Moving Frames and the Geometry of Numerical Analysis

Peter J. Olver

University of Minnesota

 $http://www.math.umn.edu/\!\sim\!olver$

Jet Space

- Although in use since the time of Lie and Darboux, jet space was first formally defined by Ehresmann in 1950.
- Jet space is the proper setting for the geometry of partial differential equations.
- In this talk, I will propose a setting, named multi-space, for the geometry of numerical approximations to derivatives and differential equations.
- I will then show how to apply the method of moving frames on multi-space to systematically construct symmetry preserving numerical algorithms.

Jet Space

M — smooth m-dimensional manifold $\mathbf{J}^n = \mathbf{J}^n(M,p)$ — (extended) jet bundle

- \implies Defined as the space of equivalence classes of submanifolds under the equivalence relation of $n^{\rm th}$ order contact at a single point.
- \implies Coordinates $(x, u^{(n)})$ given by the derivatives of u = f(x).
- \implies No bundle structure assumed on M.

Jets and Cartesian Products

Key remark: Every (finite difference) numerical approximation to the derivatives of a function or, geometrically depend on evaluating the function at several points $z_i = (x_i, u_i)$ where $u_i = f(x_i)$.

In other words, we seek to approximate the n^{th} order jet of a submanifold $N \subset M$ by a function $F(z_0, \ldots, z_n)$ defined on the (n+1)-fold Cartesian product space $M^{\times (n+1)} = M \times \cdots \times M$, or, more correctly, on the "off-diagonal" part

$$\begin{split} M^{\diamond(n+1)} &= \{\, z_i \neq z_j \text{ for all } i \neq j \,\} \\ &\implies \textit{distinct } (n+1)\text{-tuples of points.} \end{split}$$

Thus, multi-space should contain both the jet space and the off-diagonal Cartesian product space as submanifolds:

$$\left. egin{array}{c} M^{\diamond(n+1)} \\ \downarrow \\ \mathbf{J}^n(M,p) \end{array} \right\} \quad \subset \quad M^{(n)}$$

Functions
$$F:M^{(n)}\longrightarrow \mathbb{R}$$
 are given by
$$F(z_0,\dots,z_n) \quad \text{ on } \quad M^{\diamond (n+1)}$$

and extend smoothly to J^n as the points coalesce. In this manner, $F \mid M^{\diamond (n+1)}$ provides a finite difference approximation to the differential function $F \mid J^n$.

Construction of $M^{(n)}$

Definition. An (n+1)-pointed manifold

$$\mathbf{M} = (z_0, \dots, z_n; M)$$

M — smooth manifold

 $z_0, \dots, z_n \in M$ — not necessarily distinct

Given M, let

$$\#i \ = \ \#\left\{ \left. j \; \right| \; z_j = z_i \right. \right\}$$

denote the number of points which coincide with the $i^{\rm th}$ one.

Multi-contact for Curves

Definition. Two (n+1)-pointed curves

$$\mathbf{C} = (z_0, \dots, z_n; C), \qquad \widetilde{\mathbf{C}} = (\tilde{z}_0, \dots, \tilde{z}_n; \tilde{C}),$$

have n^{th} order multi-contact if and only if

$$z_i = \tilde{z}_i,$$
 and $\mathbf{j}_{\#i-1}C|_{z_i} = \mathbf{j}_{\#i-1}\tilde{C}|_{z_i},$

for each $i = 0, \ldots, n$.

$$\#i = \#\left\{j \mid z_j = z_i\right\}$$

Definition. The n^{th} order multi-space $M^{(n)}$ is the set of equivalence classes of (n+1)-pointed curves in M under the equivalence relation of n^{th} order multi-contact.

