Invariant Signatures
 for Recognition and Symmetry

Peter J. Olver
University of Minnesota
http://www.math.umn.edu/~olver
I.MA., March, 2006
\Longrightarrow E. Calabi, C. Shakiban, A. Tannenbaum, S. Haker

Object Recognition

Goal: recognize when two visual objects are equivalent

$$
g: \mathcal{O} \longmapsto \widetilde{\mathcal{O}}
$$

Symmetry

Goal: find all self-equivalences of a visual object

$$
g: \mathcal{O} \longmapsto \mathcal{O}
$$

Equivalence, Symmetry \& Groups

Basic fact:

Equivalence and symmetry transformations

$$
g: \mathcal{O} \longmapsto \mathcal{O}
$$

belong to a group:

$$
g \in G
$$

Computer Vision Groups

Euclidean
Translations
Rotations
Reflections

Similarity
Preserves length ratios
Euclidean + Scaling

Equi-affine

$$
\mathbf{x} \longmapsto A \mathbf{x}+b, \quad \operatorname{det} A=1
$$

Affine
Preserves area (volume) ratios
Equi-affine + Scaling

Projective Preserves cross-ratios

$$
\begin{gathered}
(x, y) \longmapsto\left(\frac{a x+b y+c}{g x+h y+j}, \frac{d x+e y+f}{g x+h y+j}\right) \\
\operatorname{det} A=\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & j
\end{array}\right)=1
\end{gathered}
$$

Camera Rotations

Projective orthogonal transformations:

$$
A=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & j
\end{array}\right) \in \mathrm{SO}(3)
$$

Video Groups

$$
(x, y, t) \longmapsto(\tilde{x}, \tilde{y}, \tilde{t})
$$

e.g. Galilean boosts (motion tracking)

$$
(x, y, t) \longmapsto(x+a t, y+b t, t)
$$

Complications

- Occlusion
- Ducks \approx rabbits - Åström
- Outlines of 3D objects
- Bending, warping, etc.
- pseudo-groups
- Thatcher illusion

Mathematical Setting

Ambient space:

$$
\left.M=\mathbb{R}^{n}, n=2,3, \ldots \quad \text { (manifold }\right)
$$

Object:

$$
N \subset M \quad \text { submanifold }
$$

Equivalences:

$$
\begin{gathered}
G \quad \text { finite-dimensional Lie group } \\
\text { acting on } M
\end{gathered}
$$

Basic equivalence problem:

$$
S \approx \bar{S} \quad \Longleftrightarrow \quad \bar{S}=g \cdot S \quad \text { for } \quad g \in G
$$

Symmetry (isotropy) subgroup:

$$
G_{S}=\{g \in G \mid g \cdot S=S\} \subset G
$$

Equivalence \& Signature

Cartan's main idea:

The equivalence and symmetry properties of submanifolds are entirely prescribed by their differential invariants.

Examples of Differential Invariants

Euclidean plane curves: $\quad C \subset \mathbb{R}^{2} \quad(y=u(x))$
$\kappa=\frac{u_{x x}}{\left(1+u_{x}^{2}\right)^{3 / 2}} \quad-\quad$ Euclidean curvature
$\kappa_{s}, \kappa_{s s}, \ldots-$ derivatives w.r.t. arc length

$$
d s=\sqrt{1+u_{x}^{2}} d x
$$

Euclidean space curves: $\quad C \subset \mathbb{R}^{3}$
$\kappa, \kappa_{s}, \kappa_{s s}, \ldots$ - curvature
$\tau, \tau_{s}, \tau_{s s}, \ldots \quad$ torsion

Equi-affine plane curves: $\quad C \subset \mathbb{R}^{2}$
$\kappa=\frac{5 u_{x x} u_{x x x x}-3 u_{x x x}^{2}}{9 u_{x x}^{8 / 3}}$ - equi-affine curvature
$\kappa_{s}, \kappa_{s s}, \ldots-$ derivatives w.r.t.
equi-affine arc length $d s=\sqrt[3]{u_{x x}} d x$

Projective plane curves: $\quad C \subset \mathbb{R P}^{2}$

$$
\kappa=F\left(u^{(7)}\right) \quad-\quad \text { projective curvature }
$$

$\kappa_{s}, \kappa_{s s}, \ldots-\quad$ derivatives w.r.t. the projective arc length $d s=P\left(u^{(5)}\right) d x$

