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Symmetry

Definition. A symmetry of a set S is a
transformation that preserves it:

g · S = S



What is the Symmetry Group?

Rotations by 90◦:

GS = Z4

Rotations + reflections:

GS = Z4 ! Z4



What is the Symmetry Group?

Rotations:

GS = SO(2)

Rotations + reflections:

GS = O(2)

Conformal Inversions:

x =
x

x2 + y2
y =

y

x2 + y2



Continuous Symmetries of a Square

−→ −→R −→



Symmetry

! To define the set of symmetries requires a priori
specification of the allowable transformations
or, equivalently, the underlying geometry.

G — transformation group or pseudo-group of
allowable transformations
of the ambient space M

Definition. A symmetry of a subset S ⊂ M is an
allowable transformation g ∈ G that preserves it:

g · S = S



What is the Symmetry Group?

Allowable transformations:

Rigid motions

G = SE(2) = SO(2)! R2

GS = Z4 ! Z2



What is the Symmetry Group?

Allowable transformations:

Rigid motions

G = SE(2) = SO(2)! R2

GS = {e}



Local Symmetries

Definition. g ∈ G is a local symmetry of S ⊂ M
based at a point z ∈ S if there is an
open neighborhood z ∈ U ⊂ M such that

g · (S ∩ U) = S ∩ (g · U)

Gz ⊂ G — the set of local symmetries based at z.

Global symmetries are local symmetries at all z ∈ S:

GS ⊂ Gz GS =
⋂

z∈S
Gz

! ! The set of all local symmetries forms a groupoid!



Groupoids

Definition. A groupoid is a small category such that
every morphism has an inverse.

=⇒ Brandt (quadratic forms), Ehresmann (Lie pseudo-groups)

Mackenzie, R. Brown, A. Weinstein

Groupoids form the appropriate framework for
studying objects with variable symmetry.



Groupoids
Double fibration:

G

!
!
!
!

"

σ

#
#
#
#$

τ

M M

σ — source map τ — target map

! ! You are only allowed to multiply α · β ∈ G if

σ(α) = τ (β)



Groupoids

• Source and target of products :

σ(α · β) = σ(β) τ (α · β) = τ (α) when σ(α) = τ (β)

• Associativity :

α · (β · γ) = (α · β) · γ when defined

• Identity section: e : M → G σ(e(x)) = x = τ (e(x))

α · e(σ(α)) = α = e(τ (α)) · α

• Inverses : σ(α) = x = τ (α−1), τ (α) = y = σ(α−1),

α−1 · α = e(x), α · α−1 = e(y)



Jet Groupoids
=⇒ Ehresmann

The set of Taylor polynomials of degree ≤ n, or
Taylor series (n = ∞) of local diffeomorphisms
Ψ : M → M forms a groupoid.

♦ Algebraic composition of Taylor polynomials/series
is well-defined only when the source of the second
matches the target of the first.



The Symmetry Groupoid

Definition. The symmetry groupoid of S ⊂ M is

GS = { (g, z) | z ∈ S, g ∈ Gz } ⊂ G× S

Source and target maps: σ(g, z) = z, τ (g, z) = g · z.
Groupoid multiplication and inversion:

(h, g · z) · (g, z) = (g · h, z) (g, z)−1 = (g−1, g · z)

Identity map: e(z) = (z, e) ∈ GS

Local isotropy group of z:

G∗
z = { g ∈ Gz | g · z = z }

=⇒ vertex group



Lie Groupoids

G

!
!
!
!

"

σ

#
#
#
#$

τ

M M

♥ A groupoid is a Lie groupoid if G and M are
smooth manifolds, the source and target maps are
smooth surjective submersions, and the identity
and multiplication maps are smooth.

♠ Symmetry groupoids, even those of smooth
submanifolds, are not necessarily Lie groupoids.



What is the Symmetry Groupoid?

G = SE(2)

Corners:

Gz = GS = Z4

Sides: Gz generated by

GS = Z4

some translations

180◦ rotation around z



What is the Symmetry Groupoid?
Cogwheels =⇒ Musso–Nicoldi

GS = Z6 GS = Z2



What is the Symmetry Groupoid?
Cogwheels =⇒ Musso–Nicoldi
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GS = Z6 GS = Z2



Symmetry Orbits

Oz = τ (Gz) = τ ◦σ
−1{z} = { g · z | g ∈ Gz } .