The Fundamental Theorem

Theorem. If M is a smooth m-dimensional manifold, then its n^{th} order multi-space $M^{(n)}$ is a smooth manifold of dimension (n+1)m, which contains the off-diagonal part $M^{\diamond(n+1)}$ of the Cartesian product space as an open, dense submanifold, and the n^{th} order jet space J^n as a smooth submanifold.

$$\left.\begin{array}{c} \text{points} & M^{\diamond(n+1)} \\ \text{``multi-jets''} & \mathbf{J}^{k_1} \diamond \cdots \diamond \mathbf{J}^{k_\nu} \\ \\ \text{jets} & \mathbf{J}^n(M,p) \end{array}\right\} \quad \subset \quad M^{(n)}$$

Example. Let $M = \mathbb{R}^m$

(i) $M^{(1)}$ is the space of two-pointed lines

$$M^{(1)} \simeq \{\; (z_0,z_1;L) \;|\; z_0,z_1 \in L \quad - \quad \text{line} \; \} \,.$$

- ⇒ Blow-up construction in algebraic geometry
- (ii) $M^{(2)}$ is the space of three-pointed circles, i.e.,

$$M^{(2)} \simeq \{ \; (z_0, z_1, z_2, C) \; | \; z_0, z_1, z_2 \in C \quad - \quad \text{circle} \; \} \, .$$

Straight lines are included as circles of infinite radius, but points are not included (even though they could be viewed as circles of zero radius).

 \implies Grassmann bundles.

$$(iii)$$
 $M^{(3)}$????

 \star \star \star Topology — local and global.

Finite Differences

Local coordinates on \mathbf{J}^n are provided by the coefficients of Taylor polynomials

 \implies derivatives

Local coordinates on $M^{(n)}$ are provided by the coefficients of interpolating polynomials.

 \implies finite differences

Given $(z_0, \ldots, z_n) \in M^{\diamond (n+1)}$, define the classical divided differences by the standard recursive rule

$$[\,z_0z_1\dots z_{k-1}z_k\,] = \frac{[\,z_0z_1z_2\dots z_{k-2}z_k\,] - [\,z_0z_1z_2\dots z_{k-2}z_{k-1}\,]}{x_k-x_{k-1}} \\ [\,z_j\,] = u_j$$

- ⇒ Well-defined provided no two points lie on the same vertical line.
- \implies Symmetric functions of z_i .

Definition. Given an (n+1)-pointed graph $\mathbf{C}=(z_0,\ldots,z_n;C),$ its divided differences are defined by

$$\begin{split} [\,z_j\,]_C &= f(x_j) \\ [\,z_0z_1\dots z_{k-1}z_k\,]_C &= \lim_{z\to z_k} \; \frac{[\,z_0z_1z_2\dots z_{k-2}z\,]_C - [\,z_0z_1z_2\dots z_{k-2}z_{k-1}\,]_C}{x-x_{k-1}} \end{split}$$

When taking the limit, the point z = (x, f(x)) must lie on the graph C, and take limiting values $x \to x_k$ and $f(x) \to f(x_k)$.

Theorem. Two (n+1)-pointed graphs $\mathbf{C}, \widetilde{\mathbf{C}}$ have n^{th} order multi-contact if and only if they have the same divided differences:

$$[z_0 z_1 \dots z_k]_C = [z_0 z_1 \dots z_k]_{\widetilde{C}}, \qquad k = 0, \dots, n.$$

Local coordinates on $M^{(n)}$

They consist of the independent variables along with all the divided differences

prescribed by (n+1)-pointed graphs

$$\mathbf{C} = (z_0, \dots, z_n; C)$$

The n! factor is included so that $u^{(n)}$ agrees with the usual derivative coordinate when restricted to J^n .

