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Noether’s Fundamental Contributions

to Analysis and Physics
First Theorem. There is a one-to-one correspondence between

symmetry groups of a variational problem and
conservation laws of its Euler–Lagrange equations.

Second Theorem. An infinite-dimensional variational
symmetry group depending upon an arbitrary function
corresponds to a nontrivial differential relation among its
Euler–Lagrange equations.

⋆ The conservation laws associated with the variational
symmetries in the Second Theorem are trivial — this
resolved Hilbert’s original paradox in relativity that was
the reason he and Klein invited Noether to Göttingen.



Noether’s Three Fundamental Contributions
to Analysis and Physics

First Theorem. There is a one-to-one correspondence between
symmetry groups of a variational problem and
conservation laws of its Euler–Lagrange equations.

Second Theorem. An infinite-dimensional variational
symmetry group depending upon an arbitrary function
corresponds to a nontrivial differential relation among its
Euler–Lagrange equations.

Introduction of higher order generalized symmetries.
=⇒ later (1960’s) to play a fundamental role in the discovery

and classification of integrable systems and solitons.



Symmetries =⇒ Conservation Laws

• symmetry under space translations
=⇒ conservation of linear momentum

• symmetry under time translations
=⇒ conservation of energy

• symmetry under rotations
=⇒ conservation of angular momentum

• symmetry under boosts (moving coordinates)
=⇒ linear motion of the center of mass



Precursors

Lagrange (1788) Lagrangian mechanics & conservation laws

Jacobi (1842–43 publ. 1866) Euclidean invariance
— linear and angular momentum

Schütz (1897) time translation — conservation of energy

Herglotz (1911) Poincaré invariance in relativity
— 10 conservation laws

Engel (1916) non-relativistic limit: Galilean invariance
— linear motion of center of mass



ACurious History

⋆ Bessel–Hagen (1922) — divergence symmetries

♣ Hill (1951) — a very special case
(first order Lagrangians, geometrical symmetries)

♠ 1951–1980 Over 50 papers rediscover and/or prove
purported generalizations of Noether’s First Theorem

♠ 2011 Neuenschwander, Emmy Noether’s Wonderful Theorem
— back to special cases again!

Continuum mechanics: Rice, Eshelby (1950’s),
Günther (1962), Knowles & Sternberg (1972)

Optics: Baker & Tavel (1974)



TheNoether Triumvirate

⋆ Variational Principle

⋆ Symmetry

⋆ Conservation Law



ABrief History of Symmetry

Symmetry =⇒ Group Theory!

• Lagrange, Abel, Galois (discrete)
— polynomials

• Lie (continuous)
— differential equations and variational principles

• Noether (generalized)
— conservation laws and higher order symmetries

• Weyl, Wigner, etc. — quantum mechanics
“der Gruppenpest” (J. Slater)



Next to the concept of a function, which is the

most important concept pervading the whole of

mathematics, the concept of a group is of the greatest

significance in the various branches of mathematics

and its applications.

— P.S. Alexandroff



Discrete Symmetry Group

=⇒ crystallography



Continuous Symmetry Group

Symmetry group = all rotations

⋆ A continuous group is known as a Lie group
— in honor of Sophus Lie (1842–1899)



ABrief History of Conservation Laws

In physics, a conservation law asserts that a particular
measurable property P of an isolated physical system does not
change as the system evolves.

Conservation of momentum: Wallis (1670), Newton (1687)

Conservation of mass: Lomonosov (1748), Lavoisier (1774)

Conservation of energy: Lagrange (1788), Helmholtz (1847),
Rankine (1850), also: Mohr, Mayer, Joule, Faraday, . . .



Conservation Laws



In Summary . . .

Noether’s (First) Theorem states that to

each continuous symmetry group of the

action functional there is a corresponding

conservation law of the physical equations

and (via generalized symmetries)

vice versa.



Noether and Symmetry

Noether realized that, to make a one-to-one correspondence
between symmetries of variational problems and conservation
laws of their corresponding field equations, one needs to gen-
eralize Lie’s concept of continuous symmetry group to include
higher order generalized symmetries.

