Symmetry Groupoids and Signatures of Geometric Objects Peter J. Olver University of Minnesota

http://www.math.umn.edu/ \sim olver

Paris, March, 2015

Symmetry

Definition. A symmetry of a set S is a transformation that preserves it:

$$g \cdot S = S$$

What is the Symmetry Group?

Rotations by 90°: $G_S = \mathbb{Z}_4$

Rotations + reflections:

 $G_S = \mathbb{Z}_4 \ltimes \mathbb{Z}_4$

What is the Symmetry Group?

Rotations: $G_S = SO(2)$ Rotations + reflections: $G_S = O(2)$

Conformal Inversions:

$$\overline{x} = \frac{x}{x^2 + y^2} \quad \overline{y} = \frac{y}{x^2 + y^2}$$

Continuous Symmetries of a Square

Symmetry

 ★ To define the set of symmetries requires a priori specification of the allowable transformations or, equivalently, the underlying geometry.

G — transformation group or pseudo-group of allowable transformations of the ambient space M

Definition. A symmetry of a subset $S \subset M$ is an allowable transformation $g \in G$ that preserves it:

$$g \cdot S = S$$

What is the Symmetry Group?

Allowable transformations: Rigid motions $G = SE(2) = SO(2) \ltimes \mathbb{R}^2$

$$G_S = \mathbb{Z}_4 \ltimes \mathbb{Z}^2$$

What is the Symmetry Group?

Allowable transformations: Rigid motions $G = SE(2) = SO(2) \ltimes \mathbb{R}^2$

$$G_S = \{e\}$$

Local Symmetries

Definition. $g \in G$ is a local symmetry of $S \subset M$ based at a point $z \in S$ if there is an open neighborhood $z \in U \subset M$ such that

$$g \cdot (S \cap U) = S \cap (g \cdot U)$$

 $G_z \subset G$ — the set of local symmetries based at z. Global symmetries are local symmetries at all $z \in S$:

$$G_S \subset G_z \qquad G_S = \bigcap_{z \in S} G_z$$

 $\star \star$ The set of all local symmetries forms a groupoid!

Groupoids

Definition. A groupoid is a small category such that every morphism has an inverse.

 \implies Brandt (quadratic forms), Ehresmann (Lie pseudo-groups) Mackenzie, R. Brown, A. Weinstein

Groupoids form the appropriate framework for studying objects with variable symmetry.

Groupoids

$$\boldsymbol{\sigma}(\alpha) = \boldsymbol{\tau}(\beta)$$

Groupoids

• Source and target of products:

$$\boldsymbol{\sigma}(\alpha \cdot \beta) = \boldsymbol{\sigma}(\beta)$$
 $\boldsymbol{\tau}(\alpha \cdot \beta) = \boldsymbol{\tau}(\alpha)$ when $\boldsymbol{\sigma}(\alpha) = \boldsymbol{\tau}(\beta)$

• Associativity:

$$\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$$
 when defined

• Identity section: $e: M \to \mathcal{G} \quad \boldsymbol{\sigma}(e(x)) = x = \boldsymbol{\tau}(e(x))$

$$\alpha \cdot e(\boldsymbol{\sigma}(\alpha)) = \alpha = e(\boldsymbol{\tau}(\alpha)) \cdot \alpha$$

• Inverses: $\sigma(\alpha) = x = \tau(\alpha^{-1}), \quad \tau(\alpha) = y = \sigma(\alpha^{-1}),$ $\alpha^{-1} \cdot \alpha = e(x), \quad \alpha \cdot \alpha^{-1} = e(y)$

Jet Groupoids

\Rightarrow Ehresmann

The set of Taylor polynomials of degree $\leq n$, or Taylor series $(n = \infty)$ of local diffeomorphisms $\Psi: M \to M$ forms a groupoid.

 \diamond Algebraic composition of Taylor polynomials/series is well-defined only when the source of the second matches the target of the first.

The Symmetry Groupoid

Definition. The symmetry groupoid of $S \subset M$ is $\mathcal{G}_S = \{ (g, z) \mid z \in S, g \in G_z \} \subset G \times S$

Source and target maps: $\sigma(g, z) = z$, $\tau(g, z) = g \cdot z$. Groupoid multiplication and inversion:

$$(h, g \cdot z) \cdot (g, z) = (g \cdot h, z)$$
 $(g, z)^{-1} = (g^{-1}, g \cdot z)$

Identity map: $e(z) = (z, e) \in \mathcal{G}_S$ Local isotropy group of z:

$$G_z^* = \{ g \in G_z \mid g \cdot z = z \}$$

 \implies vertex group

Lie Groupoids

- \heartsuit A groupoid is a Lie groupoid if \mathcal{G} and M are smooth manifolds, the source and target maps are smooth surjective submersions, and the identity and multiplication maps are smooth.
- Symmetry groupoids, even those of smooth submanifolds, are not necessarily Lie groupoids.

