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“I did not quite understand how he [Cartan]| does this
in general, though in the examples he gives the
procedure is clear.”

“Nevertheless, I must admit I found the book, like
most of Cartan’s papers, hard reading.”

— Hermann Weyl

“Cartan on groups and differential geometry”
Bull. Amer. Math. Soc. 44 (1938) 598601



Applications of Moving Frames

Differential geometry

Equivalence

Symmetry

Differential invariants

Rigidity

Joint invariants and semi-differential invariants
Invariant differential forms and tensors
Identities and syzygies

Classical invariant theory



Computer vision
o object recognition
o symmetry detection
Invariant variational problems
Invariant numerical methods
Mechanics, including DNA
Poisson geometry & solitons
Killing tensors in relativity
Invariants of Lie algebras in quantum mechanics
Control theory

Lie pseudo-groups



The Basic Equivalence Problem

M — smooth m-dimensional manifold.

G — transformation group acting on M

e finite-dimensional Lie group

e infinite-dimensional Lie pseudo-group
o diffeomorphisms
canonical transformations

@)
o feedback
@)

fluids, boundary layes, gauge theories, ...



Equivalence:

Determine when two p-dimensional submanifolds

N and N Cc M

are congruent:

Symmetry:
Find all symmetries,
i.e., self-equivalences or self-congruences:

N=g N



Classical Geometry — F. Klein

Euclidean group:

o { SE(m) = SO(m) x R™
| E(m)=0@m)xR™

2 Az + € SO(m) or O(m), beR™, zeR™
= isometries: rotations, translations , (reflections)
Equi-affine group: G = SA(m) = SL(m) x R™
€ SL(m) — volume-preserving
Affine group: G =A(m) =GL(m) x R™
€ GL(m)
Projective group: G =PSL(m+1)

acting on R™ C RP™

—> Applications in computer vision



Tennis, Anyone?




Binary form:

Equivalence of polynomials (binary forms):

Oz) = (vxm”@(j“ﬁ) o= (j §) c QL)

e multiplier representation of GL(2)
e modular forms




@@w:Wx+®”@(“““ﬂ

YT + 0

Transformation group:

g: (z,u) (

ax + 0 u )
yr+6  (yx+o)”

Equivalence of functions <= equivalence of graphs

Lo ={(#u) = (z,Q)} C C*



Moving Frames

Definition.

A moving frame is a G-equivariant map

p: M — G
Equivariance:
g-p(2) left moving frame
plg-z) = . . .
p(z)-g right moving frame

pleft(z) = pright(z)_l




The Main Result

Theorem. A moving frame exists in
a neighborhood of a point z € M if and
only if GG acts freely and regularly near z.



Isotropy & Freeness

Isotropy subgroup: G,={9lg-z=2} for ze M

e free — the only group element g € G which fixes one point
z € M is the identity: —> G, ={e} forall z € M.

o — the orbits all have the same dimension as G:
—> G, is a discrete subgroup of G.

e regular — all orbits have the same dimension and intersect
sufficiently small coordinate charts only once
% irrational flow on the torus

e cffective — the only group element which fixes every point in
M is the identity: ¢g-z =z for all z € M iff g = e:

G NN

zeM



Geometric Construction

Normalization = choice of cross-section to the group orbits
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K — cross-section to the group orbits

O, — orbit through z € M

k € K N O, — unique point in the intersection
e k is the canonical or normal form of z

e the (nonconstant) coordinates of k are the fundamental
invariants

g € G — unique group element mapping k to z
— freeness

p(z) =g left moving frame p(h-2)=h-p(z)

k=p"1(2) 2= prigne(2) - 2



Algebraic Construction
—dimG < m=dimM

Coordinate cross-section

K= =@, 00 8. =C, }
left right
w(g,z) =g 1 2 w(g,2) =gz
=(g.,,...,0,) — group parameters

z=1(zy,...,%2,) — coordinates on M



Choose " = dim GG components to normalize:

wy(g,2)=¢; w,.(g,2)=c,

Solve for the group parameters ¢ = (¢,,...,7,)
— Implicit Function Theorem

The solution
= p(z)

is a (local) moving frame.