Euclidean surfaces: $\quad S \subset \mathbb{R}^{3}$
$K, H-$ Gauss and mean curvature

$$
\begin{array}{r}
K_{, 1}, K_{, 2}, H_{, 1}, H_{, 2}, K_{, 1,1}, \ldots \quad-\quad \text { invariant } \\
\quad \text { derivatives w.r.t. the Frenet coframe } \omega_{1}, \omega_{2}
\end{array}
$$

Equi-affine surfaces: $\quad S \subset \mathbb{R}^{3}$

$$
\begin{aligned}
& T \quad-\text { Pick invariant } \\
& K_{, 1}, K_{, 2}, H_{, 1}, H_{, 2}, K_{, 1,1}, \ldots \quad-\quad \text { invariant }
\end{aligned}
$$ derivatives w.r.t. the equi-affine coframe ω_{1}, ω_{2}

The Basis Theorem

Theorem. For "any" group G acting on p-dimensional submanifolds $N \subset M$, there exists a finite generating set of differential invariants I_{1}, \ldots, I_{k} and invariant differential operators $\mathcal{D}_{1}, \ldots, \mathcal{D}_{p}$, so that every differential invariant

$$
I=F\left(\ldots, \mathcal{D}_{J} I_{\kappa}, \ldots\right)
$$

can be locally expressed as a function of the generating invariants and their invariant derivatives:

$$
\mathcal{D}_{J} I_{\kappa}=\mathcal{D}_{j_{1}} \mathcal{D}_{j_{2}} \cdots \mathcal{D}_{j_{i}} I_{\kappa}
$$

- Tresse
- Ovsiannikov, O $\operatorname{dim}<\infty$
- Kumpera, O-Pohjanpelto $\operatorname{dim}=\infty$

The Algebra of Differential Invariants

\Longrightarrow Curves (one-dimensional submanifolds) are well understood: $k=\operatorname{dim} M-1 ;$ no syzygies. (M. Green)

For higher dimensional submanifolds (surfaces):

- The number of generating differential invariants is difficult to predict in advance.
- The invariant differential operators $\mathcal{D}_{1}, \ldots, \mathcal{D}_{p}$ do not commute.
- The differentiated invariants may be subject to certain functional relations or syzygies

$$
S\left(\ldots, \mathcal{D}_{J} I_{\kappa}, \ldots\right) \equiv 0
$$

Ex: the Codazzi equation relating derivatives of the Gauss and mean curvatures of a Euclidean surface.

Moving Frames

(Advertisement)

$\star \star$ The method of moving frames (Cartan), especially as extended and generalized by O-Fels-Kogan-Pohjanpelto- ... provides a completely constructive calculus for finding the differential invariants, invariant differential forms and differential operators, commutators, recurrence formulae, syzygies, signatures, invariant variational problems, etc. $\star \star$

Equivalance and Invariants

- Equivalent submanifolds $N \approx \widetilde{N}$ have the same invariants: $I=\widetilde{I}$.
However, unless an invariant is constant

$$
\text { e.g. } \quad \kappa=2 \quad \Longleftrightarrow \quad \widetilde{\kappa}=2
$$

\Longrightarrow Constant curvature submanifolds it carries little information in isolation, since equivalence maps can drastically alter its dependence on the submanifold coordinates.

$$
\text { e.g. } \quad \kappa=x^{3} \quad \text { versus } \quad \widetilde{\kappa}=\sinh x
$$

However, a syzygy

$$
I_{k}(x)=\Phi\left(I_{1}(x), \ldots, I_{k-1}(x)\right)
$$

among multiple invariants is intrinsic

$$
\text { e.g. } \quad \tau=\kappa^{3}-1 \quad \Longleftrightarrow \quad \widetilde{\tau}=\widetilde{\kappa}^{3}-1
$$

Equivalence \& Syzygies

Theorem. (Cartan)
Two submanifolds are (locally) equivalent if and only if they have the same syzygies among all their differential invariants.

- Universal syzygies - Codazzi
- Distinguishing syzygies.