What is the Symmetry Groupoid?

G = SE(2)

Corners:

$$G_z=G_S=\mathbb{Z}_4$$

Sides: G_z generated by $G_S = \mathbb{Z}_4$ some translations 180° rotation around z

Symmetry Orbits

$$\mathcal{O}_z = \boldsymbol{\tau}(\mathcal{G}_z) = \boldsymbol{\tau} \circ \boldsymbol{\sigma}^{-1}\{z\} = \{ g \cdot z \mid g \in G_z \}.$$

$$\mathcal{O}_z \simeq G_z/G_z^*$$

Orbit equivalence:

 $z \sim \hat{z}$ if and only $\hat{z} = g \cdot z$ for some $g \in G_z$

Symmetry moduli space: $S^{\mathcal{G}} = S / \sim$

$\begin{array}{rcl} \textbf{The Equivalence Problem} \\ \implies & \text{\acute{E} Cartan} \end{array}$

G — transformation group acting on M

Equivalence:

Determine when two subsets

$$S$$
 and $\overline{S} \subset M$

are congruent:

$$\overline{S} = g \cdot S$$
 for $g \in G$

Symmetry:

Find all symmetries or self-congruences:

$$S = g \cdot S$$

Tennis, **Anyone**?

Invariants

The solution to an equivalence problem rests on understanding its invariants.

Definition. If G is a group acting on M, then an invariant is a real-valued function $I: M \to \mathbb{R}$ that does not change under the action of G:

 $I(g \cdot z) = I(z)$ for all $g \in G, z \in M$

Differential Invariants

Given a submanifold (curve, surface, . . .) $S \subset M$

a differential invariant is an invariant of the prolonged action of G on its Taylor coefficients (jets):

$$I(g \cdot z^{(k)}) = I(z^{(k)})$$

Euclidean Plane Curves

G = SE(2) acts on curves $C \subset M = \mathbb{R}^2$

The simplest differential invariant is the curvature, defined as the reciprocal of the radius of the osculating circle:

$$\kappa = \frac{1}{r}$$

Curvature

Curvature

Euclidean Plane Curves: G = SE(2)

Differentiation with respect to the Euclidean-invariant arc length element ds is an invariant differential operator, meaning that it maps differential invariants to differential invariants.

Thus, starting with curvature κ , we can generate an infinite collection of higher order Euclidean differential invariants:

$$\kappa, \quad \frac{d\kappa}{ds}, \quad \frac{d^2\kappa}{ds^2}, \quad \frac{d^3\kappa}{ds^3}, \quad \cdots$$

Theorem. All Euclidean differential invariants are functions of the derivatives of curvature with respect to arc length: $\kappa, \kappa_s, \kappa_{ss}, \cdots$

Euclidean Plane Curves: G = SE(2)

Assume the curve $C \subset M$ is a graph: y = u(x)

Differential invariants:

$$\kappa = \frac{u_{xx}}{(1+u_x^2)^{3/2}}, \qquad \frac{d\kappa}{ds} = \frac{(1+u_x^2)u_{xxx} - 3u_x u_{xx}^2}{(1+u_x^2)^3}, \qquad \frac{d^2\kappa}{ds^2} = \cdots$$

Arc length (invariant one-form):

$$\frac{ds}{ds} = \sqrt{1 + u_x^2} \, dx, \qquad \qquad \frac{d}{ds} = \frac{1}{\sqrt{1 + u_x^2}} \, \frac{d}{dx}$$

Equi-affine Plane Curves: $G = SA(2) = SL(2) \ltimes \mathbb{R}^2$

Equi-affine curvature:

$$\kappa = \frac{5 u_{xx} u_{xxxx} - 3 u_{xxx}^2}{9 u_{xx}^{8/3}} \qquad \frac{d\kappa}{ds} = \cdots$$

Equi-affine arc length:

$$ds = \sqrt[3]{u_{xx}} dx \qquad \qquad \frac{d}{ds} = \frac{1}{\sqrt[3]{u_{xx}}} \frac{d}{dx}$$

Theorem. All equi-affine differential invariants are functions of the derivatives of equi-affine curvature with respect to equi-affine arc length: κ , κ_s , κ_{ss} , \cdots

Plane Curves

Theorem. Let G be an ordinary^{*} Lie group acting on $M = \mathbb{R}^2$. Then for curves $C \subset M$, there exists a unique (up to functions thereof) lowest order differential invariant κ and a unique (up to constant multiple) invariant differential form ds. Every other differential invariant can be written as a function of the "curvature" invariant and its derivatives with respect to "arc length": κ , κ_s , κ_{ss} , \cdots .