Numerical Approximations

$$\Delta(x, u^{(n)})$$
 — differential function
$$\Delta: \mathbf{J}^n \to \mathbb{R}$$

System of differential equations:

$$\Delta_1(x, u^{(n)}) = \dots = \Delta_k(x, u^{(n)}) = 0.$$

Definition. An (n+1)-point numerical approximation of order k to a differential function $\Delta: J^n \to \mathbb{R}$ is a k^{th} order extension $F: M^{(n)} \to \mathbb{R}$ of Δ to multi-space, based on the inclusion $J^n \subset M^{(n)}$.

$$F(x_0, \dots, x_n, u^{(0)}, \dots, u^{(n)})$$

$$\longrightarrow F(x, \dots, x, u^{(0)}, \dots, u^{(n)}) = \Delta(x, u^{(n)})$$

Invariant Numerical Approximations

G — Lie group acting on M

Basic Idea:

Every invariant finite difference approximation to a differential invariant must expressible in terms of the joint invariants of the transformation group.

Differential Invariant

$$I(g^{(n)} \cdot (x, u^{(n)})) = I(x, u^{(n)})$$

Joint Invariant

$$J(g \cdot P_1, \dots, g \cdot P_k) = J(P_1, \dots, P_k)$$

Semi-differential invariant =

Joint differential invariant

⇒ Approximate differential invariants by joint invariants

Euclidean Invariants

Joint Euclidean invariant:

$$\mathbf{d}(z, w) = \|z - w\|$$

Euclidean curvature:

$$\kappa = \frac{u_{xx}}{(1 + u_x^2)^{3/2}}$$

Euclidean arc length:

$$ds = \sqrt{1 + u_x^2} \ dx$$

Higher order differential invariants:

$$\kappa_s = \frac{d\kappa}{ds}$$
 $\kappa_{ss} = \frac{d^2\kappa}{ds^2}$...

Euclidean-invariant differential equation:

$$F(\kappa, \kappa_s, \kappa_{ss}, \ldots) = 0$$

Three point approximation

Heron's formula

$$\widetilde{\kappa}(A, B, C) = 4 \frac{\Delta}{abc} = 4 \frac{\sqrt{s(s-a)(s-b)(s-c)}}{abc}$$

$$s = \frac{a+b+c}{2}$$
 — semi-perimeter

Expansion:

$$\tilde{\kappa} = \kappa + \frac{1}{3}(b-a)\frac{d\kappa}{ds} + \frac{1}{12}(b^2 - ab + a^2)\frac{d^2\kappa}{ds^2} + \frac{1}{60}(b^3 - ab^2 + a^2b - a^3)\frac{d^3\kappa}{ds^3} + \frac{1}{120}(b-a)(3b^2 + 5ab + 3a^2)\kappa^2\frac{d\kappa}{ds} + \cdots$$

Multi-Invariants

- G Lie group which acts smoothly on M $\Longrightarrow G$ preserves the multi-contact equivalence relation
- $G^{(n)}$ $n^{ ext{th}}$ multi-prolongation to $M^{(n)}$
- \implies On $J^n \subset M^{(n)}$ it coincides with the usual jet space prolongation
- \implies On $M^{\diamond(n+1)}\subset M^{(n)}$ it coincides with the (n+1)-fold Cartesian product action.

$$K \colon M^{(n)} o \mathbb{R}$$
 — $multi-invariant$
$$K(g^{(n)} \cdot z^{(n)}) = K(z^{(n)})$$

- $\implies K \mid \mathbf{J}^n \quad \quad \text{differential invariant}$
- $\implies K \mid M^{\diamond(n+1)} \quad \quad \text{joint invariant}$
- $\implies K \mid \mathbf{J}^{k_1} \diamond \cdots \diamond \mathbf{J}^{k_{\nu}} \quad \quad \text{joint diff. invariant}$

The theory of multi-invariants is the theory of invariant numerical approximations!

Moving frames provide a systematic algorithm for constructing multi-invariants!

A moving frame on multi-space

$$\rho \colon M^{(n)} \longrightarrow G$$

is called a multi-frame.

