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Geometric Integration

Many differential equations arising in applications
possess rich symmetry groups, which can be deter-
mined by the classical Lie infinitesimal algorithm.

Geometric integration is concerned with designing
numerical algorithms that preserve structure of differ-
ential equations.

So, one goal is to design numerical approxima-
tions that preserve some or all symmetries of the un-
derlying differential equation.



Invariantization

A new approach to the classical Cartan theory of
moving frames provides a systematic way for designing
such algorithms using the process of invariantization
based on a choice of cross-section.

With this approach, any standard numerical algo-
rithm can be invariantized to produce a corresponding
symmetry-preserving algorithm.



A clever choice of cross-section defining the
invariantization procedure can, in many cases, produce
an invariant algorithm that performs significantly
better than the original.

Moreover, thanks to the way the invariantization
process is implemented, it is extremely easy to modify
the numerical code for the original algorithm to
produce a symmetry-preserving version.



The Geometry of

Differential Equations

Although in use since the time of Lie and Darboux,
jet space was first formally defined by Ehresmann
in 1950.

Jet space is the proper setting for the geometry of
partial differential equations.

Question: What is the proper setting for the geome-
try of numerical analysis?



Jet Space

M — smooth m-dimensional manifold

Jn = Jn(M, p) — (extended) jet bundle

• Equivalence classes of p-dimensional submanifolds
u = f(x) under nth order contact at a point.

• Coordinates (x, u(n)) are given by the derivatives of
u with respect to x up to order n.



Differential Equations

An nth order system of differential equations

∆(x, u(n)) = 0

defines a submanifold S∆ ⊂ Jn.



Symmetry Groups

G — Lie group acting on M

Definition. G is a symmetry group of a system
of differential equations ∆(x, u(n)) = 0 if it maps
solutions to solutions.

Theorem. G is a symmetry group of ∆ = 0 if
and only if the submanifold S∆ ⊂ Jn is invariant under
the prolonged action G(n) of the group on Jn.

=⇒ Lie’s infinitesimal algorithm



Differential Invariants

A differential invariant is an invariant of the
prolonged action: I : Jn → R

I(g(n) · (x, u(n))) = I(x, u(n))

=⇒ curvature, torsion, . . .

Theorem. A (regular) system of differential
equations admits G as a symmetry group if and only
if it can be expressed in terms of the differential
invariants.



Euclidean Differential Invariants

Euclidean curvature:

κ =
uxx

(1 + u2
x)3/2

Euclidean arc length:

ds =
√

1 + u2
x dx

Higher order differential invariants:

κs =
dκ

ds
κss =

d2κ

ds2
. . .

Euclidean–invariant differential equation:

F (κ,κs,κss, . . .) = 0



Affine Differential Invariants

Affine curvature

κ =
3uxxuxxxx − 5u2

xxx

9(uxx)8/3

Affine arc length

ds = 3

√
uxx dx

Higher order affine invariants:

κs =
dκ

ds
κss =

d2κ

ds2
. . .

Affine–invariant differential equation:

F (κ,κs,κss, . . .) = 0



Finite Difference Approximations

Key remark : Every (finite difference) numerical
approximation to the derivatives of a function or,
geometrically depend on evaluating the function at
several points zi = (xi, ui) where ui = f(xi).

In other words, we seek to approximate the nth

order jet of a submanifold N ⊂ M by a function
F (z0, . . . , zn) defined on the (n + 1)-fold Cartesian
product space M×(n+1) = M × · · · × M , or, more
correctly, on the “off-diagonal” part

M♦(n+1) = { zi '= zj for all i '= j }
=⇒ distinct (n + 1)-tuples of points.



Multi–Space

• The proper setting for the geometry of finite
difference approximations to differential equations
is multi-space M (n).



• To include both derivatives and their finite differ-
ence approximations, multi-space should contain
both the jet space and the off-diagonal Cartesian
product space as submanifolds:

M♦(n+1)

↓

Jn(M, p)






⊂ M (n)



Multi–Space for Curves

M — smooth m-dimensional manifold

M (n) — nth order multi-space

• Equivalence classes of n + 1–pointed curves

(z0, . . . , zn; C) zi ∈ C

under nth order multi-contact at a point.

• Coordinates are given by the divided differences up
to order n.



