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Jet Space

Although in use since the time of Lie and Darboux, jet space
was first formally defined by Ehresmann in 1950.

Jet space is the proper setting for the geometry

of partial differential equations.

In this talk, I will propose a setting, named multi-space, for
the geometry of
numerical approximations to
derivatives and differential equations.

I will then show how to apply the method of moving frames
on multi-space to systematically construct symmetry-
preserving numerical algorithms.
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Jet Space

M — smooth m-dimensional manifold
Jt'=J"(M,p) — (extended) jet bundle

—> Defined as the space of equivalence classes of submani-
folds under the
equivalence relation of n*® order contact at a single
point.

— Coordinates (z,u(™) given by the derivatives of u =

f(z).

— No bundle structure assumed on M.
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Jets and Cartesian Products

Key remark: Every (finite difference) numerical approx-
imation to the derivatives of a function or, geometrically de-
pend on evaluating the function at several points z, = (z,, u,)

where u;, = f(z,).

In other words, we seek to approximate the n'® order jet
of a submanifold N C M by a function F(z,...,z2,) defined
on the (n + 1)-fold Cartesian product space M*(*+1) =
M x ---x M, or, more correctly, on the “off-diagonal” part

Meo(ntl) {2, # 2, forall i # j }

= distinct (n + 1)-tuples of points.
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Thus, multi-space should contain both the jet space and

the off-diagonal Cartesian product space as submanifolds:
Me(n+1) \

l s MM

J"(M, p)

Vs

Functions F: M — R are given by
F(zgy.-.,2,) on Mo+

and extend smoothly to J” as the points coalesce. In this man-
ner, F' | M°("*1) provides a finite difference approximation to
the differential function F' | J”.
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Construction of M (")

Definition. An (n + 1)-pointed manifold

M = (2y,..-,2,; M)
M — smooth manifold
29y --,%, € M — not necessarily distinct

Given M, let
#i= #17] 5=2)

denote the number of points which coincide with the i*® one.
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Multi-contact for Curves

Definition. Two (n + 1)-pointed curves

C=(2p,---,2,;C), 6:(20,...,2'0),

n?

have n*" order multi-contact if and only if

~

zi j#i—lc

(3

2, = Z,, and  ju, ,C

zi?

foreach:=0,...,n.

#i= #{i] 2 =2}

Definition. The n'* order multi-space M(™ is the set of
equivalence classes of (n + 1)-pointed curves in M under

the equivalence relation of n*® order multi-contact.
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The Fundamental Theorem

Theorem. If M is a smooth m-dimensional manifold,
then its n*® order multi-space M (™ is a smooth manifold of
dimension (n 4+ 1)m, which contains the off-diagonal part
M°(+1) of the Cartesian product space as an open, dense
submanifold, and the nt® order jet space J” as a smooth

submanifold.
points Meo(n+1) \
“multi — jets” JFo...0Jk o C M)
Jets J"M,p) )
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Example. Let M =R™

(i) MW is the space of two-pointed lines
MW ~ {(zy,2;L) | 29,2, €L — line}.

—> Blow-up construction in algebraic geometry

(ii) M) is the space of three-pointed circles, i.e.,
M3 ~ {(29521,29,C) | 29,%21,29 € C — circle}.

Straight lines are included as circles of infinite radius, but
points are not included (even though they could be viewed

as circles of zero radius).

—> (Grassmann bundles.

(i) M) 7777

* Kk K Topology — local and global.
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Finite Differences

Local coordinates on J™ are provided by the coefficients of

Taylor polynomials

— derivatives

Local coordinates on M(™ are provided by the coefficients of

interpolating polynomials.

— finite differences

Given (zy,...,2,) € M°+1) define the classical divided

’n

differences by the standard recursive rule

(207120 -+ 2527k | — [20%1%5 - - 2921 ]

LT — Tp_q

(2021 -+ 2k 121 ] =

—> Well-defined provided no two points lie on the same

vertical line.