Example. $G = \mathbb{R}^2 \ltimes \mathbb{R}$

$$(x,u) \longmapsto (\lambda^{-1}x + a, \lambda u + b)$$

Multi-prolonged action: compute the divided differences of the basic lifted invariants

$$y_k = \lambda^{-1} x_k + a, \qquad v_k = \lambda u_k + b.$$

We find

$$\begin{split} v^{(1)} &= [\,w_0w_1\,] = \frac{v_1 - v_0}{y_1 - y_0} \\ &= \lambda^2\,\frac{u_1 - u_0}{x_1 - x_0} = \lambda^2\,[\,z_0z_1\,] = \lambda^2\,u^{(1)}, \\ v^{(n)} &= \lambda^{n+1}\,u^{(n)}. \end{split}$$

Moving frame cross-section

$$y_0 = 0,$$
 $v_0 = 0,$ $v^{(1)} = 1.$

Solve for the group parameters

$$\begin{aligned} a &= -\sqrt{u^{(1)}} \ x_0, \qquad b &= -\frac{u_0}{\sqrt{u^{(1)}}}, \qquad \lambda = \frac{1}{\sqrt{u^{(1)}}}. \\ &\Longrightarrow \quad \text{multi-frame } \rho \colon M^{(n)} \to G. \end{aligned}$$

Multi-invariants:

$$\begin{split} y_k \colon & \ H_k = (x_k - x_0) \sqrt{u^{(1)}} = (x_k - x_0) \sqrt{\frac{u_1 - u_0}{x_1 - x_0}} \\ u_k \colon & \ K_k = \frac{u_k - u_0}{\sqrt{u^{(1)}}} = (u_k - u_0) \sqrt{\frac{x_1 - x_0}{u_1 - u_0}} \\ u^{(n)} \colon & \ K^{(n)} = \frac{u^{(n)}}{(u^{(1)})^{(n+1)/2}} = \frac{n! \left[z_0 z_1 \dots z_n \right]}{\left[z_0 z_1 z_2 \right]^{(n+1)/2}}. \end{split}$$

Coalescent limit

$$K^{(n)} \longrightarrow I^{(n)} = \frac{u^{(n)}}{(u^{(1)})^{(n+1)/2}}$$

 $\implies K^{(n)}$ is a first order invariant numerical approximation to the differential invariant $I^{(n)}$.

⇒ Higher order invariant numerical approximations are obtained by invariantization of higher order divided difference approximations.

$$F(\ldots, x_k, \ldots, u^{(n)}, \ldots) \longrightarrow F(\ldots, H_k, \ldots, K^{(n)}, \ldots)$$

To construct an invariant numerical scheme for any similarity-invariant ordinary differential equation

$$F(x, u, u^{(1)}, u^{(2)}, \dots u^{(n)}) = 0,$$

we merely invariantize the defining differential function, leading to the general similarity–invariant numerical approximation

$$F(0,0,1,K^{(2)},\ldots,K^{(n)})=0.$$

Example. Euclidean group SE(2)

$$y = x \cos \theta - u \sin \theta + a$$
 $v = x \sin \theta + u \cos \theta + b$

Multi-prolonged action on $M^{(1)}$:

$$y_0 = x_0 \cos \theta - u_0 \sin \theta + a$$
 $v_0 = x_0 \sin \theta + u_0 \cos \theta + b$ $v_0 = x_0 \sin \theta + u_0 \cos \theta + b$ $v_0 = x_0 \sin \theta + u_0 \cos \theta + c$ $v_0 = x_0 \sin \theta + c$ $v_0 = x_0 \cos \theta + c$ v_0

Cross-section

$$y_0 = v_0 = v^{(1)} = 0$$

Right moving frame

$$a = -x_0 \cos \theta + u_0 \sin \theta = -\frac{x_0 + u^{(1)} u_0}{\sqrt{1 + (u^{(1)})^2}}$$

$$\tan \theta = -u^{(1)}.$$

$$b = -x_0 \sin \theta - u_0 \cos \theta = \frac{x_0 u^{(1)} - u_0}{\sqrt{1 + (u^{(1)})^2}}$$