C = {u = f(x)} ⊂ Rm — curve (graph)

zi = (xi, ui) ∈ C (may coalesce)

Local coordinates for M (n) consist of the indepen-
dent variables along with all the divided differences

x0, . . . , xn

u(0) = u0 = [ z0 ]C u(1) = [ z0z1 ]C

u(2) = 2 [ z0z1z2 ]C . . . u(n) = n! [ z0z1 . . . zn ]C

• The n! factor is included so that u(n) agrees with the usual
derivative coordinate when restricted to Jn.



Finite Difference Approximations

An (n + 1)-point numerical approximation of order
k to a differential function ∆ : Jn → R is a kth order
extension F : M (n) → R of ∆ to multi-space, based on
the inclusion Jn ⊂ M (n).

F (x0, . . . , xn, u(0), . . . , u(n))

−→ F (x, . . . , x, u(0), . . . , u(n)) = ∆(x, u(n))



Joint Invariants

A joint invariant is an invariant of the Cartesian
product action of G on M × · · ·× M :

I(g · z1, . . . , g · zk) = I(z1, . . . , zk)

A joint differential invariant or semi-differential
invariant is an invariant depending on the derivatives
at several points z1, . . . , zk ∈ N on the submanifold:

I(g · z(n)
1 , . . . , g · z(n)

k ) = I(z(n)
1 , . . . , z

(n)
k )



Joint Euclidean Invariants

Theorem. Every joint Euclidean invariant is a
function of the interpoint distances

d(zi, zj) = ‖ zi − zj ‖

zi

zj



Joint Equi–Affine Invariants

Theorem. Every planar joint equi–affine invariant is
a function of the triangular areas

[ i j k ] = 1
2 (zi − zj) ∧ (zi − zk)

zi

zj

zk



Joint Projective Invariants

Theorem. Every joint projective invariant is a
function of the planar cross-ratios

[ zi, zj, zk, zl, zm ] =
A B

C D

A B

C

D



• Three–point projective joint differential invariant
— tangent triangle ratio:

[ 0 2
!

0 ] [ 0 1
!

1 ] [ 1 2
!

2 ]

[ 0 1
!

0 ] [ 1 2
!

1 ] [ 0 2
!

2 ]

z0 z1

z2

z0 z1

z2



Invariant Numerical Approximations

Basic Idea:

Every invariant finite difference approximation to
a differential invariant must expressible in terms of the
joint invariants of the transformation group.



Numerical approximation to curvature

a
b

cA

B

C

Heron’s formula

κ̃(A, B,C) = 4
∆

abc
= 4

√
s(s − a)(s − b)(s − c)

abc

s =
a + b + c

2
— semi-perimeter



Expansion:

κ̃ = κ+
1

3
(b − a)

dκ

ds
+

1

12
(b2 − ab + a2)

d2κ

ds2
+

+
1

60
(b3 − ab2 + a2b − a3)

d3κ

ds3
+

+
1

120
(b − a) (3b2 + 5ab + 3a2)κ2 dκ

ds
+ · · · .



Higher order invariants

κs =
dκ

ds
Invariant finite difference approximation:

κ̃s(Pi−2, Pi−1, Pi, Pi+1) =
κ̃(Pi−1, Pi, Pi+1) − κ̃(Pi−2, Pi−1, Pi)

d(Pi, Pi−1)

Unbiased centered difference:

κ̃s(Pi−2, Pi−1, Pi, Pi+1, Pi+2) =
κ̃(Pi, Pi+1, Pi+2) − κ̃(Pi−2, Pi−1, Pi)

d(Pi+1, Pi−1)

Better approximation (M. Boutin):

κ̃s(Pi−2, Pi−1, Pi, Pi+1) = 3
κ̃(Pi−1, Pi, Pi+1) − κ̃(Pi−2, Pi−1, Pi)

di−2 + 2di−1 + 2di + di+1

dj = d(Pj, Pj+1)
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The Curve x = cos t + 1
5 cos2 t, y = 1

2 x + sin t + 1
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" " "
Moving frames provide a systematic

algorithm for constructing invariants:

• differential invariants

• joint invariants

• invariant numerical approximations

" " "



Applications of Moving Frames

• Differential geometry

• Equivalence

• Symmetry

• Differential invariants

• Rigidity

• Joint invariants and semi-differential invariants

• Invariant differential forms and tensors

• Identities and syzygies

• Classical invariant theory



• Computer vision

◦ object recognition

◦ symmetry detection

• Invariant variational problems

• Invariant numerical methods

• Poisson geometry & solitons

• Killing tensors in relativity

• Invariants of Lie algebras in quantum mechanics

• Lie pseudogroups



Moving Frames

Definition.