Proof:

Cartan's technique of the graph:
Construct the graph of the equivalence map as the solution to a (Frobenius) integrable differential system, which can be integrated by solving ordinary differential equations.

Finiteness of Syzygies

$\star \star$ Higher order syzygies are consequences of a finite number of the lowest order syzygies.

Example. If

$$
\kappa_{s}=H(\kappa)
$$

then

$$
\begin{aligned}
\kappa_{s s} & =\frac{d}{d s} H(\kappa) \\
& =H^{\prime}(\kappa) \kappa_{s} \\
& =H^{\prime}(\kappa) H(\kappa)
\end{aligned}
$$

Thus, for Euclidean (or equi-affine or projective or ...) plane curves we need only know a single syzygy between κ and κ_{s} in order to establish equivalence!

The Signature Map

The generating syzygies are encoded by the signature map

$$
\Sigma: N \quad \longrightarrow \mathcal{S}
$$

parametrized by the fundamental differential invariants:

$$
\Sigma(x)=\left(I_{1}(x), \ldots, I_{m}(x)\right) \quad \text { for } \quad x \in N .
$$

We call

$$
\mathcal{S}=\operatorname{Im} \Sigma
$$

the signature subset (or submanifold) of N.

The Signature Theorem

Theorem. Two submanifolds are equivalent

$$
\bar{N}=g \cdot N
$$

if and only if their signatures are identical

$$
\mathcal{S}=\overline{\mathcal{S}}
$$

Differential Invariant Signatures

Plane Curves:

The signature curve $\mathcal{S} \subset \mathbb{R}^{2}$ of a plane curve $\mathcal{C} \subset \mathbb{R}^{2}$ is parametrized by the first two differential invariants κ and κ_{s} :

$$
\mathcal{S}=\left\{\left(\kappa, \frac{d \kappa}{d s}\right)\right\} \subset \mathbb{R}^{2}
$$

Theorem. Two curves \mathcal{C} and $\overline{\mathcal{C}}$ are equivalent

$$
\overline{\mathcal{C}}=g \cdot \mathcal{C}
$$

if and only if their signature curves are identical

$$
\overline{\mathcal{S}}=\mathcal{S}
$$

More Differential Invariant Signatures

Space Curves:

The signature curve of a space curve $\mathcal{C} \subset \mathbb{R}^{3}$ is parametrized by

$$
\mathcal{S}=\left\{\left(\kappa, \frac{d \kappa}{d s}, \tau\right)\right\} \subset \mathbb{R}^{3}
$$

$$
\Longrightarrow \text { DNA recognition (Shakiban) }
$$

Euclidean Surfaces:

The signature surface of a (generic) surface $N \subset \mathbb{R}^{3}$ under the Euclidean group is parametrized by

$$
\mathcal{S}=\left\{\left(K, H, K_{, 1}, K_{, 2}\right)\right\} \subset \mathbb{R}^{4}
$$

\Longrightarrow umbilic points

Advantages of the Signature

- Completely local
- Applies to curves, surfaces and higher dimensional submanifolds
- Symmetries and approximate symmetries
- Occulsions and reconstruction

Symmetry Groups

Symmetry subgroup of a submanifold:

$$
G_{N}=\{g \in G \mid g \cdot N=N\} \subset G
$$

Theorem. The dimension of the symmetry group of a (regular) submanifold equals the codimension of its signature:

$$
\operatorname{dim} G_{N}=\operatorname{dim} N-\operatorname{dim} \mathcal{S}
$$

Corollary.

$$
0 \leq \operatorname{dim} G_{N} \leq p=\operatorname{dim} N
$$

\Longrightarrow Only totally singular submanifolds can have larger symmetry groups!

Maximally Symmetric Submanifolds

Theorem. The following are equivalent:

- The submanifold N has a p-dimensional symmetry group
- The signature \mathcal{S} degenerates to a point:

$$
\operatorname{dim} \mathcal{S}=0
$$

- The submanifold has all constant differential invariants
- $N=H \cdot\left\{z_{0}\right\}$ is the orbit of a p-dimensional subgroup $H \subset G$
\Longrightarrow In Euclidean geometry, these are the circles, straight lines, spheres \& planes.
\Longrightarrow In equi-affine plane geometry, these are the conic sections.