Euclidean multi-invariants

$$\begin{split} \left(y_k, v_k\right) & \longrightarrow & I_k = \left(H_k, K_k\right) \\ H_k &= \frac{(x_k - x_0) + u^{(1)} \left(u_k - u_0\right)}{\sqrt{1 + (u^{(1)})^2}} = (x_k - x_0) \frac{1 + \left[z_0 z_1\right] \left[z_0 z_k\right]}{\sqrt{1 + \left[z_0 z_1\right]^2}} \\ K_k &= \frac{(u_k - u_0) - u^{(1)} \left(x_k - x_0\right)}{\sqrt{1 + (u^{(1)})^2}} = (x_k - x_0) \frac{\left[z_0 z_k\right] - \left[z_0 z_1\right]}{\sqrt{1 + \left[z_0 z_1\right]^2}} \end{split}$$

Difference quotients

$$\begin{split} \left[\, I_0 I_k \, \right] &= \frac{K_k - K_0}{H_k - H_0} = \frac{K_k}{H_k} = \frac{(x_k - x_1)[\, z_0 z_1 z_k \,]}{1 + [\, z_0 z_k \,] \, [\, z_0 z_1 \,]} \\ I^{(1)} &= \left[\, I_0 I_1 \, \right] = 0 \\ I^{(2)} &= 2 \, [\, I_0 I_1 I_2 \,] = 2 \, \frac{[\, I_0 I_2 \,] - [\, I_0 I_1 \,]}{H_2 - H_1} \\ &= \frac{2 \, [\, z_0 z_1 z_2 \,] \sqrt{1 + [\, z_0 z_1 \,]^2}}{(\, 1 + [\, z_0 z_1 \,] \, [\, z_1 z_2 \,] \,) (\, 1 + [\, z_0 z_1 \,] \, [\, z_0 z_2 \,])} \\ &= \frac{u^{(2)} \sqrt{1 + (u^{(1)})^2}}{\left[\, 1 + (u^{(1)})^2 + \frac{1}{2} u^{(1)} u^{(2)} (x_2 - x_0) \,] \, \left[\, 1 + (u^{(1)})^2 + \frac{1}{2} u^{(1)} u^{(2)} (x_2 - x_1) \,\right]} \end{split}$$

Euclidean—invariant numerical approximation to the Euclidean curvature:

$$\lim_{z_1, z_2 \to z_0} I^{(2)} = \kappa = \frac{u^{(2)}}{(1 + (u^{(1)})^2)^{3/2}}$$

Similarly, the third order multi-invariant

$$I^{(3)} = 6 \left[I_0 I_1 I_2 I_3 \right] = 6 \frac{\left[I_0 I_1 I_3 \right] - \left[I_0 I_1 I_2 \right]}{H_3 - H_2}$$

will form a Euclidean–invariant approximation for the normalized differential invariant

$$\kappa_s = \iota(u_{xxx})$$

Higher Dimensional Submanifolds

 $T^{(n)}M|_z$ — $n^{\rm th}$ order tangent space

Proposition. Two p-dimensional submanifolds N,\widetilde{N} have n^{th} order contact at a common point $z\in N\cap\widetilde{N}$ if and only if

$$T^{(n)}N|_z = T^{(n)}\widetilde{N}|_z$$

 \implies Requires $\binom{p+n}{n}$ coalescing points to approximate

Surfaces p=2

n	$\binom{p+n}{n}$
0	1
1	3
2	6
3	10
:	:

Definition. A subspace $V \subset T^{(n)}M|_z$ is called admissible if for every vector

$$\mathbf{v} \in V \cap T^{(k)}M|_z, \ 1 \le k \le n,$$

there exists a submanifold $N\subset M$ such that $\mathbf{v}\in T^{(k)}N|_z\subset V.$