A moving frame is a G-equivariant map

ρ : M −→ G

Equivariance:

ρ(g·z) =






g · ρ(z) left moving frame

ρ(z) · g−1 right moving frame

ρleft(z) = ρright(z)−1



The Main Result

Theorem. A moving frame exists in
a neighborhood of a point z ∈ M if and
only if G acts freely and regularly near z.



Isotropy & Freeness

Isotropy subgroup: Gz = { g | g · z = z } for z ∈ M

• free — the only group element g ∈ G which fixes one point
z ∈ M is the identity: =⇒ Gz = {e} for all z ∈ M .

• locally free — the orbits all have the same dimension as G:
=⇒ Gz is a discrete subgroup of G.

• regular — all orbits have the same dimension and intersect
sufficiently small coordinate charts only once

'≈ irrational flow on the torus



Geometric Construction

z

Oz

Normalization = choice of cross-section to the group orbits



Geometric Construction

z

Oz

K

k

Normalization = choice of cross-section to the group orbits



Geometric Construction

z

Oz

K

k

g = ρleft(z)

Normalization = choice of cross-section to the group orbits



Geometric Construction

z

Oz

K

k

g = ρright(z)

Normalization = choice of cross-section to the group orbits



Algebraic Construction

r = dim G ≤ m = dim M

Coordinate cross-section

K = { z1 = c1, . . . , zr = cr }

left right

w(g, z) = g−1 · z w(g, z) = g · z

g = (g1, . . . , gr) — group parameters

z = (z1, . . . , zm) — coordinates on M



Choose r = dim G components to normalize:

w1(g, z)= c1 . . . wr(g, z)= cr

Solve for the group parameters g = (g1, . . . , gr)

=⇒ Implicit Function Theorem

The solution
g = ρ(z)

is a (local) moving frame.



The Fundamental Invariants

Substituting the moving frame formulae

g = ρ(z)

into the unnormalized components of w(g, z) produces the
fundamental invariants

I1(z) = wr+1(ρ(z), z) . . . Im−r(z) = wm(ρ(z), z)

=⇒ These are the coordinates of the canonical form k ∈ K.



Completeness of Invariants

Theorem. Every invariant I(z) can
be (locally) uniquely written as a
function of the fundamental invariants:

I(z) = H(I1(z), . . . , Im−r(z))



Invariantization

Definition. The invariantization of a function
F : M → R with respect to a right moving frame
g = ρ(z) is the the invariant function I = ι(F )
defined by

I(z) = F (ρ(z) · z).

ι(z1) = c1, . . . ι(zr) = cr, ι(zr+1) = I1(z), . . . ι(zr) = Im−r(z).

cross-section variables fundamental invariants
“phantom invariants”

ι [ F (z1, . . . , zm) ] = F (c1, . . . , cr, I1(z), . . . , Im−r(z))



Invariantization amounts to restricting F
to the cross-section

I |K = F |K
and then requiring that I = ι(F ) be constant
along the orbits.

In particular, if I(z) is an invariant, then ι(I) = I.

Invariantization defines a canonical projection

ι : functions /−→ invariants



Prolongation

Most interesting group actions (Euclidean, affine,
projective, etc.) are not free!

Freeness typically fails because the dimension
of the underlying manifold is not large enough, i.e.,
m < r = dim G.

Thus, to make the action free, we must increase
the dimension of the space via some natural prolonga-
tion procedure.