Discrete Symmetries

Definition. The index of a submanifold N equals the number of points in \mathcal{C} which map to a generic point of its signature \mathcal{S} :

$$
\iota_{N}=\min \left\{\# \Sigma^{-1}\{w\} \mid w \in \mathcal{S}\right\}
$$

\Longrightarrow Self-intersections

Theorem. The number of symmetries of N equals its index:

$$
\# G_{N}=\iota_{N}
$$

\Longrightarrow Approximate symmetries

Signature Metrics

- Hausdorff
- Monge-Kantorovich transport metric
- Electrostatic repulsion
- Latent semantic analysis (Shakiban)
- Histograms (Kemper-Boutin)
- Geodesic distance
- Diffusion metric
- Gromov-Hausdorff

Noise Reduction

The key objection to the differential invariant signature is its dependence on (high order) derivatives, and hence sensitivity to noise.

Noise Reduction Strategy \#1: Smoothing

Apply (group-invariant) smoothing to the object.
Curvature flows:

$$
C_{t}=-\kappa \mathbf{n} \quad u_{t}=-\frac{u_{x x}}{1+u_{x}^{2}}
$$

\Longrightarrow Hamilton-Gage-Grayson

Noise Reduction Strategy \#2: Use lower order invariants to construct a signature.

Joint Invariants

A joint invariant is an invariant of the k-fold Cartesian product action of G on $M \times \cdots \times M$:

$$
I\left(g \cdot z_{1}, \ldots, g \cdot z_{k}\right)=I\left(z_{1}, \ldots, z_{k}\right)
$$

A joint differential invariant or semi-differential invariant is an invariant depending on the derivatives at several points $z_{1}, \ldots, z_{k} \in N$ on the submanifold:

$$
I\left(g \cdot z_{1}^{(n)}, \ldots, g \cdot z_{k}^{(n)}\right)=I\left(z_{1}^{(n)}, \ldots, z_{k}^{(n)}\right)
$$

Joint Euclidean Invariants

Theorem. Every joint Euclidean invariant is a function of the interpoint distances

$$
d\left(z_{i}, z_{j}\right)=\left\|z_{i}-z_{j}\right\|
$$

Joint Equi-Affine Invariants

Theorem. Every joint planar equi-affine invariant is a function of the triangular areas

$$
[i j k]=\frac{1}{2}\left(z_{i}-z_{j}\right) \wedge\left(z_{i}-z_{k}\right)
$$

Joint Projective Invariants

Theorem. Every joint projective invariant is a function of the planar cross-ratios

$$
C\left(z_{i}, z_{j}, z_{k}, z_{l}, z_{m}\right)=\frac{A B}{C D}
$$

Euclidean Joint Differential Invariants

- Planar Curves

- One-point

$$
\Rightarrow \text { curvature }
$$

$$
\kappa=\frac{\dot{z} \wedge \ddot{z}}{\|\dot{z}\|^{3}}
$$

- Two-point

$$
\begin{aligned}
& \Rightarrow \text { distances } \quad\left\|z_{1}-z_{0}\right\| \\
& \Rightarrow \text { tangent angles } \quad \phi^{k}=\Varangle\left(z_{1}-z_{0}, \dot{z}_{k}\right)
\end{aligned}
$$

Equi-Affine Joint Differential Invariants - Planar Curves

- One-point
\Rightarrow affine curvature

$$
\begin{aligned}
\kappa & =\frac{\left(z_{t} \wedge z_{t t t t}\right)+4\left(z_{t t} \wedge z_{t t t}\right)}{3\left(z_{t} \wedge z_{t t}\right)^{5 / 3}}-\frac{5\left(z_{t} \wedge z_{t t t}\right)^{2}}{9\left(z_{t} \wedge z_{t t}\right)^{8 / 3}} \\
& =z_{s} \wedge z_{s s}
\end{aligned}
$$

- Two-point

$$
\begin{aligned}
& \Rightarrow \text { tangent triangle area ratio } \\
& \qquad \frac{\dot{z}_{0} \wedge \ddot{z}_{0}}{\left[\left(z_{1}-z_{0}\right) \wedge \dot{z}_{0}\right]^{3}}=\frac{\left[\begin{array}{lll}
\dot{0} & \ddot{0}
\end{array}\right]}{\left[\begin{array}{lll}
0 & 1 & \dot{0}
\end{array}\right]^{3}}
\end{aligned}
$$