—> Symmetric functions of z,.
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Definition. Given an (n 4 1)-pointed graph C =
(295 ---52,;C), its divided differences are defined by

[2j]c = f(=;)

. [z021z2 R Zk—zz]c - [202122 e Zk—2zk—1]C
(2021 -+ 2112k ]0 = zll{glk T — o,

—> When taking the limit, the point z = (z, f(x)) must lie
on the graph C, and take limiting values * — z, and

f(x) = f(z).

Theorem. Two (n + 1)-pointed graphs C, C have ntt
order multi-contact if and only if they have the same divided

differences:

[2021 -+ 21 o = | 2021 - - - 21 ] 5 k=0,...,n.
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Local coordinates on M (")

They consist of the independent variables along with
the divided differences

ul® = uy = [2]c ul =22, ]¢
Ty, T,

u® =2[z,2125]¢ ... u™ =nl[z0z...2,]c

prescribed by (n + 1)-pointed graphs

C=(zp,---,2,;C)

n’

The n! factor is included so that u(™ agrees with the

usual derivative coordinate when restricted to J™.

all
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Numerical Approximations

A(z,u(™) — differential function

A:J" =R

System of differential equations:

A (z,u™) = = Ay (z,u™) =0.

Definition. An (n + 1)-point numerical

approximation of order k to a differential function
A:J" - Ris a k*? order extension F': M(™ — R of

A to multi-space, based on the inclusion J* ¢ M),

F(zg, ... ,a:n,u(o), . ,u("))

—  F(z,...,z,u9, ... ™) = A(z,u™)
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Invariant Numerical Approximations

G — Lie group acting on M

Basic Idea:

Every invariant finite difference approximation to a differential
invariant must expressible in terms of the joint invariants

of the transformation group.

Differential Invariant
I(g™ - (z,u™)) = I(z,u™)
Joint Invariant
J@g-Pyy....9-P)=J(P,...,P)

Semi-differential invariant =

Joint differential invariant

—> Approximate differential invariants by joint invariants
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Euclidean Invariants

Joint Euclidean invariant:
d(z,w) = ||z —w]|

Euclidean curvature:

qu’ZIJ

(1 +u2)3/2

K =

Fuclidean arc length:
ds = /1 +u2 dz

Higher order differential invariants:
_dk B d*k
s % Res = @

Euclidean—invariant differential equation:

Y

F(K Ky Kggy...) =0
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Three point approximation

Heron’s formula

A A \/s(s —a)(s—b)(s—c)

R(A,B,C) =4 —

abc abc
a+b+c o
s = 5 —  semil-perimeter
Expansion:
1 dre 1 d’k
F=k+_-(b—a)— +-——~(b*—ab+a*)——
3 Ii+3( a)d8-|—12( a+a)d82+
L3 2, 2 3, d°K
+@(b —ab -I—ab—a)@-l—

1

+ —(b—a)(3b* 4 5ab + 3a2)h:2@ + -

120 ds

n 16




Multi-Invariants

G — Lie group which acts smoothly on M

—> ( preserves the multi-contact equivalence relation

G™  —  pth malti-prolongation to M (™

— On J® c M it coincides with the usual

jet space prolongation

= On M°("*tD c M™ it coincides with the
(n 4 1)-fold Cartesian product action.

K: MM SR —  multi-invariant

K(g™ . 2"y = K(2(M)

—> K |J* — differential invariant
— K | M°(»+t)  — joint invariant
— K|Jno...0J —  joint diff. invariant

The theory of multi-invariants 4s the theory of invariant

numerical approximations!
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Moving frames provide a
systematic algorithm for

constructing multi-invariants!