• An effective action can usually be made free by:



• Prolonging to derivatives (jet space)

G(n) : Jn(M, p) −→ Jn(M, p)

=⇒ differential invariants

• Prolonging to Cartesian product actions

G×n : M × · · ·× M −→ M × · · ·× M

=⇒ joint invariants

• Prolonging to “multi-space”

G(n) : M (n) −→ M (n)

=⇒ joint or semi-differential invariants
=⇒ invariant numerical approximations



• Prolonging to derivatives (jet space)

G(n) : Jn(M, p) −→ Jn(M, p)

=⇒ differential invariants

• Prolonging to Cartesian product actions

G×n : M × · · ·× M −→ M × · · ·× M

=⇒ joint invariants

• Prolonging to “multi-space”

G(n) : M (n) −→ M (n)

=⇒ joint or semi-differential invariants
=⇒ invariant numerical approximations



Euclidean Plane Curves
Special Euclidean group: G = SE(2) = SO(2) ! R2

acts on M = R2 via rigid motions: w = R z + b

To obtain the classical (left) moving frame we invert
the group transformations:

y = cos θ (x − a) + sin θ (u − b)

v = − sin θ (x − a) + cos θ (u − b)




 w = R−1(z − b)

Assume for simplicity the curve is (locally) a graph:

C = {u = f(x)}
=⇒ extensions to parametrized curves are straightforward



Prolong the action to Jn via implicit differentiation:

y = cos θ (x − a) + sin θ (u − b)

v = − sin θ (x − a) + cos θ (u − b)

vy =
− sin θ + ux cos θ

cos θ + ux sin θ

vyy =
uxx

(cos θ + ux sin θ )3

vyyy =
(cos θ + ux sin θ )uxxx − 3u2

xx sin θ

(cos θ + ux sin θ )5

...



Prolong the action to Jn via implicit differentiation:

y = cos θ (x − a) + sin θ (u − b)

v = − sin θ (x − a) + cos θ (u − b)

vy =
− sin θ + ux cos θ

cos θ + ux sin θ

vyy =
uxx

(cos θ + ux sin θ )3

vyyy =
(cos θ + ux sin θ )uxxx − 3u2

xx sin θ

(cos θ + ux sin θ )5

...



Normalization: r = dim G = 3

y = cos θ (x − a) + sin θ (u − b) = 0

v = − sin θ (x − a) + cos θ (u − b) = 0

vy =
− sin θ + ux cos θ

cos θ + ux sin θ
= 0

vyy =
uxx

(cos θ + ux sin θ )3

vyyy =
(cos θ + ux sin θ )uxxx − 3u2

xx sin θ

(cos θ + ux sin θ )5

...



Solve for the group parameters:

y = cos θ (x − a) + sin θ (u − b) = 0

v = − sin θ (x − a) + cos θ (u − b) = 0

vy =
− sin θ + ux cos θ

cos θ + ux sin θ
= 0

=⇒ Left moving frame ρ : J1 −→ SE(2)

a = x b = u θ = tan−1 ux



a = x b = u θ = tan−1 ux

Differential invariants

vyy =
uxx

(cos θ + ux sin θ )3
/−→ κ =

uxx

(1 + u2
x)3/2

vyyy = · · · /−→
dκ

ds
=

(1 + u2
x)uxxx − 3uxu2

xx

(1 + u2
x)3

vyyyy = · · · /−→
d2κ

ds2
− 3κ3 = · · ·

Invariant one-form — arc length

dy = (cos θ + ux sin θ) dx /−→ ds =
√

1 + u2
x dx



Dual invariant differential operator
— arc length derivative

d

dy
=

1

cos θ + ux sin θ

d

dx
/−→

d

ds
=

1
√

1 + u2
x

d

dx

Theorem. All differential invariants are functions of
the derivatives of curvature with respect to arc
length:

κ,
dκ

ds
,

d2κ

ds2
, · · ·



The Classical Picture:

z

e1

e2

Moving frame ρ : (x, u, ux) /−→ (R, a) ∈ SE(2)

R =
1

√
1 + u2

x

(
1 −ux

ux 1

)

= ( e1, e2 ) a =

(
x
u

)



• Prolonging to derivatives (jet space)

G(n) : Jn(M, p) −→ Jn(M, p)

=⇒ differential invariants

• Prolonging to Cartesian product actions

G×n : M × · · ·× M −→ M × · · ·× M

=⇒ joint invariants

• Prolonging to “multi-space”

G(n) : M (n) −→ M (n)

=⇒ joint or semi-differential invariants
=⇒ invariant numerical approximations



Example. G = R2 ! R

(x, u) /−→ (λ−1 x + a,λu + b)

Multi-prolonged action: compute the divided differ-
ences of the basic lifted invariants

yk = λ−1xk + a,

vk = λuk + b,

v(1) = [ w0w1 ] =
v1 − v0

y1 − y0

= λ2 u1 − u0

x1 − x0

= λ2 [ z0z1 ] = λ2 u(1),

v(n) = λn+1 u(n).