This remarkable innovation was completely ignored (or not
understood) until the 1960’s when generalized symmetries were
rediscovered and subsequently seen to play a fundamental role in
the modern theory of integrable systems.



Noether and Symmetry

Note: Some modern authors ascribe the discovery of generalized
symmetries to Lie and Bäcklund, and then give them
the misnomer “Lie–Bäcklund transformations”.

However, a careful study of their work has failed to
find anything beyond contact transformations, which
are an extremely special case.



Integrable Systems

The second half of the twentieth century saw two revolutionary
discoveries in the field of nonlinear systems:

⋆ chaos

⋆ integrability

Both have their origins in the classical mechanics of
the nineteenth century:

chaos: Poincaré

integrability: Hamilton, Jacobi, Liouville, Kovalevskaya



Sofia Vasilyevna Kovalevskaya (1850–1891)

⋆ ⋆ Doctorate in mathematics, summa cum laude,
1874, University of Göttingen



Integrable Systems

In the 1960’s, the discovery of the soliton in Kruskal and Zabusky’s
numerical studies of the Korteweg–deVries equation, a model for nonlinear
water waves, which was motivated by the Fermi–Pasta–Ulam problem,
provoked a revolution in the study of nonlinear dynamics.

The theoretical justification of their observations came through the
study of the associated symmetries and conservation laws.

Indeed, integrable systems like the Korteweg–deVries equation,
nonlinear Schrödinger equation, sine-Gordon equation, KP equation, etc.
are characterized by their admitting an infinite number of higher order
symmetries – as first defined by Noether — and, through Noether’s theorem,
higher order conservation laws!

And, the most powerful means of classifying integrable systems is
through higher order generalized symmetry analysis.



The Calculus of Variations

[Leibniz ] conceives God in the creation of the

world like a mathematician who is solving a minimum

problem, or rather, in our modern phraseology, a prob-

lem in the calculus of variations — the question being

to determine among an infinite number of possible

worlds, that for which the sum of necessary evil is a

minimum.

— Paul du Bois-Reymond



The Calculus of Variations

Nature is Leibnizian (Panglossian):

⋆ A physical system in equilibrium chooses
“the best of all possible worlds” by minimizing some
overall cost: energy or force or time or money or . . .

Principle of least action:

“Nature is thrifty in all its actions.”

=⇒ Pierre Louis Maupertuis

⋆ Analysis developed by Johann & Jakob Bernoullis, Euler,
Lagrange, Hamilton, Jacobi, Weierstrass, Dirichlet, Hilbert, . . .



Examples of Variational Problems:

The shortest path between two points in space is a
straight line.



Geodesics
The shortest path between two points on a sphere is a

great circular arc.

The shortest path between two points on a curved
surface is a geodesic arc.



Fermat’s Principle in Optics

Light travels along the path that takes the least time:

=⇒ Snell’s Law = Loi de Descartes



Plateau’s Problem

The surface of least area spanning a space curve
is a minimal surface.

=⇒ soap films



The Brachistochrone

A bead slides down a wire fastest

when it has the shape of a cycloid



The Brachistochrone Cycloid

Galileo (1638) says it is a circular arc

Tautochrone problem — solved by Huygens (1659)

⋆ produces great increase in accuracy of time-keeping,

leading to the solution to the Problem of the Longitude

Johann Bernoulli’s contest (1696)

=⇒ Correct entries by Newton, Leibniz, Jakob Bernoulli,
l’Hôpital, Tschirnhaus

Thus began the calculus of variations!



Variational Problems

A variational problem requires minimizing a functional

F [u ] =
∫
L(x, u(n)) dx

The integrand is known as the Lagrangian.

The Lagrangian L(x, u(n)) can depend upon the space/time
coordinates x, the function(s) or field(s) u = f(x) and their
derivatives up to some order n



The Euler–Lagrange Equations

The minima of the functional

F [u ] =
∫
L(x, u(n)) dx

must occur where the functional gradient vanishes: δF [u ] = 0

This is a system of differential equations ∆ = E(L) = 0
known as the Euler–Lagrange equations.