A moving frame on multi-space
p: MM  — @

is called a multi-frame.
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Example. G=R? xR
(z,u) — A 'z+a, u+b)

Multi-prolonged action: compute the divided differences
of the basic lifted invariants

Y = A 'x, + a, v, = Auy + .
We find
1) _ _ Y1~ Y%
v = wyw, | =
[ wow, | Ui — Yo

=217 % )2 [292,] = A2 uD),
Ty — Xy

(M — \nt+1,(n)

Moving frame cross-section

Yo = 07 Vg = O, ’U(l) = 1.
Solve for the group parameters
a = — u(l) gjo, b:— UO )\: 1

Vu@®’ @)

—> multi-frame p: M® — G.

n 19




Multi-invariants:

v Hy = (3 — 2)Vu® = (), — 2p) (|21
, _ U — Uy _ L1~ %o
up: Ky = —/—u(l) = (uy, — U) Uy — U

(u(l))(”+1)/2 - [z021z2](”+1)/2 ’

K9=K,=0 Ko =1

Coalescent limit
u(™

(n) (n) —
K2 = = aymine

— K ig a first order invariant numerical approxima-

tion to the differential invariant I(™).

— Higher order invariant numerical approximations

are obtained by invariantization of higher order divided

difference approximations.

F(...,zp,...,u\™,..) — F(..,H,..., K™,

)
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To construct an invariant numerical scheme for any

similarity-invariant ordinary differential equation
F(z,u, uM u@ .u("’)) =0,

we merely invariantize the defining differential function, lead-
ing to the general similarity—invariant numerical approxima-
tion

F(0,0,1, K@ ... K™)=0o.
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Example. Euclidean group SE(2)

y =xcosf —usinf + a v=2xsinf +wuwcosf + b

Multi-prolonged action on M1:

Yo = Tycosf —uysind + a vy = zysinf + ugycosd + b

o) — sin@ + u{) cos @

= 0_ I 0
Y1 = 2, cos0 —uysinb +a cos — u(1) sin

Cross-section

yozvozv(l):O

Right moving frame

(1)
a:—xocosé?—l—uosinO:—xo—i_u 0
1+ (u®)?2
tanf = —u(Y).
zout) —u
b= —z,sin0 — uycosf = 2 J

1+ (D)2
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Fuclidean multi-invariants

Ypove) — Iy = (Hy, Ky)

H, = (), —xy) + u (up — ug) e 14+ {2921 ][ 20% ]

1+ (u®)2 14 252, ]
U, — U _U(l) Ly, — T yAYA — | Zn R
= ) e mm) )L
1+ (uD)? 1+ (292 ]

Difference quotients
Ky — Ko _ Ky _ (g — )] 20212 ]

[I,].] = =
ok Hy—H, H, 1+4[z72,][%2]

IW=[1,I,]=0

[IOIQ] B [IOII]
H2 _Hl

1@ =2[1,1,I,] =2

2[ 292122 [\/1 + [ 2021 ]2
(142921 ] [2122])(1 4+ [2021 ][ 2022 ])

u® /1 + (u)?

14+ (uW)2 + Ly (2, — 1+ (uW)2 + LyMy®@ (2, —
2 2 0 2 2 1

Euclidean—invariant numerical approximation to the Euclidean

curvature:

. ) u(?)
zl,lzlgrgmg 1 = h= (]_ + (U(l))2)3/2

Similarly, the third order multi-invariant
[ Loli 1] — [Lo111,]
Hj — H,

I® =6[I,I,I,I,] =6
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will form a Euclidean—invariant approximation for the normal-

ized differential invariant
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Higher Dimensional Submanifolds

T M|, — n'* order tangent space

Proposition. Two p-dimensional submanifolds N, N have
nt? order contact at a common point z € N N N if and
only if

TOON|, = T,

—> Requires <p+
n

to approximate

n : :
) coalescing points
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Surfaces p=2

0 1
1 3
2 6
3 10
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Definition. A subspace V. C T M|, is called admissible if
for every vector
veVnT®M|,, 1<k<n,
there exists a submanifold N C M such that v €
TH®N|, CV.