The Fundamental Invariants

Substituting the moving frame formulae

= p(2)

into the unnormalized components of w(¢, z) produces the
fundamental invariants

I(2) = w4 (p(2),2) - 1, (2) = wy,(p(2),2)

Theorem. Every invariant I(z) can be (locally) uniquely
written as a function of the fundamental invariants:

I(z)=H(I(2), ... , I _.(2))

YTm—r



Invariantization

Definition. The invariantization of a function
F': M — R with respect to a right moving frame
g = p(z) is the the invariant function I = ((F)
defined by

L(Zl) = Cpy - [’(Zr) — CT" L(ZT+1) — ]1<Z>7 s [’(Zm) — Im—r(’Z)'

cross-section variables fundamental invariants
“phantom invariants”

L F(zy,-.h2,)] = Fleyy..oye,1i(2),. .. L, (%))




Invariantization amounts to restricting F' to the cross-
section

I|[K=F|K

and then requiring that I = ¢(F) be constant
along the orbits.

In particular, if I(z) is an invariant, then «(I) = I.

Invariantization defines a canonical projection

. : functions +—— Invariants




Most interesting group actions (Euclidean, affine,
projective, etc.) are not free!

Freeness typically fails because the dimension
of the underlying manifold is not large enough, i.e.,
m <r=dmG.

Thus, to make the action free, we must increase
the dimension of the space via some natural prolonga-
tion procedure.

e An effective action can usually be made free by:



e Prolonging to derivatives (jet space)
G™ (M, p) — J"(M,p)

— differential invariants
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Euclidean Plane Curves

Special Euclidean group: G = SE(2) = SO(2) x R?
acts on M = R? via rigid motions: w = 7 z +

To obtain the classical (left) moving frame we invert
the group transformations:

= coso(x—a)+sino(u—
y (= ) +sin o )} PP

v=—sino(x—a)+cosd(u—>)

Assume for simplicity the curve is (locally) a graph:

C={u=f(z)}

—> extensions to parametrized curves are straightforward



Prolong the action to J" via implicit differentiation:

vy

yyy

= coso(x—a)+sino(u—>0)
= —sino (x —a) +cos o (u — b)
_ —sin¢ + u, cos
~ cos¢ +u,sin
— uazx
(cosd +u,sin )3
_ (cos & +u,sino)u,  — 3u?_sin
(cosd +u, sin o )3



Normalization: r=dimdG =3

y= coso(x—a)+sino(u—>0)=0
v=—sind(x—a)+coso(u—0) =0
” _ —sin +uxfzos — 0
Y cos ¢ + u,, sin
v — uCUZL'
Y9 (cosd +u,sino )3
(cos & +u,sino)u,  — 3u?_sin

yvy (cosd +u, sin o )3



Solve for the group parameters:

y= coso(x—a)+sino(u—>0)=0
v=—sing(x—a)+coso(u—>0) =0
—sin ¢ + u,, CoS
v, = _ =0
Y coso +u,sin
—> Left moving frame p:JI — SE(2)

= =u = tan~ ' U,



= = U — tan " u

Differential invariants

Uy , _ Uy
Tyy T (cosd +u sing)3 " (14 u2)3/2
v — ... _—  —
yvy ds (1+wu2)3
d’k 3
vyyyy: | N d82_3ﬁ; — ..

Contact invariant one-form — arc length

dy = (coso +u,sino)de +—— ds=/1+u2 dx



Dual invariant differential operator
— arc length derivative

d 1 d d 1 d
dy cosd+u,sino dr ds 1+ u2 dr

Theorem. All differential invariants are functions of
the derivatives of curvature with respect to arc

length:
dr d’k

ds’ ds?’