Moving frame cross-section

y0 = 0, v0 = 0, v(1) = 1.

Solve for the group parameters

a = −
√

u(1) x0, b = −
u0√
u(1)

, λ =
1√
u(1)

.



Multi-invariants: ι — invariantization

ι(xk) = Hk = (xk − x0)
√

u(1) = (xk − x0)

√
u1 − u0

x1 − x0

ι(uk) = Kk =
uk − u0√

u(1)
= (uk − u0)

√
x1 − x0

u1 − u0

ι(u(n)) = K(n) =
u(n)

(u(1))(n+1)/2
=

n! [ z0z1 . . . zn ]

[ z0z1z2 ](n+1)/2

K(0) = K0 = 0 K(1) = 1

Coalescent limit

K(n) −→ I(n) =
u(n)

(u(1))(n+1)/2



=⇒ K(n) is a first order invariant numerical approxi-
mation to the differential invariant I(n).

=⇒ Higher order invariant numerical approximations
are obtained by invariantization of higher order
divided difference approximations.

F (. . . , xk, . . . , u
(n), . . .) −→ F (. . . , Hk, . . . , K

(n), . . .)



To construct an invariant numerical scheme for any
similarity-invariant ordinary differential equation

F (x, u, u(1), u(2), . . . u(n)) = 0,

we merely invariantize the defining differential func-
tion, leading to the invariantized numerical approxi-
mation

F (0, 0, 1, K(2), . . . , K(n)) = 0.



Example. Euclidean group SE(2)

y = x cos θ − u sin θ + a v = x sin θ + u cos θ + b

Multi-prolonged action on M (1):

y0 = x0 cos θ − u0 sin θ + a v0 = x0 sin θ + u0 cos θ + b

y1 = x1 cos θ − u1 sin θ + a v(1) =
sin θ + u(1) cos θ

cos θ − u(1) sin θ

Cross-section
y0 = v0 = v(1) = 0



Right moving frame

a = − x0 cos θ + u0 sin θ = −
x0 + u(1) u0√
1 + (u(1))2

b = −x0 sin θ − u0 cos θ =
x0 u(1) − u0√
1 + (u(1))2

tan θ = −u(1) .



Euclidean multi-invariants

(yk, vk) −→ Ik = (Hk, Kk)

Hk =
(xk − x0) + u(1) (uk − u0)√

1 + (u(1))2
= (xk − x0)

1 + [ z0z1 ] [ z0zk ]
√

1 + [ z0z1 ]2

Kk =
(uk − u0) − u(1) (xk − x0)√

1 + (u(1))2
= (xk − x0)

[ z0zk ] − [ z0z1 ]
√

1 + [ z0z1 ]2

Difference quotients

[ I0Ik ] =
Kk − K0

Hk − H0

=
Kk

Hk

=
(xk − x1)[ z0z1zk ]

1 + [ z0zk ] [ z0z1 ]



I(2) = 2 [ I0I1I2 ] = 2
[ I0I2 ] − [ I0I1 ]

H2 − H1

=
2 [ z0z1z2 ]

√
1 + [ z0z1 ]2

( 1 + [ z0z1 ] [ z1z2 ] )( 1 + [ z0z1 ] [ z0z2 ] )

=
u(2)

√
1 + (u(1))2

[
1 + (u(1))2 + 1

2u(1)u(2)(x2 − x0)
] [

1 + (u(1))2 + 1
2u(1)u(2)(x2 − x1)

]

Euclidean–invariant numerical approximation to the Euclidean curvature:

lim
z1,z2→z0

I(2) = κ =
u(2)

(1 + (u(1))2)3/2

Similarly, the third order multi-invariant

I(3) = 6 [ I0I1I2I3 ] = 6
[ I0I1I3 ] − [ I0I1I2 ]

H3 − H2

will form a Euclidean–invariant approximation for the normalized
differential invariant

κs = ι(uxxx)



Invariantization ofNumerical Schemes

Suppose we are given a numerical scheme for integrating
a differential equation, e.g., a Runge–Kutta Method for ordi-
nary differential equations, or the Crank–Nicolson method for
parabolic partial differential equations.