Oz / Gz/G
∗
z

Orbit equivalence:

z ∼ ẑ if and only ẑ = g · z for some g ∈ Gz

Symmetry moduli space: SG = S/∼



The Equivalence Problem
=⇒ É Cartan

G — transformation group acting on M

Equivalence:
Determine when two subsets

S and S ⊂ M

are congruent:

S = g · S for g ∈ G

Symmetry:
Find all symmetries or self-congruences:

S = g · S



Tennis, Anyone?



Invariants

The solution to an equivalence problem rests on
understanding its invariants.

Definition. If G is a group acting on M , then an
invariant is a real-valued function I : M → R that
does not change under the action of G:

I(g · z) = I(z) for all g ∈ G, z ∈ M



Differential Invariants

Given a submanifold (curve, surface, . . . )

S ⊂ M

a differential invariant is an invariant of the prolonged
action of G on its Taylor coefficients (jets):

I(g · z(k)) = I(z(k))



Euclidean Plane Curves

G = SE(2) acts on curves C ⊂ M = R
2

The simplest differential invariant is the curvature,
defined as the reciprocal of the radius of the
osculating circle:

κ =
1

r



Curvature



Curvature



Curvature

r = 1/κ



Euclidean Plane Curves: G = SE(2)

Differentiation with respect to the Euclidean-invariant arc
length element ds is an invariant differential operator,
meaning that it maps differential invariants to differential
invariants.

Thus, starting with curvature κ, we can generate an infinite
collection of higher order Euclidean differential invariants:

κ,
dκ

ds
,

d2κ

ds2
,

d3κ

ds3
, · · ·

Theorem. All Euclidean differential invariants are functions of
the derivatives of curvature with respect to arc length:
κ, κs, κss, · · ·



Euclidean Plane Curves: G = SE(2)

Assume the curve C ⊂ M is a graph: y = u(x)

Differential invariants:

κ =
uxx

(1 + u2
x)

3/2
,

dκ

ds
=

(1 + u2
x)uxxx − 3uxu

2
xx

(1 + u2
x)

3
,

d2κ

ds2
= · · ·

Arc length (invariant one-form):

ds =
√
1 + u2

x dx,
d

ds
=

1
√
1 + u2

x

d

dx



Equi-affine Plane Curves: G = SA(2) = SL(2)! R2

Equi-affine curvature:

κ =
5uxxuxxxx − 3u2

xxx

9u8/3
xx

dκ

ds
= · · ·

Equi-affine arc length:

ds = 3

√
uxx dx

d

ds
=

1
3
√
uxx

d

dx

Theorem. All equi-affine differential invariants are functions
of the derivatives of equi-affine curvature with respect to
equi-affine arc length: κ, κs, κss, · · ·



Plane Curves

Theorem. Let G be an ordinary! Lie group acting on M = R2.
Then for curves C ⊂ M , there exists a unique (up to
functions thereof) lowest order differential invariant κ and a
unique (up to constant multiple) invariant differential form
ds. Every other differential invariant can be written as a
function of the “curvature” invariant and its derivatives
with respect to “arc length”: κ, κs, κss, · · · .

! ordinary = transitive + no pseudo-stabilization.



Moving Frames

The equivariant method of moving frames provides a
systematic and algorithmic calculus for
determining complete systems of differential
invariants, invariant differential forms, invariant
differential operators, etc., and the structure of
the non-commutative differential algebra they
generate.



Equivalence & Invariants

• Equivalent submanifolds S ≈ S
must have the same invariants: I = I.

Constant invariants provide immediate information:

e.g. κ = 2 ⇐⇒ κ = 2

Non-constant invariants are not useful in isolation,
because an equivalence map can drastically alter the
dependence on the submanifold parameters:

e.g. κ = x3 versus κ = sinhx



Syzygies

However, a functional dependency or syzygy among
the invariants is intrinsic:

e.g. κs = κ3 − 1 ⇐⇒ κs = κ3 − 1

• Universal syzygies — Gauss–Codazzi

• Distinguishing syzygies.

Theorem. (Cartan)
Two regular submanifolds are locally equivalent if
and only if they have identical syzygies among all
their differential invariants.



Finiteness of Generators and Syzygies

♠ There are, in general, an infinite number of
differential invariants and hence an infinite
number of syzygies must be compared to
establish equivalence.

♥ But the higher order differential invariants are
always generated by invariant differentiation
from a finite collection of basic differential
invariants, and the higher order syzygies are
all consequences of a finite number of low
order syzygies!



Example — Plane Curves

If non-constant, both κ and κs depend on a single
parameter, and so, locally, are subject to a syzygy:

κs = H(κ) (∗)

But then

κss =
d

ds
H(κ) = H ′(κ)κs = H ′(κ)H(κ)

and similarly for κsss, etc.