K,



The Classical Picture: T
/I

Moving frame p: (r,u,u,) — (R,a) € SE(2)

sl ) ()



Equi-affine Curves G = SA(2)

2 Az + € SL(2), c R?
Invert for left moving frame:
y=0(x—a)—7(u—
(@)= (=) } PP
v=v=—7(x—a)+o(u—>)
— =1




Prolongation:

y=0(@—a)=J(u-1",)
v=—7(r—a)ta(u—">)
_ — Uy
Uy—— — um
_ Uy
W y)
o ( o ua;) a:a:a:+3 u2
Yyyy = — (0 — Ju, )
_ ua:a:a:a:( o um)2+10 ( B ua:)umm mmm+15 2’LL3
Yyyyy = — (0 — Ju,)?

yyyyy



Normalization: r=dimG =5
y=o0(x—a)—J(u—0)=0
v=—7(x—a)+a(u—>0) =0

— /u/x -
Uy = — ", =0
U.T.T _
RO AL
Uyyy = — ( — Bu )5
uscscscsc( _ ux)2+10 ( T usc) Uy u:m:a:+15 2u:3m:
Vyyyy = (0= Su, )T
v o

Yyyyyy



Equi-affine Moving Frame

p: (z,u,u,,u, ., u,.) — (A b) e SA(2)
A= o Y Uy o %u;a?/e) Upra
— = u 3y u_1/3 - %u—5/3u .

Nondegeneracy condition: U, 7 0.



Equi-affine arc length

dy — ( - ’sz) d;C — dS = 13/ uZUZU dx

Equi-affine curvature

yyyy

yyyyy

Uyyyyyy

2

K = 5 UprUpgoe — 3 Upra

B 8/3

9 Uy
dk
ds
d?k
— 5K

ds?



Equivalence & Invariants

e Equivalent submanifolds N ~ N
must have the same invariants: [ = I.

Constant invariants provide immediate information:
e.g. KR=2 <= K=2

Non-constant invariants are not useful in isolation,
because an equivalence map can drastically alter the
dependence on the submanifold parameters:

e.g. k=3 Versus Kk =sinhx



Syzygies

However, a functional dependency or syzygy among
the invariants ¢s intrinsic:

e.g. KJS:KJB—l — ER.=r -1

=

e Universal syzygies — Gauss—Codazzi

e Distinguishing syzygies.



Equivalence & Syzygies

Theorem. (Cartan) Two smooth submanifolds
are (locally) equivalent if and only if they have
identical syzygies among all their differential
invariants.

Proof:

Cartan’s technique of the graph:
Construct the graph of the equivalence map as the solu-
tion to a (Frobenius) integrable differential system, which
can be integrated by solving ordinary differential equations.



Finiteness of Generators and Syzygies

& There are, in general, an infinite number of differ-
ential invariants and hence an infinite number
of syzygies must be compared to establish
equivalence.

(7 But the higher order syzygies are all consequences
of a finite number of low order syzygies!



Example — Plane Curves

If non-constant, both x and x, depend on a single
parameter, and so, locally, are subject to a syzygy:

ks = H(r) (%)

But then

Kyp = o H(x) = H'(x) 5, = H'(x) H(s)

and similarly for s etc.

§$s8S87
Consequently, all the higher order syzygies are generated
by the fundamental first order syzygy ().

Thus, for Euclidean (or equi-affine or projective or ...)
plane curves we need only know a single syzygy between x and

K, in order to establish equivalence!



The Signature Map

The generating syzygies are encoded by the

signature map
>: N —

of the submanifold N, which is parametrized by
the fundamental differential invariants:

Y(x) = (I(2), - o I ()

The image
= Im X

is the subset (or submanifold) of N.



Equivalence & Signature

Theorem. Two smooth submanifolds are

equivalent
N=g-N

if and only if their signatures are identical



Definition. The signature curve S C R? of a curve
C C R? is parametrized by the two lowest order
differential invariants

{(-4)) < =




Euclidean space curves: C C R3

={(k,ky, T)} C R3

e s — curvature, 7 — torsion

Euclidean surfaces: S C R? (generic)

:{<H’K’H,17H,27K,17K,2)} C Rg

e H — mean curvature, K — Gauss curvature

Equi—affine surfaces: S C R3 (generic)
={(P,P,,P,,P;,)} C R

e P — Pick invariant




Equivalence & Signature Curves

Theorem. Two smooth curves C and C are equiva-
lent:

C=gqg-C
if and only if their signature curves are identical:

—> object recognition



Symmetry and Signature

Theorem. The dimension of the symmetry group
Gy={9lg-NCN}

of a nonsingular submanifold N C M equals the
codimension of its signature:

dimG,y = dim N —dim

Corollary. For a nonsingular submanifold N C M,

0 < dmGy < dimN

—> Only totally singular submanifolds can have larger
symmetry groups!