* ordinary = transitive + no pseudo-stabilization.

Moving Frames

The equivariant method of moving frames provides a systematic and algorithmic calculus for determining complete systems of differential invariants, invariant differential forms, invariant differential operators, etc., and the structure of the non-commutative differential algebra they generate.

Equivalence & Invariants

• Equivalent submanifolds $S \approx \overline{S}$ must have the same invariants: $I = \overline{I}$.

Constant invariants provide immediate information:

e.g.
$$\kappa = 2 \iff \overline{\kappa} = 2$$

Non-constant invariants are not useful in isolation, because an equivalence map can drastically alter the dependence on the submanifold parameters:

e.g.
$$\kappa = x^3$$
 versus $\overline{\kappa} = \sinh x$

Syzygies

However, a functional dependency or syzygy among the invariants *is* intrinsic:

e.g.
$$\kappa_s = \kappa^3 - 1 \iff \overline{\kappa}_{\overline{s}} = \overline{\kappa}^3 - 1$$

- Universal syzygies Gauss–Codazzi
- Distinguishing syzygies.

Theorem. (Cartan)

Two regular submanifolds are locally equivalent if and only if they have identical syzygies among *all* their differential invariants.

Finiteness of Generators and Syzygies

♠ There are, in general, an infinite number of differential invariants and hence an infinite number of syzygies must be compared to establish equivalence.

♥ But the higher order differential invariants are always generated by invariant differentiation from a finite collection of basic differential invariants, and the higher order syzygies are all consequences of a finite number of low order syzygies!

Example — Plane Curves

If non-constant, both κ and κ_s depend on a single parameter, and so, locally, are subject to a syzygy:

$$\kappa_s = H(\kappa) \tag{*}$$

But then

$$\kappa_{ss} = \frac{d}{ds} H(\kappa) = H'(\kappa) \, \kappa_s = H'(\kappa) \, H(\kappa)$$

and similarly for κ_{sss} , etc.

Consequently, all the higher order syzygies are generated by the fundamental first order syzygy (*).

Thus, for Euclidean (or equi-affine or projective or ...) plane curves we need only know a single syzygy between κ and κ_s in order to establish equivalence!
Signature Curves

Definition. The signature curve $\Sigma \subset \mathbb{R}^2$ of a plane curve $C \subset \mathbb{R}^2$ is parametrized by the two lowest order differential invariants

$$\chi : C \longrightarrow \Sigma = \left\{ \left(\kappa, \frac{d\kappa}{ds} \right) \right\} \subset \mathbb{R}^2$$

 \implies Calabi, PJO, Shakiban, Tannenbaum, Haker

Theorem. Two regular curves C and \overline{C} are locally equivalent:

$$\overline{C} = g \cdot C$$

if and only if their signature curves are identical:

$$\overline{\Sigma} = \Sigma$$

 \implies regular: $(\kappa_s, \kappa_{ss}) \neq 0.$

Continuous Symmetries of Curves

Theorem. For a connected curve, the following are equivalent:

• All the differential invariants are constant on C:

$$\kappa=c, \quad \kappa_s=0, \quad \ . \ .$$

- The signature Σ degenerates to a point: dim $\Sigma = 0$
- C is a piece of an orbit of a 1-dimensional subgroup $H \subset G$

٠

• The local symmetry sets $G_z\ \subset\ G$ of $z\ \in\ C$ are all one-dimensional, and in fact, contained in a common one-dimensional subgroup $G_z \subset H \subset G$

Discrete Symmetries of Curves

Definition. The index of a completely regular point $\zeta \in \Sigma$ equals the number of points in C which map to it:

$$i_{\zeta} = \# \chi^{-1}\{\zeta\}$$

Regular means that, in a neighborhood of ζ , the signature is an embedded curve — no self-intersections.