Consequently, all the higher order syzygies are generated
by the fundamental first order syzygy (∗).

Thus, for Euclidean (or equi-affine or projective or . . . )
plane curves we need only know a single syzygy between κ and
κs in order to establish equivalence!



Signature Curves

Definition. The signature curve Σ ⊂ R2 of a plane curve
C ⊂ R2 is parametrized by the two lowest order differential
invariants

χ : C −→ Σ =

{ (

κ ,
dκ

ds

) }

⊂ R
2

=⇒ Calabi, PJO, Shakiban, Tannenbaum, Haker

Theorem. Two regular curves C and C are locally
equivalent:

C = g · C
if and only if their signature curves are identical:

Σ = Σ

=⇒ regular: (κs,κss) 3= 0.



Continuous Symmetries of Curves

Theorem. For a connected curve, the following are
equivalent:

• All the differential invariants are constant on C:
κ = c, κs = 0, . . .

• The signature Σ degenerates to a point: dimΣ = 0

• C is a piece of an orbit of a 1-dimensional subgroup H ⊂ G

• The local symmetry sets Gz ⊂ G of z ∈ C are all one-
dimensional, and in fact, contained in a common
one-dimensional subgroup Gz ⊂ H ⊂ G



Discrete Symmetries of Curves

Definition. The index of a completely regular point ζ ∈ Σ

equals the number of points in C which map to it:

iζ = # χ−1{ζ}

Regular means that, in a neighborhood of ζ, the signature is an

embedded curve — no self-intersections.

Theorem. If χ(z) = ζ is completely regular, then its index

counts the number of discrete local symmetries of C that

move z:

iζ = # (Gz/G
∗
z )

G∗
z — isotropy group of z



The Index

χ

−→

C Σ



The Curve x = cos t+ 1
5 cos

2 t, y = sin t+ 1
10 sin

2 t

-0.5 0.5 1

-0.5

0.5

1

The Original Curve

0.25 0.5 0.75 1 1.25 1.5 1.75 2

-2

-1

0

1

2

Euclidean Signature

0.5 1 1.5 2 2.5

-6

-4

-2

2

4

Equi-affine Signature



The Curve x = cos t+ 1
5 cos

2 t, y = 1
2 x+ sin t+ 1

10 sin
2 t

-0.5 0.5 1

-1

-0.5

0.5

1

The Original Curve

0.5 1 1.5 2 2.5 3 3.5 4

-7.5

-5

-2.5

0

2.5

5

7.5

Euclidean Signature

0.5 1 1.5 2 2.5

-6

-4

-2

2

4

Equi-affine Signature



Object Recognition

=⇒ Steve Haker
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3D Signatures

Euclidean space curves: C ⊂ R3

Σ = { (κ , κs , τ ) } ⊂ R
3

• κ — curvature, τ — torsion

Euclidean surfaces: S ⊂ R3 (generic)

Σ =
{ (

H , K , H,1 , H,2 , K,1 , K,2

) }
⊂ R

6

or Σ̂ =
{ (

H , H,1 , H,2 , H,11

) }
⊂ R

4

• H — mean curvature, K — Gauss curvature

Equi–affine surfaces: S ⊂ R3 (generic)

Σ =
{ (

P , P,1 , P,2, P,11

) }
⊂ R

4

• P — Pick invariant



Advantages of the Signature Curve

• Purely local — no ambiguities

• Local symmetries and approximate symmetries

• Extends to surfaces and higher dimensional submanifolds

• Occlusions and reconstruction

• Partial matching and puzzles

Main disadvantage: Noise sensitivity due to
dependence on high order derivatives.



Vertices of Euclidean Curves

Ordinary vertex: local extremum of curvature

Generalized vertex: κs ≡ 0

• critical point

• circular arc

• straight line segment

Mukhopadhya’s Four Vertex Theorem:

A simple closed, non-circular plane curve has n ≥ 4 generalized
vertices.



“Counterexamples”

! Generalized vertices map to a single point of the signature.

Hence, the (degenerate) curves obtained by replace ordinary
vertices with circular arcs of the same radius all have identical
signature:

!2 2 4 6

!8

!6

!4

!2

!2 2 4 6 8

!8

!6

!4

!2

2

!2 2 4 6 8 10

!8

!6

!4

!2

2

!2 2 4 6 8 10

!6

!4

!2

2

4

!2 2 4 6 8 10

!6

!4

!2

2

4

!2 2 4 6 8

!4

!2

2

4

=⇒ Musso–Nicoldi



Bivertex Arcs

Bivertex arc: κs 3= 0 everywhere
except κs = 0 at the two endpoints

The signature Σ of a bivertex arc is a single arc that starts and
ends on the κ–axis.

