invariant variation of curvature;

A =DA+ rkkK, — invariant variation of x,.
S



Euclidean—1invariant Curve Evolution

Normal flow: (), =Jn

Ok 29

o7 = Ax(J) = (D" + %) J,

a"{s 3 2

v = A, (J)=(D°+r*D+3kk,) J.

Warning: For non-intrinsic flows, 0, and 9, do not commute!

Theorem. Under the curve shortening flow C;, = —kn,
the signature curve k, = H(t, k) evolves according to the
parabolic equation

H
%—t =H*H,_, —rx’H_+4r*H



Smoothed Ventricle Signature




Intrinsic Evolution of Differential Invariants

Theorem.

Under an arc-length preserving flow,

k,=R(J)  where R=A-rD'B (%)

In surprisingly many situations, (*) is a well-known integrable
evolution equation, and R is its recursion operator!

—

—
—
—

Hasimoto
Langer, Singer, Perline
Mari-Beffa, Sanders, Wang

Qu, Chou, Anco, and many more ...



Euclidean plane curves
G = SE(2) = SO(2) x R?

A = D? 4 k2 B=—-k

R:A—/{SD_IB:D2—|—/€2—|—KJSD_1'/€

_ 3 2
8) _Rsss+§/€ K

Kk, = R(k

—> modified Korteweg-deVries equation



Equi-affine plane curves
G = SA(2) = SL(2) x R?
A:D4+§/£D2+§/£SD+%/£SS+%H2
B = %DQ — %/@
R=A-rD'B
:D4—|—%I€D2—|—%RS’D—|—%I€SS—|—%R2—|—%RS'D_1-li

_ _ 5 5 5 .2
Ry = R(’%s) = Kgg + §/{’%sss + glis’%ss + 5/1 K

— Sawada—Kotera equation

—

Recursion operator: R=R-(D?+ %,1 4 %’%D_l)



A=
2_7'Dg 3KT, — QKSTDS KT,, — K T, + 23T
K K2 K2
—27D, —T
ng’ B &Dg n K2 2Ds 11872 — 2KTT,
K K2 K K2
B=(x 0)

(e [(3)A(
Ts Tt Ts

—> vortex filament flow (Hasimoto)