If G is a symmetry group of the differential equation, then
one can use an appropriate moving frame to invariantize the
numerical scheme, leading to an invariant numerical scheme that
preserves the symmetry group.

In challenging regimes, the resulting invariantized numerical
scheme can, with an inspired choice of moving frame, perform
significantly better than its progenitor.



The group G acts on M — the space of independent and
dependent variables, and hence on the joint space

M♦(n+1) = { zi '= zj for all i '= j } ⊂ M×(n+1) = M × · · ·× M

All finite difference numerical schemes are prescribed by
suitable functions

F : M♦(n+1) −→ R

An invariantized scheme is simply obtained by invariantiz-
ing the functions I = ι(F ), which is, thus, automatically a func-
tion of the joint invariants of G.



• The moving frame and hence the induced invariantization
process depends on the choice of cross-section
K ⊂ M♦(n+1) to the group orbits.

• Intelligent choice of cross-section requires some understand-
ing of the error terms in the numerical schemes.

• For ordinary differential equations, if the scheme is of order
n in the underlying step size h, so that the local truncation
error term is O(hn+1) one may, in very favorable circum-
stances, be able to choose the cross-section to eliminate all
the lowest order error terms and thereby produce an invari-
antized scheme of order n + 1.



• A more common scenario is that, because of the large num-
ber of terms forming the local error, one cannot eliminate
all the low order terms, but one may be able to eliminate
a large fraction of them by choice of cross-section. For in-
stance, many terms in the error formula depend on ux, and
so a good choice of cross-section would be to set (among
other normalizations)

ux = 0

and thereby eliminate all such terms in the error. The result
is a scheme of the same order, but one in which the error
tends be be less. And in many case, the result is a much
better scheme.



• The choice of cross-section is crucial. In some cases, we have
used adaptively invariantized schemes, where the cross-
section depends on the local behavior of the solution, to
facilitate the construction & improve the accuracy.

• An invariantized scheme is easy to program!

One merely replaces all stored quantities by their
invariantizations and then runs the original non-invariant
program on the invariantized data.



Invariantized Runge–Kutta Schemes

     







































uxx + xux − (x + 1)u = sin x, u(0) = ux(0) = 1.

Symmetry group:

(x, u) /−→ (x, u + λ ex)



Invariantization for Driven Oscillator

     


























uxx + u = sin xα, α = .99

(x, u) /−→ (x, u + λ cosx + µ sin x)



Comparison of symmetry reduction and
invariantization

     


































uxx + xux − (x + 1)u = sin x, u(0) = ux(0) = 1.



Adaptive Invariantization of Crank–Nicolson

for Burgers’ Equation

ut = εuxx + u ux

(t, x, u) /−→






(t, x + λ t, u − λ) Galilean boost
(

t

1 − µ t
,

x

1 − µ t
, (1 − µ t)u − µ x

)

  












  












  












  












  












  












Non-invariant Invariantized.



Mathematical Morphology

u(x) — B/W image

Dilation : u ⊕S(x) = max
y∈S

u(x + y)

Erosion : u 1 S(x) = min
y∈S

u(x + y)

e.g. S = disk



Morphological PDEs

Hamilton–Jacobi partial differential equation:

ut = ± |∇u|

Symmetry Group:
u /−→ ϕ(u)

Here, we focus on the one-parameter subgroup

u /−→
λu

1 + (λ− 1)u



Invariantization of 1D Morphology

ut = |ux|Upwind scheme:

uk+1
i = uk

i +
∆t

∆x
max{uk

i+1 − uk
i , u

k
i−1 − uk

i , 0} .

 0
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 0  10  20  30  40  50

original
theoretical

upwind without invariantization
upwind with invariantization

1D dilation of a single peak, 20 iterations, ∆t = ∆x = 0.5,
without and with invariantization.



Invariantization of 2D Morphology
Non-invariant upwind scheme:

Invariantized upwind scheme:



Dilation with invariantized

upwind scheme


