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Amalie EmmyNoether
(1882–1935)



Fraulein Noether was the most significant creative
mathematician thus far produced since the higher
education of women began.

— Albert Einstein, obituary, New York Times

She was a great mathematician, the greatest, I
firmly believe that her sex has ever produced and a
great woman . . . And of all I have known, she was
certainly one of the happiest.

— Hermann Weyl



Emmy Noether was one of the most influential

mathematicians of the century. The development of

abstract algebra, which is one of the most distinctive

innovations of twentieth century mathematics, is

largely due to her — in published papers, in lectures,

and in personal influence on her contemporaries.

— Nathan Jacobson



EmmyNoether —Biography

Born: 1882, Erlangen, Germany

Father: Max Noether (Nöther), German mathematician
— algebraic geometry

1907 Ph.D. under Paul Gordan, Erlangen (“King of invariants”)

— calculated all 331 invariants of ternary biquadratic forms

— “Formelgestrüpp”, “Mist” (E.N.)

1907–14: Teaches at University of Erlangen without pay

1915–33: Invited to University of Göttingen
by David Hilbert & Felix Klein

1918: Noether’s Theorems published



1919: Habilitation

1919–35: Established foundations of modern abstract algebra:
ideals, rings, noetherian condition, representation theory, etc.

“der Noether” & the Noether boys
van der Waerden: Moderne Algebra

1922: Appointed extraordinary professor in Göttingen

1923: Finally paid a small stipend for teaching!

1932: Plenary address at the
International Congress of Mathematicians, Zurich

1933: Placed on “leave of absence”;
tries to move to Soviet Union

1933: Moves to U.S. — Bryn Mawr College

1935: Dies after surgery, aged 53



Noether’s Three Fundamental Contributions

to Analysis and Physics
First Theorem. There is a one-to-one correspondence between

symmetry groups of a variational problem and
conservation laws of its Euler–Lagrange equations.

Second Theorem. An infinite-dimensional variational
symmetry group depending upon an arbitrary function
corresponds to a nontrivial differential relation among its
Euler–Lagrange equations.

⋆ The conservation laws associated with the variational
symmetries in the Second Theorem are trivial — this
resolved Hilbert’s original paradox in relativity that was
the reason he and Klein invited Noether to Göttingen.



Noether’s Three Fundamental Contributions
to Analysis and Physics

First Theorem. There is a one-to-one correspondence between
symmetry groups of a variational problem and
conservation laws of its Euler–Lagrange equations.

Second Theorem. An infinite-dimensional variational
symmetry group depending upon an arbitrary function
corresponds to a nontrivial differential relation among its
Euler–Lagrange equations.

Introduction of higher order generalized symmetries.
=⇒ later (1960’s) to play a fundamental role in the discovery

and classification of integrable systems and solitons.



Symmetries =⇒ Conservation Laws

• symmetry under space translations
=⇒ conservation of linear momentum

• symmetry under time translations
=⇒ conservation of energy

• symmetry under rotations
=⇒ conservation of angular momentum

• symmetry under boosts (moving coordinates)
=⇒ linear motion of the center of mass



Precursors

Lagrange (1788) Lagrangian mechanics & energy conservation

Jacobi (1842–43 publ. 1866) Euclidean invariance
— linear and angular momentum

Schütz (1897) time translation — conservation of energy

Herglotz (1911) Poincaré invariance in relativity
— 10 conservation laws

Engel (1916) non-relativistic limit: Galilean invariance
— linear motion of center of mass



ACurious History

⋆ Bessel–Hagen (1922) — divergence symmetries

♣ Hill (1951) — a very special case
(first order Lagrangians, geometrical symmetries)

♠ 1951–1980 Over 50 papers rediscover and/or prove
purported generalizations of Noether’s First Theorem

♠ 2011 Neuenschwander, Emmy Noether’s Wonderful Theorem
— back to special cases again!

Continuum mechanics: Rice, Eshelby (1950’s),
Günther (1962), Knowles & Sternberg (1972)

Optics: Baker & Tavel (1974)



TheNoether Triumvirate

⋆ Variational Principle

⋆ Symmetry

⋆ Conservation Law



ABrief History of Symmetry

Symmetry =⇒ Group Theory!