The (smooth) minimizers u(x) of the functional are solutions to
the Euler–Lagrange equations — as are any maximizers
and, in general, all “critical functions”.

E — Euler operator (variational derivative):

Eα(L) =
δL

δuα
=
∑

J

(−D)J
∂L

∂uα
J

= 0

=⇒ integration by parts



F [u ] = arc length functional =
∫

ds

Euler–Lagrange equation: curvature = κ = 0

Solutions: geodesics

F [u ] = surface area functional =
∫ ∫

√√√√1 +

(
∂u

∂x

)2

+

(
∂u

∂y

)2

dx dy

Euler–Lagrange equation =
minimal surface equation (R3 version):

(1 + u2
y) uxx − 2uxuyuxy + (1 + u2

x)uyy = 0

Solutions: minimal surfaces



F [u ] = Hilbert action functional =
c4

16πG

∫
(R+ Lm)

√
−g d4x

Euler–Lagrange equations =
Einstein equations of general relativity:

Rµν =
1

2
Rgµν +

8πG

c4
Tµν

Solutions: Einstein space–time manifolds



TheModernManual for Physics

as envisioned by E. Noether (1918)

As Hilbert expresses his assertion, the lack of a proper law
of energy constitutes a characteristic of the “general theory of
relativity.” For that assertion to be literally valid, it is necessary
to understand the term “general relativity” in a wider sense
than is usual, and to extend it to the aforementioned groups
that depend on n arbitrary functions.27

27 This confirms once more the accuracy of Klein’s remark that
the term “relativity” as it is used in physics should be
replaced by “invariance with respect to a group.”



TheModernManual for Physics
♠ To construct a physical theory:

Step 1: Determine the allowed group of symmetries:

• translations

• rotations

• conformal (angle-preserving) transformations

• Galilean boosts

• Poincaré transformations: SO(4, 2) (special relativity)

• gauge transformations

• CPT (charge, parity, time reversal) symmetry

• supersymmetry

• SU(3), G2, E8 × E8, SO(32), . . .

• etc., etc.



Step 2: Construct a variational principle (“energy”) that
admits the given symmetry group.

Step 3: Invoke Nature’s obsession with minimization to
construct the corresponding field equations (Euler–Lagrange
equations) associated with the variational principle.

Step 4: Use Noether’s First and Second Theorems to write
down (a) conservation laws, and (b) differential identities
satisfied by the field equations.

Step 5: Try to solve the field equations.

Even special solutions are of immense interest

=⇒ black holes.



!""#$%&'%#()*+,-+#

=⇒ Neil Turok (Perimeter Institute)



Characterization of
Invariant Variational Problems

According to Lie, any G–invariant variational problem can
be written in terms of the differential invariants:

I[u ] =
∫
L(x, u(n)) dx =

∫
P ( . . . DKIα . . . ) ω

I1, . . . , Iℓ — fundamental differential invariants

D1, . . . ,Dp — invariant differential operators

DKIα — differentiated invariants

ω = ω1 ∧ · · · ∧ ωp — invariant volume form



If the variational problem is G-invariant, so

I[u ] =
∫
P ( . . . DKIα . . . ) ω

then its Euler–Lagrange equations admit G as a symmetry
group, and hence can also be expressed in terms of the
differential invariants:

E(L) ≃ F ( . . . DKIα . . . ) = 0

Problem: Construct F directly from P .

=⇒ Solved in general by Irina Kogan & PJO (2001)

using moving frames



A Physical Conundrum

Since all Lie groups and most Lie pseudo-groups admit

infinitely many differential invariants, there are an infinite

number of distinct invariant variational principles

I[u ] =
∫
L(x, u(n)) dx =

∫
P ( . . . DKIα . . . ) ω

⋆ ⋆ Physicists are very talented finding the “simplest” such

invariant variational principle, even for very

complicated physical symmetry groups, which then

forms the basis of the consequential physics.



A Physical Conundrum

I[u ] =
∫
L(x, u(n)) dx =

∫
P ( . . . DKIα . . . ) ω

On the other hand, physicists seem to be mostly unaware of

the theory of differential invariants and the consequent

existence of infinitely many alternative invariant variational

principles, hence:

Does the underlying physics depend upon which of these

invariant variational principles is used and, if so, how does

one select the “correct” physical variational principle?