Maximally Symmetric Submanifolds

Theorem. The following are equivalent:
e The submanifold N has a p-dimensional symmetry group
e The signature & degenerates to a point: dim & = 0

e The submanifold has all constant differential invariants

N = H-{z,} is the orbit of a p-dimensional subgroup H C G

—> FEuclidean geometry: circles, lines, helices, spheres, cylinders, planes, ..

—> Equi-affine plane geometry: conic sections.

—> Projective plane geometry: W curves (Lie & Klein)



Discrete Symmetries

Definition. The index of a submanifold N equals
the number of points in N which map to a generic
point of its signature:

LN:min{#E_l{w}‘ w € }

— Self-intersections

Theorem. The cardinality of the symmetry group of
a submanifold N equals its index ¢ .

—> Approximate symmetries



The Index



The polar curve r =3+ 1—10 cos 36

The Original Curve

Fuclidean Signature

Numerical Signature

0.

2%,

0%

0.

6

0.

8



The Curve x = cost + %COSQ t, y=sint+ 1—10811’1275

-6

The Original Curve  FEuclidean Signature Affine Signature



The Curve CU:COSt—I—%COSQt, y:%x+sint+1—1()sin2t

-6

The Original Curve  FEuclidean Signature Affine Signature



Canine Left Ventricle Signature

Original Canine Heart .
MRI Image Boundary of Left Ventricle



Smoothed Ventricle Signature







Nut 1 Nut 2

600
750

550 I_/f\
700
500
Closeness: 0.137673
450
400 500 400 50

650

0
Signature Curve Nut 1 Signature Curve Nut 2
0.01 0.01
0.005 0.005
0 0

/11 Z0.005 11 _0.005

—-0.01 -0.01




Hook 1 Nut 1

750
1000

900 700

800 650
Closeness: 0.031217

700

200 400 500

Signature Curve Hook 1 Signature Curve Nut 1

0.01

0.005

—-0.005

-0.01

-0.015
-0.05




Advantages of the Signature Curve

Purely local — no ambiguities
Symmetries and approximate symmetries

Extends to surfaces and higher dimensional sub-
manifolds

Occlusions and reconstruction

Main disadvantage: Noise sensitivity due to depen-

dence on high order derivatives.



Strategy #1:

Use lower order invariants to construct a signature:

e joint invariants
e joint differential invariants
e integral invariants

e topological invariants



Joint Invariants

A joint invariant is an invariant of the k-fold
Cartesian product action of G on M x --- x M:

I(g-2yy--.,9-2,) = I(2zg,...,2)

A joint differential invariant or
is an invariant depending on the derivatives
at several points z,..., 2, € N on the submanifold:

I(g-2™,...,g-27) = I(z,...,2M)




Joint Euclidean Invariants

Theorem. Every joint Euclidean invariant is a
function of the interpoint distances

d(z;, Zj) = || z; — Zj |

Z)

(/



Joint Equi—Affine Invariants

Theorem. Every planar joint equi—affine invariant is
a function of the triangular areas

[i 5 k] =3 (2—2) A (2 — 2)



Joint Projective Invariants

Theorem. Every joint projective invariant is a
function of the planar cross-ratios

AB
[Zivzjvzk:vzlvzm] — CD

V



e Three—point projective joint differential invariant
— tangent triangle ratio:

[020][011][122]

(010][121][022]




Joint Euclidean Signature




Joint signature map:
¥:C** — SCR°
a=|z—z| b=z — 2| ¢c=|lzg— 2|
d= |2 — 2] e=|z — 2] f =12z — 2]
—> six functions of four variables
Syzygies:
®,(a,b,c,d,e, f) =0 ®,(a,b,c,d,e, f) =0

Universal Cayley-Menger syzygy <= C C R?
2 a? a®+b%—d? a’>+c?—¢€?
det|a® + b* — d? 2b? > +c*—f21 =0
a’+c®—e? b2+ f? 2c?