• Lagrange, Abel, Galois — polynomials

• Lie — differential equations and
variational principles

• Noether — conservation laws and
higher order symmetries

• Weyl, Wigner, etc. — quantum mechanics
“der Gruppenpest” (J. Slater)



Next to the concept of a function, which is the

most important concept pervading the whole of math-

ematics, the concept of a group is of the greatest signif-

icance in the various branches of mathematics and its

applications.

— P.S. Alexandroff



Discrete Symmetry Group

=⇒ crystallography



Continuous Symmetry Group

Symmetry group = all rotations

⋆ A continuous group is known as a Lie group
— in honor of Sophus Lie (1842–1899)



ABrief History of Conservation Laws

In physics, a conservation law asserts that a particular
measurable property P of an isolated physical system does not
change as the system evolves.

Conservation of momentum: Wallis (1670), Newton (1687)

Conservation of mass: Lomonosov (1748), Lavoisier (1774)

Conservation of energy: Lagrange (1788), Helmholtz (1847),
Rankine (1850), also: Mohr, Mayer, Joule, Faraday, . . .



In Summary . . .

Noether’s Theorem states that to

each continuous symmetry group of the

action functional there is a corresponding

conservation law of the physical equations

and vice versa.



TheModernManual for Physics
♠ To construct a physical theory:

Step 1: Determine the allowed group of symmetries:

• translations

• rotations

• conformal (angle-preserving) transformations

• Galilean boosts

• Poincaré transformations (relativity)

• gauge transformations

• CPT (charge, parity, time reversal) symmetry

• supersymmetry

• SU(3), G2, E8 × E8, SO(32), . . .

• etc., etc.



Step 2: Construct a variational principle (“energy”) that
admits the given symmetry group.

Step 3: Invoke Nature’s obsession with minimization to deter-
mine the corresponding field equations associated with the
variational principle.

Step 4: Use Noether’s First and Second Theorems to write
down (a) conservation laws, and (b) differential identities
satisfied by the field equations.

Step 5: Try to solve the field equations.

Even special solutions are of immense interest

=⇒ black holes.
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Symmetry Groups of
Differential Equations

=⇒ Sophus Lie (1842–1899).

System of differential equations

∆(x, u(n)) = 0

G — Lie group or Lie pseudo-group acting on the
space of independent and dependent variables:

(x̃, ũ) = g · (x, u)



G acts on functions by transforming their graphs:

u = f(x) ũ = f̃(x̃)

g
!−→

Definition. G is a symmetry group of the system
∆ = 0 if f̃ = g · f is a solution whenever f is.



Variational Symmetries

Definition. A variational symmetry is a transformation of
space/time and the field variables

(x̃, ũ) = g · (x, u)

that leaves the variational problem invariant:
∫

Ω̃
L(x̃, ũ(n)) dx̃ =

∫

Ω
L(x, u(n)) dx

Theorem. Every symmetry of the variational problem is a
symmetry of the Euler–Lagrange equations.

(but not conversely)



One–Parameter Groups
A Lie group whose transformations depend upon a single

parameter ε ∈ R is called a one-parameter group.

Translations in a single direction:

(x, y, z) '−→ (x+ ε, y + 2ε, z − ε)

Rotations around a fixed axis:

(x, y, z) '−→ (x cos ε− z sin ε, y, x sin ε+ z cos ε)

Screw motions:

(x, y, z) '−→ (x cos ε− y sin ε, x sin ε+ y cos ε, z + ε)

Scaling transformations:

(x, y, z) '−→ (λx,λ y,λ−1 z)



Infinitesimal Generators

Every one-parameter group can be viewed as the flow of
a vector field v, known as its infinitesimal generator.

In other words, the one-parameter group is realized as the
solution to the system of ordinary differential equations
governing the vector field’s flow:

dz

dε
= v(z)

Equivalently, if one expands the group transformations in
powers of the group parameter ε, the
infinitesimal generator comes from the linear terms:

z(ε) = z + εv(z) + · · ·



Infinitesimal Generators = Vector Fields

In differential geometry, it has proven to be very useful to
identify a vector field with a first order differential operator

In local coordinates (. . . xi . . . uα . . .), the vector field

v = ( . . . ξi(x, u) . . . ϕα(x, u) . . . )

that generates the one-parameter group (flow)

dxi

dε
= ξi(x, u)

duα

dε
= ϕα(x, u)

is identified with the differential operator

v =
p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

ϕα(x, u)
∂

∂uα



Invariance

A function F : M → R is invariant if it is not affected by the
group transformations:

F (g · z) = F (z)

for all g ∈ G and z ∈ M .