Symmetry Groups of
Differential Equations

=⇒ Sophus Lie (1842–1899)

System of differential equations

∆(x, u(n)) = 0

G — Lie group or Lie pseudo-group acting on the
space of independent and dependent variables:

(x̃, ũ) = g · (x, u)



G acts on functions by transforming their graphs:

u = f(x) ũ = f̃(x̃)

g
!−→

Definition. G is a symmetry group of the system
∆ = 0 if f̃ = g · f is a solution whenever f is.



One–Parameter Groups
A Lie group whose transformations depend upon a single

parameter ε ∈ R is called a one-parameter group.

Translations in a single direction:

(x, y, z) +−→ (x+ ε, y + 2ε, z − ε)

Rotations around a fixed axis:

(x, y, z) +−→ (x cos ε− z sin ε, y, x sin ε+ z cos ε)

Screw motions:

(x, y, z) +−→ (x cos ε− y sin ε, x sin ε+ y cos ε, z + ε)

Scaling transformations:

(x, y, z) +−→ (λx,λ y,λ−1 z)



Infinitesimal Generators

Every one-parameter group can be viewed as the flow of
a vector field v, known as its infinitesimal generator.

In other words, the one-parameter group is realized as the
solution to the system of ordinary differential equations
governing the vector field’s flow:

dz

dε
= v(z)

Equivalently, if one expands the group transformations in
powers of the group parameter ε, the
infinitesimal generator comes from the linear terms:

z(ε) = z + εv(z) + · · ·



Infinitesimal Generators = Vector Fields

In differential geometry, it has proven to be very useful to
identify a vector field with a first order differential operator

In local coordinates (. . . xi . . . uα . . .), the vector field

v = ( . . . ξi(x, u) . . . ϕα(x, u) . . . )

that generates the one-parameter group (flow)

dxi

dε
= ξi(x, u)

duα

dε
= ϕα(x, u)

is identified with the differential operator

v =
p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

ϕα(x, u)
∂

∂uα



Invariance

A function F : M → R is invariant if it is not affected by the
group transformations:

F (g · z) = F (z)

for all g ∈ G and z ∈ M .

Infinitesimal Invariance

Theorem. (Lie) A function is invariant under a one-parameter
group with infinitesimal generator v (viewed as a
differential operator) if and only if

v(F ) = 0



Prolongation

Since G acts on functions, it acts on their derivatives u(n),
leading to the prolonged group action:

(x̃, ũ(n)) = pr(n) g · (x, u(n))

=⇒ formulas provided by implicit differentiation

Prolonged infinitesimal generator:

pr v = v +
∑

α,J

ϕα
J(x, u

(n))
∂

∂uα
J



The Prolongation Formula

The coefficients of the prolonged vector field are given
by the explicit prolongation formula:

ϕα
J = DJ Q

α +
p∑

i=1

ξi uα
J,i

where Qα(x, u(1)) = ϕα −
p∑

i=1

ξi
∂uα

∂xi

Q = (Q1, . . . , Qq) — characteristic of v

⋆ Invariant functions are solutions to

Q(x, u(1)) = 0.



Example. The vector field

v = ξ
∂

∂x
+ ϕ

∂

∂u
= −u

∂

∂x
+ x

∂

∂u

generates the rotation group

(x, u) +−→ (x cos ε− u sin ε, x sin ε+ u cos ε)

The prolonged action is (implicit differentiation)

ux +−→
sin ε+ ux cos ε

cos ε− ux sin ε

uxx +−→
uxx

(cos ε− ux sin ε)
3

uxxx +−→
(cos ε− ux sin ε) uxxx − 3u2

xx sin ε

(cos ε− ux sin ε)
5

...



v = ξ
∂

∂x
+ ϕ

∂

∂u
= −u

∂

∂x
+ x

∂

∂u
Characteristic:

Q(x, u, ux) = ϕ− ux ξ = x+ uux

By the prolongation formula, the infinitesimal generator is

pr v = −u
∂

∂x
+ x

∂

∂u
+ (1 + u2

x)
∂

∂ux

+ 3uxuxx

∂

∂uxx

+ · · ·

⋆ The solutions to the characteristic equation

Q(x, u, ux) = x+ u ux = 0

are circular arcs — rotationally invariant curves.