Joint Equi—Afline Signature

Requires 7 triangular areas:

(012],[013],[014],[015],[023],[024], [025]




Joint Invariant Signatures

The joint invariant signature subsumes other signatures, but
resides in a higher dimensional space and contains a lot of
redundant information.

Identification of landmarks can significantly reduce the
redundancies (Boutin)

It includes the differential invariant signature and semi-
differential invariant signatures as its “coalescent bound-
aries”

Invariant numerical approximations to differential invariants
and semi-differential invariants are constructed (using
moving frames) near these coalescent boundaries.



Statistical Sampling

Idea: Replace high dimensional joint invariant signatures by
increasingly dense point clouds obtained by multiply
sampling the original submanifold.

e The equivalence problem requires direct comparison of
signature point clouds.

e Continuous symmetry detection relies on determining the
underlying dimension of the signature point clouds.

e Discrete symmetry detection relies on determining densities of
the signature point clouds.



Symmetry—Preserving Numerical Methods

e Invariant numerical approximations to differential
invariants.

e Invariantization of numerical integration methods.

—> Structure-preserving algorithms



Numerical approximation to curvature

Heron’s formula

k(A,B,C) = 4% _ 4 \/S(s — a)isbc_ b)(s — ¢)

_atb+ec
T2

’ —  semi-perimeter



Invariantization of Numerical Schemes

—> Pilwon Kim

Suppose we are given a numerical scheme for integrating
a differential equation, e.g., a Runge—Kutta Method for ordi-
nary differential equations, or the Crank—Nicolson method for
parabolic partial differential equations.

If G is a symmetry group of the differential equation, then
one can use an appropriately chosen moving frame to
the numerical scheme, leading to an invariant numeri-
cal scheme that preserves the symmetry group. In challenging
regimes, the resulting invariantized numerical scheme can, with
an inspired choice of moving frame, perform significantly better
than its progenitor.



-3 No Inv]

< o<
I
ocoo

Invariant Runge-Kutta schemes

Uy, +xu, —(x+1u=sinzx, u(0)=1u,0)



0 ‘

- = - RK R

AR IRK R ,
RK on Reduced Eqgn Lt

Comparison of symmetry reduction and invariantization for

U, +ru, —(r+Du=sinz, u(0)=1u,0)=1.



Invariantization of Crank—Nicolson
for Burgers’ Equation

Uy = EUgy, +uum

1 1 1 1 1 1
05 05 05 05 05 05
0 0 0 0 0 0
-05 -05 -05 -05 -05 -05
-1 -1 -1 -1 -1 -1
15 0.5 175 05 17 0.5 1 % 05 171 05 17% 0.5




Invariant Variational Problems

According to Lie, any G—invariant variational problem can
be written in terms of the differential invariants:

I[u]:/L(x,u(”))dx:/P(... DI .. ) w

... If — fundamental differential invariants

— invariant differential operators
Dy I — differentiated invariants

wW=w'A---AwP — invariant volume form



If the variational problem is G-invariant, so
Tlu] = /L(m,u(”))dx: /P( DRI ) w

then its Fuler-Lagrange equations admit G as a symmetry
group, and hence can also be expressed in terms of the differ-
ential invariants:

Main Problem:

Construct F' directly from P.
(P. Griffiths, 1. Anderson )



Planar Euclidean group G = SE(2)

K= q +“5920)3/2 curvature (differential invariant)
ds = /1 +u2dx — arc length

d 1 d
D=—= — arc length derivative

ds /1 + u2 dx

Euclidean—invariant variational problem

/Lazu dx—/Pli,/is,liss,.. ) ds

Fuler-Lagrange equations

E(L) ~ F(k,kyKygy ... ) =0

)78 TUss)