Infinitesimal Invariance

Theorem. (Lie) A function is invariant under a one-parameter
group with infinitesimal generator v (viewed as a
differential operator) if and only if

v(F ) = 0



Jet Spaces
x = (x1, . . . , xp) — independent variables

u = (u1, . . . , uq) — dependent variables

⋆ Regard u = f(x)

uα
J =

∂kuα

∂xj1 . . . ∂xk
— partial derivatives

(x, u(n)) = ( . . . xi . . . uα . . . uα
J . . . ) ∈ Jn

— jet coordinates

dim Jn = p+ q(n) = p+ q

(
p+ n

n

)



Prolongation

Since G acts on functions, it acts on their derivatives u(n),
leading to the prolonged group action:

(x̃, ũ(n)) = pr(n) g · (x, u(n))

=⇒ formulas provided by implicit differentiation

Prolonged infinitesimal generator:

pr v = v +
∑

α,J

ϕα
J(x, u

(n))
∂

∂uα
J



The Prolongation Formula

The coefficients of the prolonged vector field are given
by the explicit prolongation formula:

ϕα
J = DJ Q

α +
p∑

i=1

ξi uα
J,i

where Qα(x, u(1)) = ϕα −
p∑

i=1

ξi
∂uα

∂xi

Q = (Q1, . . . , Qq) — characteristic of v

⋆ Invariant functions are solutions to

Q(x, u(1)) = 0.



Example. The vector field

v = ξ
∂

∂x
+ ϕ

∂

∂u
= −u

∂

∂x
+ x

∂

∂u

generates the rotation group

(x, u) '−→ (x cos ε− u sin ε, x sin ε+ u cos ε)

The prolonged action is (implicit differentiation)

ux '−→
sin ε+ ux cos ε

cos ε− ux sin ε

uxx '−→
uxx

(cos ε− ux sin ε)
3

uxxx '−→
(cos ε− ux sin ε) uxxx − 3u2

xx sin ε

(cos ε− ux sin ε)
5

...



v = ξ
∂

∂x
+ ϕ

∂

∂u
= −u

∂

∂x
+ x

∂

∂u
Characteristic:

Q(x, u, ux) = ϕ− ux ξ = x+ uux

By the prolongation formula, the infinitesimal generator is

pr v = −u
∂

∂x
+ x

∂

∂u
+ (1 + u2

x)
∂

∂ux

+ 3uxuxx

∂

∂uxx

+ · · ·

⋆ The solutions to the characteristic equation

Q(x, u, ux) = x+ u ux = 0

are circular arcs — rotationally invariant curves.



Lie’s Infinitesimal Symmetry Criterion
for Differential Equations

Theorem. A connected group of transformations G is a
symmetry group of a nondegenerate system of differential
equations ∆ = 0 if and only if

pr v(∆) = 0 whenever ∆ = 0

for every infinitesimal generator v of G.



Calculation of Symmetries

pr v(∆) = 0 whenever ∆ = 0

These are the determining equations of the symmetry group to
∆ = 0. They form an overdetermined system of elementary
partial differential equations for the coefficients ξi,ϕα of
v that can (usually) be explicitly solved — there are even
Maple and Mathematica packages that do this automat-
ically — thereby producing the most general infinitesimal
symmetry and hence the (continuous) symmetry group of
the system of partial differential equations.

⋆ For systems arising in applications, many symmetries are
evident from physical intuition, but there are significant
examples where the Lie method produces new symmetries.



The Calculus of Variations



Variational Problems

A variational problem requires minimizing a functional

F [u ] =
∫
L(x, u(n)) dx

The integrand is known as the Lagrangian.

The Lagrangian L(x, u(n)) can depend upon the space/time
coordinates x, the function(s) or field(s) u = f(x) and their
derivatives up to some order n

— typically, but not always, n = 1.



Functionals

Distance functional = arc length of a curve y = u(x):

F [u ] =
∫ b

a

√
1 + u′(x)2 dx,

Boundary conditions: u(a) = α u(b) = β
Solutions: geodesics (straight lines)

Surface area functional:

F [u ] =
∫ ∫

Ω

√√√√1 +

(
∂u

∂x

)2

+

(
∂u

∂y

)2

dx dy.

Minimize subject to Dirichlet boundary conditions

u(x, y) = g(x, y) for (x, y) ∈ ∂Ω.