Lie’s Infinitesimal Symmetry Criterion
for Differential Equations

Theorem. A connected group of transformations G is a
symmetry group of a nondegenerate system of differential
equations ∆ = 0 if and only if

pr v(∆) = 0 whenever ∆ = 0

for every infinitesimal generator v of G.



Calculation of Symmetries

pr v(∆) = 0 whenever ∆ = 0

These are the determining equations of the symmetry group to
∆ = 0. They form an overdetermined system of elementary
partial differential equations for the coefficients ξi,ϕα of
v that can (usually) be explicitly solved — there are even
Maple and Mathematica packages that do this automat-
ically — thereby producing the most general infinitesimal
symmetry and hence the (continuous) symmetry group of
the system of partial differential equations.

⋆ For systems arising in applications, many symmetries are
evident from physical intuition, but there are significant
examples where the Lie method produces new symmetries.



Variational Symmetries

Definition. A (strict) variational symmetry is a transformation
(x̃, ũ) = g · (x, u) which leaves the variational problem in-
variant: ∫

Ω̃
L(x̃, ũ(n)) dx̃ =

∫

Ω
L(x, u(n)) dx

Infinitesimal invariance criterion:

pr v(L) + LDiv ξ = 0

Divergence symmetry (Bessel–Hagen):

pr v(L) + LDiv ξ = DivB

=⇒ Every divergence symmetry has an equivalent
strict variational symmetry



Conservation Laws

A conservation law of a discrete dynamical system of
ordinary differential equations is a function

T (t, u, ut, . . . )

depending on the time t, the field variables u, and their deriva-
tives, that is constant on solutions, or, equivalently,

DtT = 0

on all solutions to the field equations.



Conservation Laws — Dynamics

In continua, a conservation law states that the temporal
rate of change of a quantity T in a region of space D is governed
by the associated flux through its boundary:

∂

∂t

∫

D
T dx =

∮

∂D
X

or, in differential form,

DtT = DivX

• In particular, if the flux X vanishes on the boundary ∂D,

then the total density
∫

D
T dx is conserved — constant.



Conservation Laws — Statics

In statics, a conservation law corresponds to a path- or surface-

independent integral
∮

C
X = 0 — in differential form,

DivX = 0

Thus, in fracture mechanics, one can measure the conserved
quantity near the tip of a crack by evaluating the integral
at a safe distance.



Conservation Laws in Analysis

⋆ In modern mathematical analysis of partial differential
equations, most existence theorems, stability results,
scattering theory, etc., rely on the existence of suitable
conservation laws.

⋆ Completely integrable systems can be characterized by the
existence of infinitely many higher order conservation laws.

⋆ In the absence of symmetry, Noether’s Identity is used
to construct divergence identities that take the place of
conservation laws in analysis.



Trivial Conservation Laws

Let ∆ = 0 be a system of differential equations.

Type I If P = 0 for all solutions to ∆ = 0,
then DivP = 0 on solutions

Type II (Null divergences) If DivP ≡ 0 for all functions
u = f(x), then it trivially vanishes on solutions.

Examples:
Dx(uy) +Dy(−ux) ≡ 0

Dx

∂(u, v)

∂(y, z)
+Dy

∂(u, v)

∂(z, x)
+Dz

∂(u, v)

∂(x, y)
≡ 0

=⇒ (generalized) curl: P = CurlQ



Two conservation laws P and P̃ are equivalent if they differ by a
sum of trivial conservation laws:

P = P̃ + PI + PII

where
PI = 0 on solutions DivPII ≡ 0.

Theorem. Every conservation law of a (nondegenerate) system
of differential equations ∆ = 0 is equivalent to one in
characteristic form

DivP = Q∆

Proof : — integration by parts

=⇒ Q = (Q1, . . . , Qq) is called the characteristic of the
conservation law.