Definition. Two submanifolds N, \widetilde{N} have r^{th} order subcontact at a common point if and only if for some n, there exists an admissible common r-dimensional subspace

$$S \subset T^{(n)}N|_z \cap T^{(n)}\widetilde{N}|_z \subset T^{(n)}M|_z$$

Example. Surfaces: $S, \tilde{S} \subset M$

order	Conditions
0	$z \in S \cap \widetilde{S}$ — common point
1	tangent curves: $TC _z = T\tilde{C} _z$
2	$\begin{cases} \text{tangent surfaces:} TS _z = T\tilde{S} _z \\ \text{osculating curves:} T^{(2)}C _z = T^{(2)}\tilde{C} _z \end{cases}$
3	$\left\{ \begin{array}{ll} TS _z = T\tilde{S} _z & \text{and} & T^{(2)}C _z = T^{(2)}\tilde{C} _z \\ & T^{(3)}C _z = T^{(3)}\tilde{C} _z \end{array} \right.$
:	<u>:</u>
5	$\begin{cases} T^{(2)}S _z = T^{(2)}\tilde{S} _z \\ TS _z = T\tilde{S} _z, \ T^{(3)}C _z = T^{(3)}\tilde{C} _z, \ T^{(2)}C' _z = T^{(2)}\tilde{C}' _z \end{cases}$ $TS _z = T\tilde{S} _z, \ T^{(4)}C _z = T^{(4)}\tilde{C} _z$ $T^{(5)}C _z = T^{(5)}\tilde{C} _z$

Multi-space and Multi-Variate Interpolation

Definition. Let M be a smooth manifold. The n^{th} order multi-space $M^{(n)}$ is the set of all n-point interpolant data

$$\mathbf{Z} = (z_0, \dots, z_{n-1}; V_0, \dots, V_{n-1}),$$

consisting of

(a) an ordered set of n points $z_0, \ldots, z_{n-1} \in M$.

$$\#i = \#\left\{\left.j \;\middle|\; z_j = z_i\right.\right\}$$

(b) an ordered collection of admissible subspaces $V_i \subset T^{(n)}M|_{z_i}$ such that

$$\left\{ \begin{array}{ll} V_i = V_j & \text{if} \quad z_i = z_j \\ \\ \dim V_i = \#i-1 \end{array} \right.$$

In particular, if #i=1, and so z_i only appears once in ${\bf Z}$, then $V_i=\{0\}$ is trivial.

Multivariate Hermite Interpolation

Definition. An interpolant to **Z** is a submanifold $N \subset M$ such that $z_i \in N$ and $V_i \subset T^{(n)}N|_{z_i}$.

Conjecture. The multispace $M^{(n)}$ is a manifold of dimension nm. It contains

- $M^{\diamond n}$ as an open, dense submanifold
- $all J^k(M, p)$ that have dimension $\leq nm$ as submanifolds
- various off-diagonal copies of multi-jet spaces $J^{i_1}(M,p)\diamond\cdots\diamond$ $J^{i_k}(M,p)$ for $i_1+\cdots+i_k=n-k$ as submanifolds.

 \implies smooth or analytic

Difficulties

- ♠ Multi-variate interpolation theory.
- ♠ Multi-variate divided differences.
- Coordinates at coalescent points.
- ♠ Topological structure local and global

The Simplest Case

Three points

$$w_0=(0,0,0),\ w_1=(x_1,y_1,z_1),\ w_2=(x_2,y_2,z_2)\in\mathbb{R}^3$$
 can viewed as interpolating either