Theorem. If $\chi(z) = \zeta$ is completely regular, then its index counts the number of discrete local symmetries of C that move z:

 G_z^* — isotropy group of z

$$i_{\zeta} = \# \left(G_z / G_z^* \right)$$

The Index

The Curve
$$x = \cos t + \frac{1}{5}\cos^2 t$$
, $y = \sin t + \frac{1}{10}\sin^2 t$

The Original Curve

Euclidean Signature

Equi-affine Signature

The Curve
$$x = \cos t + \frac{1}{5}\cos^2 t$$
, $y = \frac{1}{2}x + \sin t + \frac{1}{10}\sin^2 t$

The Original Curve

Euclidean Signature

Equi-affine Signature

Object Recognition

\Rightarrow Steve Haker

$$\begin{split} \textbf{Euclidean surfaces:} \quad S \subset \mathbb{R}^3 \quad (\text{generic}) \\ \Sigma &= \left\{ \left(H, K, H_{,1}, H_{,2}, K_{,1}, K_{,2} \right) \right\} \quad \subset \quad \mathbb{R}^6 \\ \text{or} \quad \hat{\Sigma} &= \left\{ \left(H, H_{,1}, H_{,2}, H_{,11} \right) \right\} \quad \subset \quad \mathbb{R}^4 \\ &\bullet \quad H - \text{mean curvature}, \quad K - \text{Gauss curvature} \end{split}$$

$$\begin{array}{ll} \mbox{Equi-affine surfaces:} & S \subset \mathbb{R}^3 \ (\mbox{generic}) \\ & \Sigma = \left\{ \ \left(\ P \ , \ P_{,1} \ , \ P_{,2} \ , \ P_{,11} \ \right) \ \right\} \ \subset \ \mathbb{R}^4 \\ & \bullet \ P \ - \ \mbox{Pick invariant} \end{array}$$

Advantages of the Signature Curve

- Purely local no ambiguities
- Local symmetries and approximate symmetries
- Extends to surfaces and higher dimensional submanifolds
- Occlusions and reconstruction
- Partial matching and puzzles

Main disadvantage: Noise sensitivity due to dependence on high order derivatives.

Vertices of Euclidean Curves

Ordinary vertex: local extremum of curvature

Generalized vertex: $\kappa_s \equiv 0$

- critical point
- circular arc
- straight line segment

Mukhopadhya's Four Vertex Theorem:

A simple closed, non-circular plane curve has $n \ge 4$ generalized vertices.

"Counterexamples"

 \star Generalized vertices map to a single point of the signature. Hence, the (degenerate) curves obtained by replace ordinary vertices with circular arcs of the same radius all have *identical* signature:

Bivertex Arcs

The signature Σ of a bivertex arc is a single arc that starts and ends on the κ -axis.

Bivertex Decomposition

v-regular curve — finitely many generalized vertices

$$C = \bigcup_{j=1}^{m} B_j \ \cup \ \bigcup_{k=1}^{n} V_k$$

$$egin{array}{rcl} B_1,\ldots,B_m&-&\mbox{bivertex arcs}\\ V_1,\ldots,V_n&-&\mbox{generalized vertices:}&\ n\geq 4 \end{array}$$

Main Idea: Compare individual bivertex arcs, and then decide whether the rigid equivalences are (approximately) the same.

D. Hoff & PJO, Extensions of invariant signatures for object recognition, J. Math. Imaging Vision 45 (2013), 176–185.

Signature Metrics

Used to compare signatures:

- Hausdorff
- Monge–Kantorovich transport
- Electrostatic/gravitational attraction
- Latent semantic analysis
- Histograms
- Gromov–Hausdorff & Gromov–Wasserstein

Gravitational/Electrostatic Attraction

 \star Treat the two signature curves as masses or as oppositely charged wires. The higher their mutual attraction, the closer they are together.

Gravitational/Electrostatic Attraction

- \star Treat the two signature curves as masses or as oppositely charged wires. The higher their mutual attraction, the closer they are together.
- ★ In practice, we are dealing with discrete data (pixels) and so treat the curves and signatures as point masses/charges.

The Baffler Jigsaw Puzzle

 $\{\sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{$ $\mathcal{E}_{\mathcal{E}}$ x_{3} x_{5} x_{5 in the constant of the the

Piece Locking

 $\star \star$ Minimize force and torque based on gravitational attraction of the two matching edges.

The Baffler Solved

The Rain Forest Giant Floor Puzzle

The Rain Forest Puzzle Solved

 \implies D. Hoff & PJO, Automatic solution of jigsaw puzzles, J. Math. Imaging Vision **49** (2014) 234–250.