Solutions: minimal surfaces



The Euler–Lagrange Equations

The minimum of the functional

F [u ] =
∫
L(x, u(n)) dx

must occur where the functional gradient vanishes: δF [u ] = 0

This is a system of differential equations

∆ = E(L) = 0

known as the Euler–Lagrange equations.

E — Euler operator (variational derivative):

Eα(L) =
δL

δuα
=
∑

J

(−D)J
∂L

∂uα
J

= 0

The (smooth) minimizers u(x) of the functional are solutions to
the Euler–Lagrange equations — as are any maximizers
and, in general, all “critical functions”.



Functional Gradient
Functional

F [u ] =
∫
L(x, u(n)) dx

Variation v = δu:

F [u+ v ] = F [u ] + ⟨ δF ; v ⟩+ h.o.t.

=
∫
L(u, ut, utt, . . .) dt+

∫ (
∂L

∂u
v +

∂L

∂ut

vt +
∂L

∂utt

vtt + · · ·
)

dt+ · · ·

Integration by parts:

∫ (
∂L

∂u
v +

∂L

∂ut

vt +
∂L

∂utt

vtt + · · ·
)

dt =
∫ (

∂L

∂u
−Dt

∂L

∂ut

+D2
t

∂L

∂utt

− · · ·
)

v dt

Euler–Lagrange equations:

δF = E(L) =
∂L

∂u
−Dt

∂L

∂ut

+D2
t

∂L

∂utt

− · · · = 0



Euler–Lagrange equations
F [u ] = arc length functional

Euler–Lagrange equation: curvature = κ = 0

Solutions: geodesics

F [u ] = surface area functional =
∫ ∫

√√√√1 +

(
∂u

∂x

)2

+

(
∂u

∂y

)2

dx dy

Euler–Lagrange equation = minimal surface equation (R3 version):

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy = 0

Solutions: minimal surfaces

F [u ] = Hilbert action functional =
c4

16πG

∫
(R+ Lm)

√
−g d4x

Euler–Lagrange equations = Einstein equations of general relativity:

Rµν =
1

2
Rgµν +

8πG

c4
Tµν

Solutions: Einstein space–time manifolds



Variational Symmetries

Definition. A strict variational symmetry is a transformation
(x̃, ũ) = g · (x, u) which leaves the variational problem
invariant:

∫

Ω̃
L(x̃, ũ(n)) dx̃ =

∫

Ω
L(x, u(n)) dx

Infinitesimal invariance criterion:

pr v(L) + LDiv ξ = 0

Divergence symmetry (Bessel–Hagen):

pr v(L) + LDiv ξ = DivB

=⇒ Every divergence symmetry has an equivalent
strict variational symmetry



Conservation Laws



Conservation Laws

A conservation law of a discrete dynamical system of
ordinary differential equations is a function

T (t, u, ut, . . . )

depending on the time t, the field variables u, and their deriva-
tives, that is constant on solutions, or, equivalently,

DtT = 0

on all solutions to the field equations.



Conservation Laws — Dynamics

In continua, a conservation law states that the temporal
rate of change of a quantity T in a region of space D is governed
by the associated flux through its boundary:

∂

∂t

∫

D
T dx =

∮

∂D
X

or, in differential form,

DtT = DivX

• In particular, if the flux X vanishes on the boundary ∂D,

then the total density
∫

D
T dx is conserved — constant.



Conservation Laws — Statics

In statics, a conservation law corresponds to a path- or surface-

independent integral
∮

C
X = 0 — in differential form,

DivX = 0

Thus, in fracture mechanics, one can measure the conserved
quantity near the tip of a crack by evaluating the integral
at a safe distance.



Conservation Laws in Analysis

⋆ In modern mathematical analysis, most existence theorems,
stability results, scattering theory, etc., for partial differen-
tial equations rely on the existence of suitable conservation
laws.

⋆ Completely integrable systems can be characterized by the
existence of infinitely many higher order conservation laws.

⋆ In the absence of symmetry, Noether’s Identity is used
to construct divergence identities that take the place of
conservation laws in analysis.



Trivial Conservation Laws

Let ∆ = 0 be a system of differential equations.

Type I If P = 0 for all solutions to ∆ = 0,
then DivP = 0 on solutions

Type II (Null divergences) If DivP ≡ 0 for all functions
u = f(x), then it trivially vanishes on solutions.