Definition. Two submanifolds NV, N have " order subcon-
tact at a common point if and only if for some n, there

exists an admissible common r-dimensional subspace

ScTMWN| NnTM™WN|, c T™M|,
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Example. Surfaces: 5,5 C M

order Conditions
0 z€ SNS — common point
1 tangent curves: TC|,=TC|,

( tangent surfaces: TS|, = TS|,

| osculating curves: TP C|, =TAC|,
(TS|, = T§|z and TAC|, = T(2)é|z

L TOC), =10,

( T@)S|, =T®F|,
TS|, =T8S|, T®C|,=T®C|, TAC'|, =TAC,

TS|, =T8S|, TWC|, =TWC|,

\ T(S)C|z — T(5)é|z
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Multi-space and Multi-Variate Interpolation

Definition. Let M be a smooth manifold. The
nt order multi-space M™ is the set of all
n-point interpolant data

Z = (,Z07...,Zn_l;%7"'7v’n,—1)7

consisting of

(a) an ordered set of n points z,,...,2,_; € M.
#i=#{i| %=}

(b) an ordered collection of admissible subspaces V; C T™ M ..

such that
J

Vi:V} it 2z, =z,
dimV, = #1 —1

In particular, if #% = 1, and so z, only appears once in Z, then
V. = {0} is trivial.

Multivariate Hermite Interpolation

Definition. An interpolant to Z is a submanifold N C M
such that z; € N and V; c T™ N/, .
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Conjecture. The multispace M (™ is a manifold of dimen-

sion nm. It contains
e M°™ as an open, dense submanifold
e all J*(M,p) that have dimension < nm as submanifolds

e various off-diagonal copies of multi-jet spaces J**(M,p)o---o
J*(M,p) for iy +---+1i, =n — k as submanifolds.

—> smooth or analytic

Difficulties

& Multi-variate interpolation theory.
& Multi-variate divided differences.
& Coordinates at coalescent points.

& Topological structure — local and global
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The Simplest Case

Three points

wy = (0,0,0), w; = (21,Y;,21), Wy = (Tg,Ys,25) € R*

can viewed as interpolating either
e A quadratic curve C, or

e A linear surface
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Curve: Newton’s form
y=az+bzx(r—x,), z=cx+dx(r—x).

Divided differences

Y1 L1Ya — Loy
a:[?/o?h]:—a b:[yoy1y2]: ;
L1 T1To(T — )
21 L1129 — L9y
¢c=[z2]=—, d= 29212, ] = :
L1 3715’52(551 - 372)
Surface:
Z2=pr+qy
Interpolation formulae
p= Y129 — Ya%q _ T1%7e T ToZ
L1Y2 — Lol ’ L1Y2 — Lol ,
— poised
Connecting formula:
d [ 292125
p=c——a=[22z]———=[Y¥ ]
b o [?Joyﬂh] 071
_ C_l [ 20%125]
qQ=-=—""22.
b [yoy1¥s]

n 32




Coalescent limit

Curve:
y = y(z), z = z(z)

4 dz 2 dx?

¢ dx 2 dz2
Surface:

z=z(z,y)
_, 0z _, 0z
b ox q 0y

Connecting formula:

8’2:2 —y Za:x:zyy

T x
ox Ysre  Tyy
8,2 _ Za:a: _ Zyy
~ = — = Zy — .’,Uy —
ay Yo .’I?,yy
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Solution:

A Simple Calculus

dz dy
o P
Py
dx? dx?
% — g, Zex _ Pyy
ox z = Yz o
0% _ 2y L . Pw
Y Yy Y Y T,
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Infinite Curvature Limit

C={y=y(x),z=2(2)} C S={z=z2(zy9)}

2(z,y(2)) = 2(x)

Zy, =Pt QqY,

Zpe = Wag + T + 28y, + Y-

Solving for p, q:

0z
%:p:zm_qyaﬂ

e e Tk
9y Yuu Yua
Infinite curvature limit y_., 2, — 00
g—z — 2y~ Yy = zmymy;j”yx
ou zy,
O Y

—> Surfaces are limiting cases of curves as the curvature

becomes infinite!
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