- Three-point

$$
\Rightarrow \text { triangle area }
$$

$$
\frac{1}{2}\left(z_{1}-z_{0}\right) \wedge\left(z_{2}-z_{0}\right)=\frac{1}{2}\left[\begin{array}{lll}
0 & 1 & 2
\end{array}\right]
$$

Projective Joint Differential Invariants - Planar Curves

- One-point

$$
\Rightarrow \text { projective curvature }
$$

$$
\kappa=\ldots
$$

- Two-point
\Rightarrow tangent triangle area ratio

$$
\frac{\left[\begin{array}{lll}
0 & 1 & \dot{0}
\end{array}\right]^{3}\left[\begin{array}{ll}
i & \ddot{1}
\end{array}\right]}{\left[\begin{array}{lll}
0 & 1 & i
\end{array}\right]^{3}\left[\begin{array}{lll}
\dot{0} & 0
\end{array}\right]}
$$

- Three-point

$$
\Rightarrow \text { tangent triangle ratio }
$$

- Four-point

$$
\begin{aligned}
& \Rightarrow \text { area cross-ratio } \\
& \qquad \frac{\left[\begin{array}{lll}
0 & 1 & 2
\end{array}\right]\left[\begin{array}{lll}
0 & 3 & 4
\end{array}\right]}{\left[\begin{array}{llll}
0 & 1 & 3
\end{array}\right]\left[\begin{array}{llll}
0 & 2 & 4
\end{array}\right]}
\end{aligned}
$$

Joint Euclidean Signature

For the Euclidean group $G=\operatorname{SE}(2)$ acting on curves $\mathcal{C} \subset \mathbb{R}^{2}\left(\right.$ or $\left.\mathbb{R}^{3}\right)$ we need at least four points

$$
z_{0}, z_{1}, z_{2}, z_{3} \in \mathcal{C}
$$

Joint invariants:

$$
\begin{array}{lll}
a=\left\|z_{1}-z_{0}\right\| & b=\left\|z_{2}-z_{0}\right\| & c=\left\|z_{3}-z_{0}\right\| \\
d=\left\|z_{2}-z_{1}\right\| & e=\left\|z_{3}-z_{1}\right\| & f=\left\|z_{3}-z_{2}\right\|
\end{array}
$$

\Longrightarrow six functions of four variables

Joint Signature: $\quad \Sigma: \mathcal{C}^{\times 4} \longrightarrow \mathcal{S} \subset \mathbb{R}^{6}$
$\operatorname{dim} \mathcal{S}=4 \quad \Longrightarrow \quad$ two syzygies

$$
\Phi_{1}(a, b, c, d, e, f)=0 \quad \Phi_{2}(a, b, c, d, e, f)=0
$$

Universal Cayley-Menger syzygy:

$$
\operatorname{det}\left|\begin{array}{ccc}
2 a^{2} & a^{2}+b^{2}-d^{2} & a^{2}+c^{2}-e^{2} \\
a^{2}+b^{2}-d^{2} & 2 b^{2} & b^{2}+c^{2}-f^{2} \\
a^{2}+c^{2}-e^{2} & b^{2}+c^{2}-f^{2} & 2 c^{2}
\end{array}\right|=0
$$

$$
\Longleftrightarrow \mathcal{C} \subset \mathbb{R}^{2}
$$

The Euclidean joint invariant signature encodes the distance matrix!

Four-Point Euclidean Joint Signature

Joint Equi-Affine Signature

Requires 7 triangular areas:
$\left[\begin{array}{lll}0 & 1 & 2\end{array}\right],\left[\begin{array}{lll}0 & 1 & 3\end{array}\right],\left[\begin{array}{lll}0 & 1 & 4\end{array}\right],\left[\begin{array}{lll}0 & 1 & 5\end{array}\right],\left[\begin{array}{lll}0 & 2 & 3\end{array}\right],\left[\begin{array}{lll}0 & 2 & 4\end{array}\right],\left[\begin{array}{lll}0 & 2 & 5\end{array}\right]$

Joint Invariant Signatures

- The joint invariant signature subsumes other signatures, but resides in a higher dimensional space and contains a lot of redundant information.
- Identification of landmarks can significantly reduce the redundancies (Boutin)
- It includes the differential invariant signature and semi-differential invariant signatures as its "coalescent boundaries".
- Invariant numerical approximations to differential invariants and semi-differential invariants are constructed (using moving frames) near these coalescent boundaries.