Euclidean Curve Examples

Minimal curves (geodesics):

I[u]:/ds:/\/1+ug dx

E(L)=—x=0

—> straight lines

The Elastica (Euler):




General Euclidean—invariant variational problem

/Lxu dil?—/P/’i,liS,/iss,.. ) ds



General Euclidean—invariant variational problem

/Lxu dil?—/P/’i,lis,/iSS,.. ) ds

Invariantized Euler—-Lagrange expression

0 ., OP d
Z 8/{ D_E

n=0



General Euclidean—invariant variational problem

/Lxu dil?—/P/’i,lis,/iss,.. ) ds

Invariantized Euler—Lagrange expression

o0 . OP d
Z c’?/i D_£

n=0

Invariantized Hamiltonian

1>7 )



From the Invariant Variational Complex

dy e = A, (9)
—> ¢ — invariant contact form (variation)

Invariant variation of curvature

A&:DQ_'_HQ A*:D2—|—/€2

dy, (ds) = B(Y) A ds
Invariant variation of arc length:

B=-k B*=—k

Invariant Euler-Lagrange formula

E(L) = A*€(P) — B*H(P) = (D? + k*) £(P) + s H(P).



/Lazu dx—/Pli,/is,liss,.. ) ds

Fuclidean—invariant Euler-Lagrange formula

E(L) = (D* + k%) E(P) + s H(P) =0

The Elastica: T[u] = /%/{2 ds P=1r"

E(P) =k H(P)=—-P=—1k?

1
2

K?)

E(L)= (D*+ k) k+nr(—

N —

_ 1 . .3 __
= Kgg T 5K =0




The shape of a Mobius strip

E. L. STAROSTIN AND G. H. M. VAN DER HELJDEN*

I E———

Futshns oning: 15 July 2007, do 10103 mat 1929

The Mobius strip, obtzined by taking a rectangular strip of
plastic or paper, twisting one end through 1807, and then
joining the ends, is the canonic] example of u ome-sided surface,
Finding its characteristic developable shape has been an open
problem ever ginee its first formulation in refs 1,2, Here we
wse the imvariant varistional bicomplex farmalism to derive
the first eguilibrium eguations for 2 wide developable strip
undergoing large deformations, thereby giving the first non-
trivial demonstration of the potential of this approach, We then
formulate the boundary-value prollem for the Mobies stzip and
salve it numerically. Solutions for increasing width show the
formation of creases bounding nearly flat trinngelar regions, a
feature also famniliar from fabric draping” and paper cumpling™,
This could give new insight nto energy localization phenomena
in unsteelchable sheets®, which might kelp to predict points
of omset of tearing. 10 could also aid our understanding of the
relationship between geametry and physical properties of nana-
and microsmpic Mibies strig structores” ",

It i Bxir to day that the Mobius steip 3 one of the few kons
af mathematics that have been absorbed into wider cultune.
hats rsthematical besuty and inspired artists such as Escher™, In
englneering, pulley belts are often used i the form of Mibdus diips
e et "otk sddes equally. At s macls senaller seabe, Miibius stzips
have recently been formed in ribbon-shaped NhSe; crystals under
certadn erowth conditions invalvine a Bree emverature eradient™.

iy Coflege Lendos, Londen WETE 55T, UK

Figure 1 Fhoto of a paper Mabius strip of aspect ratin 2. Trg srip adopts 2
thermrlerstc stape Iestershiity of e materal causes the surfaca o be
deveipahie. hs simight gunarators A craswn and S coinusng wres actonding 1o
he bending ensngy Cansly.