Reassembling Humpty Dumpty

 \implies Anna Grim, Ryan Schlecta

Broken ostrich egg shell — Marshall Bern

Signature and the Symmetry Groupoid

 \mathcal{G}_S — symmetry groupoid

Signature map: $\chi: S \to \Sigma$

If
$$g \in G_z$$
 is a local symmetry based at $z \in S$, then
 $\chi(g \cdot z) = \chi(z)$, whenever $\alpha = (g, z) \in \mathcal{G}_S$.

Thus, the signature map is constant on the symmetry groupoid orbits, and hence factors through the symmetry moduli space.

Signature Rank

Definition. The signature rank of a point $z \in S$ is the rank of the signature map at z:

$$r_z = \operatorname{rank} d\chi|_z.$$

A point $z \in S$ is called regular if the signature rank is constant in a neighborhood of z.

Proposition. If $z \in S$ is regular of rank k, then, near z, the signature Σ is a k-dimensional submanifold.

Cartan's Equivalence Theorem

Theorem. If $S, \tilde{S} \subset M$ are regular, then locally there exists an equivalence map $g \in G$ with

$$\tilde{S} \cap \tilde{U} = g \cdot (S \cap U) \qquad g \in G$$

if and only if S, \tilde{S} have locally identical signatures: $\tilde{\Sigma} = \tilde{\chi}(\tilde{S} \cap \tilde{U}) = \chi(S \cap U) = \Sigma$

Corollary. If $z \in S$ is regular, then $\hat{z} = g \cdot z \in \mathcal{O}_z$ for $g \in G_z$ if and only if

 $\chi(S \cap U) = \chi(S \cap \widehat{U})$

Pieces

Definition. A piece of the submanifold S is a connected subset $\widehat{S} \subset S$ whose interior is a non-empty submanifold of the same dimension $p = \dim \widehat{S} = \dim S$ and whose boundary $\partial \widehat{S}$ is a piecewise smooth submanifold of dimension p - 1.

Symmetry and Signature $\dim S = p$

Assume $S \subset M$ is regular, connected, and of constant rank.

rank $S = k = \dim \Sigma$ = # functionally independent differential invariants

Then its local symmetry set at each $z \in S$ has

$$\dim G_z = p - k = \dim S - \dim \Sigma$$

Completion of Symmetry Groupoids

 $\dim S = p \qquad \dim \Sigma = k \qquad \dim G_z = p-k$

★ If k = p then G_z is discrete.

Theorem. If k < p, then G_z is a (p - k)-dimensional local Lie subgroup $G_z^* \subset G$ whose connected component containing the identity completion is a piece of a *common* (p - k)-dimensional Lie subgroup $G_z^* \subset G^* \subset G$, independent of $z \in S$.

Moreover, S is a union of a k parameter family of pieces of non-singular orbits of G^* :

 $S \subset G^* \cdot N$ where $\dim N = k$, transverse to orbits

Euclidean Surfaces

$$G = SE(3)$$
 acting on $M = \mathbb{R}^3$
 $S \subset M$ — non-umbilic surface

Rank 0 Euclidean Surfaces

$$\begin{split} \dim \Sigma &= 0 \\ G^* \simeq \mathrm{SO}(2) \ltimes \mathbb{R} \\ S \subset Z &- \text{piece of cylinder } Z = G^* \cdot z_0 \text{ of radius } R > 0 \\ H &= 1/(2R), \quad K = 0 \implies \Sigma = \{\zeta_0\} \end{split}$$

Rank 1 Euclidean Surfaces

dim $\Sigma = 1$ $G^* \simeq \mathbb{R}$ or SO(2) or SO(2) + \mathbb{R} translations; rotations; screw motions

- orbits: parallel straight lines;
 - "concentric" circles with a common center axis
 - "concentric" helices with a common axis

 $S \subset Z$ is a piece of $Z = G^* \cdot C$ where C is a transversal curve:

- a surface of translation (traveling wave)
- a surface of revolution
- a helicoidal surface

Index

Definition. The index of a regular point $z \in S_{\text{reg}}$ is defined as the maximal number of connected components of $\chi^{-1}[\chi(S \cap U)]$ where $z \in U \subset M$ is a sufficiently small open neighborhood such that $S \cap U$ is connected.

Theorem. If $z \in S_{reg}$, its index ind z is equal to the number of connected components of the quotient G_z/G_z^* .