Histograms

Theorem. (Boutin-Kemper)

All point configurations

$$
\left(z_{1}, \ldots, z_{n}\right) \in M^{\times n} \backslash V
$$

lying outside a certain algebraic subvariety V are uniquely determined by their Euclidean distance histograms.

Invariant Numerical Approximations

$G \quad$ - Lie group acting on M

Basic Idea:

Every invariant finite difference approximation to a differential invariant must expressible in terms of the joint invariants of the transformation group.

Differential Invariant

$$
I\left(g^{(n)} \cdot z^{(n)}\right)=I\left(z^{(n)}\right)
$$

Joint Invariant

$$
J\left(g \cdot z_{0}, \ldots, g \cdot z_{k}\right)=J\left(z_{0}, \ldots, z_{k}\right)
$$

Semi-differential invariant $=$
Joint differential invariant

* \star Approximate differential invariants by joint invariants

Euclidean Invariants

Joint Euclidean invariant:

$$
\mathbf{d}(z, w)=\|z-w\|
$$

Euclidean curvature:

$$
\kappa=\frac{u_{x x}}{\left(1+u_{x}^{2}\right)^{3 / 2}}
$$

Euclidean arc length:

$$
d s=\sqrt{1+u_{x}^{2}} d x
$$

Higher order differential invariants:

$$
\kappa_{s}=\frac{d \kappa}{d s} \quad \kappa_{s s}=\frac{d^{2} \kappa}{d s^{2}} \quad \ldots
$$

Euclidean-invariant differential equation:

$$
F\left(\kappa, \kappa_{s}, \kappa_{s s}, \ldots\right)=0
$$

Numerical approximation to curvature

Heron's formula

$$
\begin{gathered}
\widetilde{\kappa}(A, B, C)=4 \frac{\Delta}{a b c}=4 \frac{\sqrt{s(s-a)(s-b)(s-c)}}{a b c} \\
s=\frac{a+b+c}{2} \quad-\quad \text { semi-perimeter }
\end{gathered}
$$

Higher order invariants

$$
\kappa_{s}=\frac{d \kappa}{d s}
$$

Invariant finite difference approximation:

$$
\widetilde{\kappa}_{s}\left(P_{i-2}, P_{i-1}, P_{i}, P_{i+1}\right)=\frac{\widetilde{\kappa}\left(P_{i-1}, P_{i}, P_{i+1}\right)-\widetilde{\kappa}\left(P_{i-2}, P_{i-1}, P_{i}\right)}{\mathbf{d}\left(P_{i}, P_{i-1}\right)}
$$

Unbiased centered difference:

$$
\widetilde{\kappa}_{s}\left(P_{i-2}, P_{i-1}, P_{i}, P_{i+1}, P_{i+2}\right)=\frac{\widetilde{\kappa}\left(P_{i}, P_{i+1}, P_{i+2}\right)-\widetilde{\kappa}\left(P_{i-2}, P_{i-1}, P_{i}\right)}{\mathbf{d}\left(P_{i+1}, P_{i-1}\right)}
$$

Better approximation (M. Boutin):

$$
\begin{array}{r}
\widetilde{\kappa}_{s}\left(P_{i-2}, P_{i-1}, P_{i}, P_{i+1}\right)=3 \frac{\widetilde{\kappa}\left(P_{i-1}, P_{i}, P_{i+1}\right)-\widetilde{\kappa}\left(P_{i-2}, P_{i-1}, P_{i}\right)}{\mathbf{d}_{i-2}+2 \mathbf{d}_{i-1}+2 \mathbf{d}_{i}+\mathbf{d}_{i+1}} \\
\mathbf{d}_{j}=\mathbf{d}\left(P_{j}, P_{j+1}\right)
\end{array}
$$