Noether’s First Theorem

Theorem. If v generates a one-parameter group of variational
symmetries of a variational problem, then the characteristic
Q of v is the characteristic of a conservation law of the
Euler-Lagrange equations:

DivP = QE(L)

Proof : Noether’s Identity = Integration by Parts

pr v(L) + LDiv ξ = QE(L)−DivP

pr v — prolonged vector field (infinitesimal generator)

Q — characteristic of v

P — boundary terms resulting from
the integration by parts computation



Symmetry =⇒ Conservation Law

pr v(L) + LDiv ξ = QE(L)−DivP

Thus, if v is a variational symmetry, then by infinitesimal
invariance of the variational principle, the left hand side
of Noether’s Identity vanishes and hence

DivP = QE(L)

is a conservation law with characteristic Q.

More generally, if v is a divergence symmetry

pr v(L) + LDiv ξ = DivB

then the conservation law is

Div(P +B) = QE(L)



Conservation of Energy

Group:
(t, u) +−→ (t+ ε, u)

Infinitesimal generator and characteristic:

v =
∂

∂t
Q = −ut

Invariant variational problem

F [u] =
∫
L(u, ut, utt, . . .) dt

∂L

∂t
= 0

Euler–Lagrange equations:

E(L) =
∂L

∂u
−Dt

∂L

∂ut

+D2
t

∂L

∂utt

− · · · = 0



Conservation of Energy

Infinitesimal generator and characteristic:

v =
∂

∂t
Q = −ut

Euler–Lagrange equations:

E(L) =
∂L

∂u
−Dt

∂L

∂ut

+D2
t

∂L

∂utt

− · · · = 0

Conservation law:

0 = QE(L) = −ut

(
∂L

∂u
−Dt

∂L

∂ut

+D2
t

∂L

∂utt

− · · ·
)

= Dt

(

−L+ ut

∂L

∂ut

− · · ·
)



Conservation Law =⇒ Symmetry

pr v(L) + LDiv ξ = QE(L)−DivP

Conversely, if
DivA = QE(L)

is any conservation law, assumed, without loss of generality,
to be in characteristic form, and Q is the characteristic of
the vector field v, then

pr v(L) + LDiv ξ = Div(A− P ) = DivB

and hence v generates a divergence symmetry group.



What’s the catch?

How do we know the characteristic Q of the conservation law is
the characteristic of a vector field v?

Answer: it’s not if we restrict our attention to ordinary,
geometrical symmetries, but it is if we allow the vector field
v to depend on derivatives of the field variable!

⋆ One needs higher order generalized symmetries
— first defined by Noether!



Generalized Symmetries of
Differential Equations

Determining equations :

pr v(∆) = 0 whenever ∆ = 0

A generalized symmetry is trivial if its characteristic vanishes on
solutions to ∆. This means that the corresponding group
transformations acts trivially on solutions.

Two symmetries are equivalent if their characteristics differ by a
trivial symmetry.



The Kepler Problem

!!

x+
mx

r3
= 0 L = 1

2

!

x2 −
m

r

Generalized symmetries (three-dimensional):

v = (x · !!

x)∂x +
!

x(x · ∂x)− 2x(
!

x · ∂x)

Conservation laws
pr v(L) = DtR

where
R =

!

x ∧ (x ∧ !

x)−
mx

r
are the components of the Runge-Lenz vector

=⇒ Super-integrability



The Strong Version

Noether’s First Theorem. Let ∆ = 0 be a normal system
of Euler-Lagrange equations. Then there is a one-to-one
correspondence between nontrivial conservation laws and
nontrivial variational symmetries.

⋆ A system of partial differential equations is normal if,
under a change of variables, it can be written in
Cauchy–Kovalevskaya form.

⋆ Abnormal systems are either over- or under-determined.

Example: Einstein’s field equations in general relativity.

=⇒ Noether’s Second Theorem and the Bianchi identities



Generalized Symmetries

⋆ Due to Noether (1918)

⋆ NOT Lie or Bäcklund, who only got as far as
contact transformations.