Weighted Signature

Basic idea: in numerical computations, one "uniformly" discretizes (samples) the original submanifold S. The signature invariants are then numerically approximated, perhaps using invariant numerical algorithms.

- Ignoring numerical error, the result is a non-uniform sampling of the signature, and so we consider the images $\zeta_i = \chi(z_i) \in \Sigma$.
- In the limit as the number of sample points $\longrightarrow \infty$ the original sample points z_i converge to the uniform *G*-invariant measure on *S* while the signature sample points ζ_i converge to the **push forward** of the uniform measure under the signature map:

$$\nu(\Gamma) = \mu(\chi^{-1}(\Gamma)) = \int_{\chi^{-1}(\Gamma)} |\Omega| \quad \text{for} \quad \Gamma \subset \Sigma.$$

Weighted Signatures of Plane Curves

$$\chi \colon C \subset \mathbb{R}^2 \to \Sigma \subset \mathbb{R}^2 \qquad \chi(z) = (\kappa, \kappa_s) = \zeta$$

If S has rank 1, then its signature Σ is locally a graph parametrized by κ , say. The weighted measure on Σ is given by

$$d\nu = \chi^{\#}(ds) = \operatorname{ind}(\zeta) \frac{d\kappa}{\mid \kappa_s \mid}$$

where $\operatorname{ind}(\zeta)$ denotes the index of the signature point ζ .

If S (connected) has rank 0, then it is a piece of an orbit of a one-parameter subgroup, and $\Sigma = \{\zeta_0\}$ is a single point. The weighted measure is atomic (delta measure) concentrated at ζ_0 with weight equal to the total length of S.

Weighted Signatures of Plane Curves

In general, when S has variable rank,

$$\nu(\Gamma) = \int_{\Gamma} \operatorname{ind}(\zeta) \frac{d\kappa}{|\kappa_s|} + \sum_{\zeta \in \Gamma \cap \{\kappa_s = 0\}} L(\chi^{-1}\{\zeta\})$$
for $\Gamma \subset \Sigma$.

♠ The weighted signature does *not*, in general, uniquely determine the original curve, since the weight at any point $\zeta_0 = (\kappa_0, 0)$ only measures the total length of all the pieces haiving constant curvature κ_0 and not the number thereof nor how their individual lengths are apportioned.
Rank 2 Euclidean Surfaces

 $\dim \Sigma = \dim S = 2$

 \exists 2 functionally independent differential invariants

 \implies assume $dH \wedge dK \neq 0$

Weighted measure on Σ , parametrized by H, K:

$$d\nu = (\operatorname{ind} \zeta) \left| \frac{dH \wedge dK}{\mathcal{D}_1 H \, \mathcal{D}_2 K - \mathcal{D}_2 H \, \mathcal{D}_1 K} \right|$$

ind $\zeta = \# G_z$ — number of discrete local symmetries at $z \in \chi^{-1}{\zeta}$.

Rank 0 Euclidean Surfaces

$$\begin{split} S \subset Z & - \text{ piece of a cylinder} \\ H &= 1/(2R), \, K = 0 & - \Sigma = \{\zeta_0\} \\ \text{The weight of } \zeta_0 \text{ equals the area } A(S) &= \iint_S \, dS. \end{split}$$

$$\nu = A(S)\,\delta_{\zeta_0}.$$

♠ The weighted signature only determines the area and radius of the cylindrical piece $S \subset Z$, and not its overall shape.

Euclidean Coarea Formula

Theorem. Let $S \subset G^* \cdot C_0$ be a surface of rank 1, such that $C_0 \subset S$ is a normal cross-section to the orbits \mathcal{O}_z of the one-parameter subgroup $G^* \subset SE(3)$:

$$TC_0|_z \,\cap\, T\mathcal{O}_z = \{\,0\,\}$$

Let

$$\ell(z) = L(\mathcal{O}_z \cap S) = \int_{\mathcal{O}_z \cap S} ds$$

denote the length of the piece of the orbit \mathcal{O}_z through $z \in C_0$ (line segment, circular arc, or helical arc) that is contained in S. Then

$$A(S) = \int_{C_0} \ell(z(s)) \, ds.$$

Corollary. The weighted signature of a surface of rank 1 is given by the push-forward via $\chi: C_0 \to \Sigma$ to its signature curve of the weighted arc length measure

 $\ell(z(s)) \, ds$

on the normal curve $C_0 \subset S$ multiplied by the index ind ζ .