Affine Joint Invariants

$$
\mathbf{x} \rightarrow A \mathbf{x}+b \quad \operatorname{det} A=1
$$

Area is the fundamental joint affine invariant

$$
\begin{aligned}
{[i j k] } & =\left(P_{i}-P_{j}\right) \wedge\left(P_{i}-P_{k}\right) \\
& =\operatorname{det}\left|\begin{array}{lll}
x_{i} & y_{i} & 1 \\
x_{j} & y_{j} & 1 \\
x_{k} & y_{k} & 1
\end{array}\right| \\
& =\text { Area of parallelogram } \\
& =2 \times \text { Area of triangle } \Delta\left(P_{i}, P_{j}, P_{k}\right)
\end{aligned}
$$

Syzygies:

$$
\begin{gathered}
{[i j l]+[j k l]=[i j k]+[i k l]} \\
{[i j k][i l m]-[i j l][i k m]+[i j m][i k l]=0}
\end{gathered}
$$

Affine Differential Invariants

Affine curvature

$$
\kappa=\frac{3 u_{x x} u_{x x x x}-5 u_{x x x}^{2}}{9\left(u_{x x}\right)^{8 / 3}}
$$

Affine arc length

$$
d s=\sqrt[3]{u_{x x}} d x
$$

Higher order affine invariants:

$$
\kappa_{s}=\frac{d \kappa}{d s} \quad \kappa_{s s}=\frac{d^{2} \kappa}{d s^{2}} \quad \ldots
$$

Conic Sections

$$
A x^{2}+2 B x y+C y^{2}+2 D x+2 E y+F=0
$$

Affine curvature:

$$
\begin{gathered}
\kappa=\frac{S}{T^{2 / 3}} \\
S=A C-B^{2}=\operatorname{det}\left|\begin{array}{ll}
A & B \\
B & C
\end{array}\right| \\
T=\operatorname{det}\left|\begin{array}{lll}
A & B & D \\
B & C & E \\
D & E & F
\end{array}\right|
\end{gathered}
$$

Ellipse:

$$
\begin{gathered}
\kappa=(\pi / \mathbf{A})^{2 / 3} \\
\mathbf{A}=\pi \frac{T}{S^{3 / 2}}=\text { Area }
\end{gathered}
$$

Affine arc length of ellipse:

$$
\begin{aligned}
\int_{P}^{Q} d s & =\left.\frac{T^{1 / 3}}{S^{1 / 2}} \arcsin \sqrt{\frac{-C T}{S^{2}}}\left(x+\frac{C D-B E}{S}\right)\right|_{P} ^{Q} \\
& =2 S T^{-2 / 3} \mathbf{A}(P, Q)
\end{aligned}
$$

$$
\sigma 43
$$

$\mathbf{A}(P, Q):$

Triangular approximation:

Total affine arc length:

$$
\mathbf{L}=2 \sqrt[3]{\mathbf{A}}=-2 \pi \frac{\sqrt[3]{T}}{\sqrt{S}}
$$

Conic through five points P_{0}, \ldots, P_{4} :

$$
\begin{aligned}
{[013][024][\mathrm{x} 12][\mathrm{x} 34]=[012][034][\mathrm{x} 13][\mathrm{x} 24] } & \\
\mathbf{x} & =(x, y)
\end{aligned}
$$

Affine curvature and arc length:

$$
\begin{aligned}
\kappa= & \frac{S}{T^{2 / 3}} \\
d s= & \operatorname{Area} \Delta\left(O, P_{1}, P_{3}\right)=\frac{1}{2}\left[O, P_{1}, P_{3}\right]=\frac{N}{2 S} \\
4 T= & \prod_{0 \leq i<j<k \leq 4}[i j k] \\
4 S= & {[013]^{2}[024]^{2}([124]-[123])^{2}+} \\
& +[012]^{2}[034]^{2}([134]+[123])^{2}- \\
& -2[012][034][013][024]([123][234]+[124][134]) \\
4 N= & -[123][134]\left\{[023]^{2}[014]^{2}([124]-[123])+\right. \\
& +[012]^{2}[034]^{2}([134]+[123])+ \\
& +[012][023][014][034]([134]-[123])\}
\end{aligned}
$$