Key Idea: Allow the coefficients of the infinitesimal generator
to depend on derivatives of u, but drop the requirement
that the (prolonged) vector field define a geometrical
transformation on any finite order jet space:

v =
p∑

i=1

ξi(x, u(k))
∂

∂xi
+

q∑

α=1

ϕα(x, u(k))
∂

∂uα



Characteristic :

Qα(x, u
(k)) = ϕα −

p∑

i=1

ξiuα
i

Evolutionary vector field:

vQ =
q∑

α=1

Qα(x, u
(k))

∂

∂uα

Prolongation formula:

pr v = pr vQ +
p∑

i=1

ξiDi

pr vQ =
∑

α,J

DJQα

∂

∂uα
J

Di =
∑

α,J

uα
J,i

∂

∂uα
J

DJ = Dj1
· · ·Djk

=⇒ total derivative



Generalized Flows

• The one-parameter group generated by the evolutionary
vector field

vQ =
q∑

α=1

Qα(x, u
(k))

∂

∂uα

is found by solving the Cauchy problem for an associated
system of evolution equations

∂uα

∂ε
= Qα(x, u

(n)) u|ε=0 = f(x)

♠ Existence/uniqueness?

♣ Ill–posedness?



Example. v =
∂

∂x
generates the one-parameter group of

translations:
(x, y, u) +−→ (x+ ε, y, u)

Evolutionary form:

vQ = −ux

∂

∂x
Corresponding group:

∂u

∂ε
= −ux

Solution
u = f(x, y) +−→ u = f(x− ε, y)



⋆ v is a generalized symmetry of a differential equation if and
only if its evolutionary form vQ is.

Example. Burgers’ equation.

ut = uxx + uux

Characteristics of generalized symmetries:

ux space translations

uxx + uux time translations

uxxx +
3
2 uuxx +

3
2 u

2
x +

3
4 u

2ux

uxxxx + 2uuxxx + 5uxuxx +
3
2 u

2ux + 3uu2
x +

1
2 u

3ux

...



Equations with one higher order symmetry almost always have
infinitely many.

Equations with higher order generalized symmetries are called
“integrable”.

Linearizable “C integrable” — Burgers’

Solvable by inverse scattering “S integrable” — KdV

See Mikhailov–Shabat and J.P. Wang’s thesis for long lists of
equations with higher order symmetries.

Sanders–Wang use number theoretic techniques to completely
classify all integrable evolution equations, of a prescribed
type, e.g. polynomial with linear leading term in which
every example is in a small collection of well-known equa-
tions of order ≤ 5 (linear, Burgers’, KdV, mKdV, Sawada–
Kotera, Kaup–Kupershmidt, Kupershmidt, Ibragimov–
Shabat & potential versions) or a higher order symmetry
thereof.



Bakirov’s Example:

The “triangular system” of evolution equations

ut = uxxxx + v2 vt =
1
5 vxxxx

has one sixth order generalized symmetry,
but no further higher order symmetries.

• Bakirov (1991)

• Beukers–Sanders–Wang (1998)

• van der Kamp–Sanders (2002)



Recursion operators

=⇒ Olver (1977)

Definition. An operator R is called a recursion operator for
the system ∆ = 0 if it maps symmetries to symmetries, i.e.,
if vQ is a generalized symmetry (in evolutionary form), and

Q̃ = RQ, then v
Q̃
is also a generalized symmetry.

=⇒ A recursion operator generates infinitely many symmetries
with characteristics

Q, RQ, R2Q, R3Q, . . .

Theorem. Given the system ∆ = 0 with Fréchet derivative
(linearization) D∆, if

[D∆,R] = 0

on solutions, then R is a recursion operator.



Example. Burgers’ equation.

ut = uxx + uux

D∆ = Dt −D2
x − uDx − ux

R = Dx +
1
2u+ 1

2uD
−1
x

D∆ · R = DtDx −D3
x −

3
2uD

2
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2(5ux + u2)Dx +
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x ,

R ·D∆ = DtDx −D3
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3
2uD

2
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1
2(5ux + u2)Dx − uxx − uux

hence

[D∆,R] = 1
2(ut − uxx − uux) +

1
2(uxt − uxxx − uuxx − u2

x)D
−1
x

which vanishes on solutions.