Examples:
Dx(uy) +Dy(−ux) ≡ 0

Dx

∂(u, v)

∂(y, z)
+Dy

∂(u, v)

∂(z, x)
+Dz

∂(u, v)

∂(x, y)
≡ 0

=⇒ (generalized) curl: P = CurlQ



Two conservation laws P and P̃ are equivalent if they differ by a
sum of trivial conservation laws:

P = P̃ + PI + PII

where
PI = 0 on solutions DivPII ≡ 0.

Theorem. Every conservation law of a (nondegenerate) system
of differential equations ∆ = 0 is equivalent to one in
characteristic form

DivP = Q∆

Proof : — integration by parts

=⇒ Q = (Q1, . . . , Qq) is called the characteristic of the
conservation law.



Noether’s First Theorem

Theorem. If v generates a one-parameter group of variational
symmetries of a variational problem, then the characteristic
Q of v is the characteristic of a conservation law of the
Euler-Lagrange equations:

DivP = QE(L)

Proof : Noether’s Identity = Integration by Parts

pr v(L) + LDiv ξ = QE(L)−DivP

pr v — prolonged vector field (infinitesimal generator)

Q — characteristic of v

P — boundary terms resulting from
the integration by parts computation



Symmetry =⇒ Conservation Law

pr v(L) + LDiv ξ = QE(L)−DivP

Thus, if v is a variational symmetry, then by infinitesimal
invariance of the variational principle, the left hand side
of Noether’s Identity vanishes and hence

DivP = QE(L)

is a conservation law with characteristic Q.

More generally, if v is a divergence symmetry

pr v(L) + LDiv ξ = DivB

then the conservation law is

Div(P +B) = QE(L)



Conservation of Energy

Group:
(t, u) '−→ (t+ ε, u)

Infinitesimal generator and characteristic:

v =
∂

∂t
Q = −ut

Invariant variational problem

F [u] =
∫
L(u, ut, utt, . . .) dt

∂L

∂t
= 0

Euler–Lagrange equations:

E(L) =
∂L

∂u
−Dt

∂L

∂ut

+D2
t

∂L

∂utt

− · · · = 0



Conservation of Energy

Infinitesimal generator and characteristic:

v =
∂

∂t
Q = −ut

Euler–Lagrange equations:

E(L) =
∂L

∂u
−Dt

∂L

∂ut

+D2
t

∂L

∂utt

− · · · = 0

Conservation law:

0 = QE(L) = −ut

(
∂L

∂u
−Dt

∂L

∂ut

+D2
t

∂L

∂utt

− · · ·
)

= Dt

(

−L+ ut

∂L

∂ut

− · · ·
)



Elastostatics
∫

W (x,∇u) dx — stored energy

x, u ∈ Rp, p = 2, 3

Frame indifference

u '−→ Ru+ a, R ∈ SO(p)

Conservation laws = path independent integrals:

DivP = 0.



1. Translation invariance

Pi =
∂W

∂uα
i

=⇒ Euler-Lagrange equations

2. Rotational invariance

Pi = uα
i

∂W

∂uβ
j

− uβ
i

∂W

∂uα
j

3. Homogeneity : W = W (∇u) x '−→ x+ a

Pi =
p∑

α=1

uα
j

∂W

∂uα
i

− δijW

=⇒ Energy-momentum tensor



4. Isotropy : W (∇u ·Q) = W (∇u) Q ∈ SO(p)

Pi =
p∑

α=1

(xjuα
k − xkuα

j )
∂W

∂uα
i

+ (δijx
k − δikx

j)W

5. Dilation invariance : W (λ∇u) = λnW (∇u)

Pi =
n− p

n

p∑

α,j=1

(uαδij − xjuα
j )

∂W

∂uα
i

+ xiW

5A. Divergence identity

Div P̃ = pW

P̃i =
p∑

j=1

(uαδij − xjuα
j )

∂W

∂uα
i

+ xiW

=⇒ Knops/Stuart, Pohozaev, Pucci/Serrin



Conservation Law =⇒ Symmetry

pr v(L) + LDiv ξ = QE(L)−DivP

Conversely, if
DivA = QE(L)

is any conservation law, assumed, without loss of generality,
to be in characteristic form, and Q is the characteristic of
the vector field v, then

pr v(L) + LDiv ξ = Div(A− P ) = DivB

and hence v generates a divergence symmetry group.