κ

κs



Bivertex Decomposition
v-regular curve — finitely many generalized vertices

C =
m⋃

j=1
Bj ∪

n⋃

k=1
Vk

B1, . . . , Bm — bivertex arcs

V1, . . . , Vn — generalized vertices: n ≥ 4

Main Idea: Compare individual bivertex arcs, and then decide
whether the rigid equivalences are (approximately) the same.

D. Hoff & PJO, Extensions of invariant signatures for object recognition,
J. Math. Imaging Vision 45 (2013), 176–185.



Signature Metrics

Used to compare signatures:

• Hausdorff

• Monge–Kantorovich transport

• Electrostatic/gravitational attraction

• Latent semantic analysis

• Histograms

• Gromov–Hausdorff & Gromov–Wasserstein



Gravitational/Electrostatic Attraction

! Treat the two signature curves as masses or as oppositely
charged wires. The higher their mutual attraction, the
closer they are together.

κ

κs



Gravitational/Electrostatic Attraction

! Treat the two signature curves as masses or as oppositely
charged wires. The higher their mutual attraction, the
closer they are together.

! In practice, we are dealing with discrete data (pixels) and so
treat the curves and signatures as point masses/charges.

κ

κs

κ

κs



The Baffler Jigsaw Puzzle



Piece Locking

! ! Minimize force and torque based on gravitational
attraction of the two matching edges.



The Baffler Solved



The Rain Forest Giant Floor Puzzle



The Rain Forest Puzzle Solved

=⇒ D. Hoff & PJO, Automatic solution of jigsaw puzzles,
J. Math. Imaging Vision 49 (2014) 234–250.



ReassemblingHumptyDumpty

=⇒ Anna Grim, Ryan Schlecta

Broken ostrich egg shell — Marshall Bern



Signature and the Symmetry Groupoid

GS — symmetry groupoid

Signature map: χ : S → Σ

If g ∈ Gz is a local symmetry based at z ∈ S, then

χ(g · z) = χ(z), whenever α = (g, z) ∈ GS.

Thus, the signature map is constant on the symmetry groupoid

orbits, and hence factors through the symmetry moduli

space.



Signature Rank

Definition. The signature rank of a point z ∈ S is the rank of
the signature map at z:

rz = rank dχ |z.

A point z ∈ S is called regular if the signature rank is constant
in a neighborhood of z.

Proposition. If z ∈ S is regular of rank k, then, near z,
the signature Σ is a k-dimensional submanifold.



Cartan’s Equivalence Theorem

Theorem. If S, S̃ ⊂ M are regular, then locally there exists an
equivalence map g ∈ G with

S̃ ∩ Ũ = g · (S ∩ U) g ∈ G

if and only if S, S̃ have locally identical signatures:

Σ̃ = χ̃(S̃ ∩ Ũ) = χ(S ∩ U) = Σ

Corollary. If z ∈ S is regular, then ẑ = g · z ∈ Oz for g ∈ Gz

if and only if
χ(S ∩ U) = χ(S ∩ Û)



Pieces

Definition. A piece of the submanifold S is a connected subset

Ŝ ⊂ S whose interior is a non-empty submanifold of the

same dimension p = dim Ŝ = dimS and whose boundary ∂Ŝ

is a piecewise smooth submanifold of dimension p− 1.



Symmetry and Signature

dimS = p

Assume S ⊂ M is regular, connected, and of constant rank.

rankS = k = dimΣ
= # functionally independent differential invariants

Then its local symmetry set at each z ∈ S has

dimGz = p− k = dimS − dimΣ



Completion of Symmetry Groupoids

dimS = p dimΣ = k dimGz = p− k

! If k = p then Gz is discrete.

Theorem. If k < p, then Gz is a (p − k)-dimensional
local Lie subgroup G∗

z ⊂ G whose connected component
containing the identity completion is a piece of a common
(p − k)-dimensional Lie subgroup G∗

z ⊂ G∗ ⊂ G,
independent of z ∈ S.