Linear Equations

Theorem. Let
∆[u] = 0

be a linear system of partial differential equations. Then any
symmetry vQ with linear characteristic Q = D[u] determines a
recursion operator D.

[D,∆] = D̃ ·∆
If D1, . . . ,Dm determine linear symmetries vQ1

, . . . ,vQm
, then

any polynomial in the Dj’s also gives a linear symmetry.

Question 1: Given a linear system, when are all symmetries
a) linear? b) generated by first order symmetries?

Question 2: What is the structure of the non-commutative
symmetry algebra?



Bi–Hamiltonian systems

=⇒ Magri (1978)

Theorem. Suppose
du

dt
= F1 = J1∇H1 = J2∇H0

is a biHamiltonian system, where J1, J2 form a compatible pair of
Hamiltonian operators. Assume that J1 is nondegenerate. Then

R = J2J
−1
1

is a recursion operator that generates an infinite hierarch of biHamilto-
nian symmetries

du

dt
= Fn = J1∇Hn = J2∇Hn−1 = RFn−1

whose Hamiltonian function(al)s H0,H1,H2, . . . are in involution with
respect to either Poisson bracket:

{Hn, Hm }1 = 0 = {Hn, Hm }2
and hence define conservation laws for every system.



The Korteweg–deVries Equation

∂u

∂t
= uxxx + uux = J1

δH1

δu
= J2

δH0

δu

J1 = Dx H1[u ] =
∫

( 1
6 u

3 − 1
2 u

2
x ) dx

J2 = D3
x + 2

3uDx + 1
3 ux H0[u ] =

∫
1
2 u

2 dx

⋆ ⋆ Bi–Hamiltonian system with recursion operator (Lenard)

R = J2 · J
−1
1 = D2

x +
2
3 u+ 1

3 uxD
−1
x

Hierarchy of generalized symmetries and higher order conservation laws:

∂u

∂t
= uxxxxx +
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3 uuxxx +
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3 uxuxx +
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6 u

2ux = J1
δH2

δu
= J2

δH1
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∫

( 1
2 u

2
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6 u
2
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72 u
4 ) dx

and so on . . . (Gardner, Green, Kruskal, Miura, Lax)



Noether’s SecondTheorem

Theorem. A system of Euler-Lagrange equations is
under-determined, and hence admits a nontrivial differential relation if and
only if it admits an infinite dimensional variational symmetry group depend-
ing on an arbitrary function.
The associated conservation laws are trivial.

Proof — Integration by parts:

For any linear differential operator D and any function F :

F DE(L) = D∗(F )E(L) + DivP [F,E(L)].

where D∗ is the formal adjoint of D. Now apply Noether’s Identity using the
symmetry/conservation law characteristic

Q = D∗(F ).



Noether’s SecondTheorem

Theorem. A system of Euler-Lagrange equations is
under-determined, and hence admits a nontrivial differential relation if and
only if it admits an infinite dimensional variational symmetry group depend-
ing on an arbitrary function.
=⇒ The associated conservation laws are trivial.

Open Question: Are there over-determined systems of
Euler–Lagrange equations for which trivial symmetries give non-trivial conser-
vation laws?



A Very Simple Example:

Variational problem:

I[u, v ] =
∫ ∫

(ux + vy)
2 dx dy

Variational symmetry group:

(u, v) +−→ (u+ ϕy, v − ϕx)

Euler-Lagrange equations:

∆1 = Eu(L) = uxx + vxy = 0

∆2 = Ev(L) = uxy + vyy = 0

Differential relation:
Dy∆1 −Dx∆2 ≡ 0



Relativity

Noether’s Second Theorem effectively resolved Hilbert’s dilemma regard-
ing the law of conservation of energy in Einstein’s field equations for general
relativity.

Namely, the time translational symmetry that ordinarily leads to conser-
vation of energy in fact belongs to an infinite-dimensional symmetry group,
and thus, by Noether’s Second Theorem, the corresponding conservation law
is trivial, meaning that it vanishes on all solutions.
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