What’s the catch?

How do we know the characteristic Q of the conservation law is
the characteristic of a vector field v?

Answer: it’s not if we restrict our attention to ordinary,
geometrical symmetries, but it is if we allow the vector field
v to depend on derivatives of the field variable!

⋆ One needs higher order generalized symmetries
— first defined by Noether!



Generalized Symmetries of
Differential Equations

Determining equations :

pr v(∆) = 0 whenever ∆ = 0

A generalized symmetry is trivial if its characteristic vanishes on
solutions to ∆. This means that the corresponding group
transformations acts trivially on solutions.

Two symmetries are equivalent if their characteristics differ by a
trivial symmetry.



Integrable Systems

The second half of the twentieth century saw two revolutionary
discoveries in the field of nonlinear systems:

⋆ chaos

⋆ integrability

Both have their origins in the classical mechanics of the nine-
teenth century:

chaos: Poincaré

integrability: Hamilton, Jacobi, Liouville, Kovalevskaya



Integrable Systems

In the 1960’s, the discovery of the soliton in Kruskal and Zabusky’s
numerical studies of the Korteweg–deVries equation, a model for nonlinear
water waves, which was motivated by the Fermi–Pasta–Ulam problem,
provoked a revolution in the study of nonlinear dynamics.

The theoretical justification of their observations came through the
study of the associated symmetries and conservation laws.

Indeed, integrable systems like the Korteweg–deVries equation,
nonlinear Schrödinger equation, sine-Gordon equation, KP equation, etc.
are characterized by their admitting an infinite number of higher order
symmetries – as first defined by Noether — and, through Noether’s theorem,
higher order conservation laws!



The Kepler Problem

!!

x+
mx

r3
= 0 L = 1

2

!

x2 −
m

r

Generalized symmetries (three-dimensional):

v = (x · !!

x)∂x +
!

x(x · ∂x)− 2x(
!

x · ∂x)

Conservation laws
pr v(L) = DtR

where
R =

!

x ∧ (x ∧ !

x)−
mx

r
are the components of the Runge-Lenz vector

=⇒ Super-integrability



The Strong Version

Noether’s First Theorem. Let ∆ = 0 be a normal system
of Euler-Lagrange equations. Then there is a one-to-one
correspondence between nontrivial conservation laws and
nontrivial variational symmetries.

⋆ A system of partial differential equations is normal if,
under a change of variables, it can be written in
Cauchy–Kovalevskaya form.

⋆ Abnormal systems are either over- or under-determined.

Example: Einstein’s field equations in general relativity.

=⇒ Bianchi identities



Noether’s Second Theorem

Theorem. A system of Euler-Lagrange equations is
under-determined, and hence admits a nontrivial differential
relation if and only if it admits an infinite dimensional
variational symmetry group depending on an arbitrary
function.
The associated conservation laws are trivial.

Proof — Integration by parts:

For any linear differential operator D and any function F :

F DE(L) = D∗(F )E(L) + DivP [F,E(L)].

where D∗ is the formal adjoint of D. Now apply Noether’s
Identity using the symmetry/conservation law characteristic

Q = D∗(F ).



Noether’s Second Theorem

Theorem. A system of Euler-Lagrange equations is
under-determined, and hence admits a nontrivial differential
relation if and only if it admits an infinite dimensional
variational symmetry group depending on an arbitrary
function.
The associated conservation laws are trivial.

Open Question: Are there over-determined systems of
Euler–Lagrange equations for which trivial symmetries give
non-trivial conservation laws?



A Very Simple Example:

Variational problem:

I[u, v ] =
∫ ∫

(ux + vy)
2 dx dy

Variational symmetry group:

(u, v) '−→ (u+ ϕy, v − ϕx)

Euler-Lagrange equations:

∆1 = Eu(L) = uxx + vxy = 0

∆2 = Ev(L) = uxy + vyy = 0

Differential relation:

Dy∆1 −Dx∆2 ≡ 0



Relativity

Noether’s Second Theorem effectively resolved Hilbert’s
dilemma regarding the law of conservation of energy in Ein-
stein’s field equations for general relativity.

Namely, the time translational symmetry that ordinarily
leads to conservation of energy in fact belongs to an infinite-
dimensional symmetry group, and thus, by Noether’s Second
Theorem, the corresponding conservation law is trivial, meaning
that it vanishes on all solutions.