Moreover, S is a union of a k parameter family of pieces of
non-singular orbits of G∗:

S ⊂ G∗ ·N where dimN = k, transverse to orbits



Euclidean Surfaces

G = SE(3) acting on M = R3

S ⊂ M — non-umbilic surface

Rank 0 Euclidean Surfaces

dimΣ = 0

G∗ / SO(2)! R

S ⊂ Z — piece of cylinder Z = G∗ · z0 of radius R > 0

H = 1/(2R), K = 0 =⇒ Σ = {ζ0}



Rank 1 Euclidean Surfaces

dimΣ = 1 G∗ / R or SO(2) or SO(2) + R

translations; rotations; screw motions

orbits: • parallel straight lines;

• “concentric” circles with a common center axis

• “concentric” helices with a common axis

S ⊂ Z is a piece of Z = G∗ · C where C is a transversal curve:

• a surface of translation (traveling wave)

• a surface of revolution

• a helicoidal surface



Index

Definition. The index of a regular point z ∈ Sreg is defined as

the maximal number of connected components of

χ−1[χ(S ∩ U)] where z ∈ U ⊂ M is a sufficiently small open

neighborhood such that S ∩ U is connected.

Theorem. If z ∈ Sreg, its index ind z is equal to the number

of connected components of the quotient Gz/G
∗
z .



Weighted Signature

Basic idea: in numerical computations, one “uniformly”
discretizes (samples) the original submanifold S. The
signature invariants are then numerically approximated,
perhaps using invariant numerical algorithms.

Ignoring numerical error, the result is a non-uniform sampling of
the signature, and so we consider the images ζi = χ(zi) ∈ Σ.

In the limit as the number of sample points −→ ∞ the original
sample points zi converge to the uniform G-invariant
measure on S while the signature sample points ζi converge
to the push forward of the uniform measure under the
signature map:

ν(Γ) = µ(χ−1(Γ)) =
∫

χ−1(Γ)
|Ω | for Γ ⊂ Σ.



Weighted Signatures of Plane Curves

χ : C ⊂ R
2 → Σ ⊂ R

2 χ(z) = (κ,κs) = ζ

If S has rank 1, then its signature Σ is locally a graph
parametrized by κ, say. The weighted measure on Σ is given by

dν = χ#(ds) = ind(ζ)
dκ

|κs |

where ind(ζ) denotes the index of the signature point ζ.

If S (connected) has rank 0, then it is a piece of an orbit of a
one-parameter subgroup, and Σ = {ζ0} is a single point. The
weighted measure is atomic (delta measure) concentrated at ζ0
with weight equal to the total length of S.



Weighted Signatures of Plane Curves

In general, when S has variable rank,

ν(Γ) =
∫

Γ
ind(ζ)

dκ

|κs |
+

∑

ζ∈Γ∩ {κs=0}

L(χ−1{ζ})

for Γ ⊂ Σ.

♠ The weighted signature does not , in general, uniquely
determine the original curve, since the weight at any point
ζ0 = (κ0, 0) only measures the total length of all the pieces
haivng constant curvature κ0 and not the number thereof
nor how their individual lengths are apportioned.



Rank 2 Euclidean Surfaces

dimΣ = dimS = 2

∃ 2 functionally independent differential invariants

=⇒ assume dH ∧ dK 3= 0

Weighted measure on Σ, parametrized by H,K:

dν = (ind ζ)

∣∣∣∣∣
dH ∧ dK

D1H D2K −D2H D1K

∣∣∣∣∣

ind ζ = # Gz

— number of discrete local symmetries at z ∈ χ−1{ζ}.



Rank 0 Euclidean Surfaces

S ⊂ Z — piece of a cylinder

H = 1/(2R), K = 0 — Σ = {ζ0}

The weight of ζ0 equals the area A(S) =
∫ ∫

S
dS.

ν = A(S) δζ0.

♠ The weighted signature only determines the area and radius
of the cylindrical piece S ⊂ Z, and not its overall shape.



Euclidean Coarea Formula

Theorem. Let S ⊂ G∗ · C0 be a surface of rank 1, such that
C0 ⊂ S is a normal cross-section to the orbits Oz of the
one-parameter subgroup G∗ ⊂ SE(3):

TC0|z ∩ TOz = {0}

Let
,(z) = L(Oz ∩ S) =

∫

Oz ∩S
ds

denote the length of the piece of the orbit Oz through
z ∈ C0 (line segment, circular arc, or helical arc) that is
contained in S. Then

A(S) =
∫

C0

,(z(s)) ds.



Corollary. The weighted signature of a surface of rank 1 is
given by the push-forward via χ : C0 → Σ to its signature
curve of the weighted arc length measure

,(z(s)) ds

on the normal curve C0 ⊂ S multiplied by the index ind ζ.