- A quadratic curve C, or
- A linear surface

Curve: Newton's form

$$y = a x + b x(x - x_1),$$
 $z = c x + d x(x - x_1).$

Divided differences

$$\begin{split} a &= [\,y_0y_1\,] = \frac{y_1}{x_1}\,, \qquad b = [\,y_0y_1y_2\,] = \frac{x_1y_2 - x_2y_1}{x_1x_2(x_1 - x_2)}\,, \\ c &= [\,z_0z_1\,] = \frac{z_1}{x_1}\,, \qquad d = [\,z_0z_1z_2\,] = \frac{x_1z_2 - x_2z_1}{x_1x_2(x_1 - x_2)}\,. \end{split}$$

Surface:

$$z = p x + q y$$

Interpolation formulae

$$p = \frac{y_1 z_2 - y_2 z_1}{x_1 y_2 - x_2 y_1}, \qquad q = \frac{x_1 z_2 - x_2 z_1}{x_1 y_2 - x_2 y_1}, \\ \Longrightarrow \text{ poised}$$

Connecting formula:

$$\begin{split} p &= c - \frac{d}{b} \, a = [\, z_0 z_1 \,] - \frac{[\, z_0 z_1 z_2 \,]}{[\, y_0 y_1 y_2 \,]} \,[\, y_0 y_1 \,], \\ q &= \frac{d}{b} = \frac{[\, z_0 z_1 z_2 \,]}{[\, y_0 y_1 y_2 \,]}. \end{split}$$

Coalescent limit

$$w_1, w_2 \longrightarrow 0 = w_0.$$

Curve:

$$y = y(x),$$
 $z = z(x).$

$$a \longrightarrow \frac{dy}{dx}$$
 $b \longrightarrow \frac{1}{2} \frac{d^2y}{dx^2}$ $c \longrightarrow \frac{dz}{dx}$ $d \longrightarrow \frac{1}{2} \frac{d^2z}{dx^2}$

Surface:

$$z = z(x, y)$$

$$p \longrightarrow \frac{\partial z}{\partial x} \qquad q \longrightarrow \frac{\partial z}{\partial y}$$

Connecting formula:

$$\begin{split} \frac{\partial z}{\partial x} &= z_x - y_x \frac{z_{xx}}{y_{xx}} = \frac{z_{yy}}{x_{yy}} \\ \frac{\partial z}{\partial y} &= \frac{z_{xx}}{y_{xx}} \\ &= z_y - x_y \frac{z_{yy}}{x_{yy}} \end{split}$$

A Simple Calculus

$$z = p x + q y + O(2)$$

$$\frac{dz}{dx} = p + q \; \frac{dy}{dx}$$

$$\frac{d^2z}{dx^2} = q \; \frac{d^2y}{dx^2}$$

Solution:

$$\begin{split} \frac{\partial z}{\partial x} &= z_x - y_x \frac{z_{xx}}{y_{xx}} = \frac{z_{yy}}{x_{yy}} \\ \frac{\partial z}{\partial y} &= \frac{z_{xx}}{y_{xx}} \\ &= z_y - x_y \frac{z_{yy}}{x_{yy}} \end{split}$$

Infinite Curvature Limit

When

$$C = \{ y = y(x), z = z(x) \} \subset S = \{ z = z(x, y) \}$$

then

$$z(x, y(x)) = z(x)$$

Then

$$z_x = p + qy_x$$

$$z_{xx} = qy_{xx} + r + 2sy_x + ty_x^2$$

Solving for p, q:

$$\frac{\partial z}{\partial x} = p = z_x - qy_x,$$

$$\frac{\partial z}{\partial y} = q = \frac{z_{xx}}{y_{xx}} - \frac{r + 2sy_x + ty_x^2}{y_{xx}}.$$

Infinite curvature limit $y_{xx}, z_{xx} \to \infty$

$$\frac{\partial u}{\partial x} \ \longrightarrow \ z_x - q y_x = \frac{z_x y_{xx} - z_{xx} y_x}{y_{xx}}$$

$$\frac{\partial u}{\partial y} \; \longrightarrow \; \frac{z_{xx}}{y_{xx}}$$

⇒ Surfaces are limiting cases of curves as the curvature becomes infinite!