[Figare: 2 Compubed Milhive airips. The kit paned shove Teir thres-gmensional sheces 1or w 0.7 (8], D2 (b1, 0.5 ). 0.8 o). ©.0 e and 1.5 T, and the righ’ pare! the
coeresponding cradpmeels on Bnplane. The solawing crangess aocoeding i the local bending iy density, from violef for regiens of ew bregieg fo red dor eogions of
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Evolution of Invariants and Signatures

G — Lie group acting on R?
C'(t) — parametrized family of plane curves

G—invariant curve flow:

dC
— =V =I1t+Jn
dt

e [, J — differential invariants

e t — ‘“unit tangent”

e n — ‘“unit normal”

e The tangential component It only affects the underlying
parametrization of the curve. Thus, we can set I to be
anything we like without affecting the curve evolution.



Normal Curve Flows

C,=Jn
Examples — Euclidean—invariant curve flows
e C,=n — geometric optics or grassfire flow;
o ,=kKn — curve shortening flow;
e C,=r'Y3n — equi-affine invariant curve shortening flow:

¢
¢,

C,=n

equi—affine »

modified Korteweg—deVries flow;

thermal grooving of metals.



Intrinsic Curve Flows

Theorem. The curve flow generated by
v=It+Jn

preserves arc length if and only if

B(J)+DI=0.
D — invariant arc length derivative
B — invariant arc length variation

dy, (ds) = B(Y) A ds



Normal Evolution of Differential Invariants

Theorem. Under a normal flow C, = Jn,

Ok Ok
OF _ A (J s — 7).
ToAl), Teoaw)
Invariant variations:
de:A/{(19>, dv H}S :Alis(ﬁ)
A_= A — invariant variation of curvature;

A =DA_+ kK, — invariant variation of «,.
S



Euclidean—1invariant Curve Evolution

Normal flow: (), =Jn

Ok 29

o7 = AxlJ) = (D" + %) J,

a"{s 3 2

v = A, (J)=(D°+r*D+3kk,) J.

Warning: For non-intrinsic flows, 0, and 9, do not commute!

Theorem. Under the curve shortening flow C;, = —kn,
the signature curve k, = H(t, k) evolves according to the
parabolic equation

OH
e H*H_ —r’H_+4r*H



Smoothed Ventricle Signature




Intrinsic Evolution of Differential Invariants

Theorem.

Under an arc-length preserving flow,

k,=R(J)  where R=A-rD'B (%)

In surprisingly many situations, (*) is a well-known integrable
evolution equation, and R is its recursion operator!

—

—
—
—

Hasimoto
Langer, Singer, Perline
Mari—Beffa, Sanders, Wang

Qu, Chou, Anco, and many more ...
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Euclidean plane curves
G = SE(2) = SO(2) x R?
dy, k = (D + K%) 0, dyw=—-KkINw
— A =D?+ Kk, B=—-k

R:A—/{SD_IB:D2—|—/€2—|—KJSD_1'/€

_ 3 2
8) _Rsss+§/€ K

Kk, = R(k

—> modified Korteweg-deVries equation



Equi-affine plane curves

G = SA(2) = SL(2) x R?
dy, k = A1), dyw = B(W)ANw

A:D4+%/£D2+%/$SD+%/£SS+%/$2, B D* — 2k,

1
3
R=A-xD'B

:D4—|—%/€D2—|—%/€SD—|—%RSS—|—%/€2—|—%/€SD_1-/'i

_ _ 5 5 5.2
Ky = 7z(’%s) = Ry + gK/K'SSS + §/€s’%ss + §/€ K
— Sawada—Kotera equation
Recursion operator:

—

R=R-(D*+3k+3KD7").



3
KTgg — KTy + 2K°T

S ,12

—27D, — T,
1 K K2 — 72 K.T2 — 26TT
~D; — DI + Dy 4 ="
K K K K

B=(rk 0)



Recursion operator:

R=A- (“8)@16

— vortex filament flow

— nonlinear Schroédinger equation (Hasimoto)



Minimal Generating Invariants

A set of differential invariants is a generating system if all
other differential invariants can be written in terms of them and
their invariant derivatives.

Euclidean curves C' C R3:
e curvature x and torsion T

Equi-affine curves C' C R3:
e afline curvature x and torsion 7

Euclidean surfaces S C R3:
e mean curvature H

*  Gauss curvature K = ®(DWH).

Equi-affine surfaces S C R3:
e Pick invariant P.



