Symmetry, Invariants,

 Puzzles, and CancerPeter J. Olver
University of Minnesota
http://www.math.umn.edu/ ~olver

Why Math?

Math is alive

Math is fun
Math is important

Math is everywhere!

No matter what your career path will be, the more math you learn, the better you will do, and the more opportunities you will have!

What math do you need to learn?

葉潥 Linear algebra (matrices)

Symmetry
Group Theary!

Next to the concept of a function, which is the most important concept pervading the whole of mathematics, the concept of a group is of the greatest significance in the various branches of mathematics and its applications.

- P.S. Alexandroff

Groups

Definition. A group G is a set with a binary operation $g \cdot h$ satisfying

- Associativity: $g \cdot(h \cdot k)=(g \cdot h) \cdot k$
- Identity: $\quad g \cdot e=g=e \cdot g$
- Inverse:

$$
g \cdot g^{-1}=e=g^{-1} \cdot g
$$

\Longrightarrow not necessarily commutative: $g \cdot h \neq h \cdot g$

Examples of groups

The integers

$$
\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots
$$

Group operation: addition $3+5=8$
Identity: zero $3+0=3=0+3$
Inverse: negative $7+(-7)=0=(-7)+7$

Examples of groups

The rational numbers (fractions)

$$
\begin{aligned}
& \text { Group operation: addition } 1 / 4+5 / 3=23 / 12 \\
& \text { Identity: zero } 5 / 3+0=5 / 3=0+5 / 3 \\
& \text { Inverse: negative } 7 / 2+(-7 / 2)=0=(-7 / 2)+7 / 2
\end{aligned}
$$

Examples of groups

The positive rational numbers

```
Group operation: multiplication 1/4 x 5/3=5/12
    Identity: one 5/3\times1=5/3=1\times5/3
    Inverse: reciprocal 7/2 x 2/7=1=2/7 x 7/2
```


Examples of groups

The positive real numbers

Group operation: multiplication

$$
\begin{array}{cc}
\sqrt{2} \times \pi=\sqrt{2} \pi=4.44288293815836624701588099006 \ldots \\
\text { Identity: one } & \pi \times 1=\pi=1 \times \pi \\
\text { Inverse: reciprocal } & \pi \times 1 / \pi=1=1 / \pi \times \pi
\end{array}
$$

Examples of groups

Non-singular matrices

$g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \quad h=\left(\begin{array}{cc}x & y \\ z & w\end{array}\right) \quad a d-b c \neq 0 \neq x w-y z$
Group operation:
$g \cdot h=\left(\begin{array}{ll}a x+b z & a y+b w \\ c x+d z & c y+d w\end{array}\right) \neq\left(\begin{array}{ll}a x+c y & b x+d y \\ a z+c w & b z+d w\end{array}\right)=h \cdot g$
Identity: $\quad e=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right), \quad e \cdot g=g=g \cdot e$
Inverse: $\quad g^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right), \quad g \cdot g^{-1}=e^{-1}=g \cdot g$

Symmetry Groups

A symmetry g of a geometric object S is a transformation that preserves it: $g \cdot S=S$

The set of symmetries of a geometric object forms a group

The group operation is composition: $\mathrm{g} \cdot \mathrm{h}=$ first do h , then do g

The composition of two symmetries is a symmetry
The identity (do nothing) is always a symmetry
The inverse of a symmetry (undo it) is a symmetry

Discrete Symmetry Group

Rotations by 90°, 180°, 270 응
and 0 0 (identity)

Discrete Symmetry Group

Rotations by 90 , 180 , 270 응
and 0 ㅇ (identity)
... and 4 reflections
(mirror image)

Wallpaper patterns

H 17 symmetry types

Tilings - Jameh Mosque, Esfahan, Iran

Crystallography

The Koch snowflake - a fractal curve

Dome of the Sheikh Lotfollah Mosque - Isfahan, Iran

$$
\text { M.C. Escher - Circle Limit } \mathcal{I V}
$$

Continuous Symmetry Group

Rotations through any angle

Continuous Symmetry Group

Rotations through any angle
and reflections

A continuous symmetry group is known as a Lie group in honor of the nineteenth century Norwegian mathematician Sophus Lie (Lee)

Transformation groups
Translations

Transformation groups

Noncommutativity of 3D rotations - order matters!

Transformation groups

Transformation groups
Scaling (similarity)

Transformation groups
Projective Transformation

Transformation groups

Projective Transformation

Projective transformations in art and photography

$$
\text { Albrecht Durer - } 1500
$$

A simple camera

Musashino Art University

Geometry $=$ Group Theory

Felix Klein's Erlanger Programm (1872):

Each type of geometry is founded on a corresponding transformation group.

Euclidean geometry: rigid motions (translations and rotations)
"Mirror" geometry: translations, rotations, and reflections
Similarity geometry: translations, rotations, reflections, and scalings
Projective geometry: all projective transformations

The Equivalence Problem

When are two shapes related by a group transformation?

- Rigid (Euclidean) equivalence
- Similarity equivalence
- Projective equivalence
- etc.

Rigid equivalence

When are two shapes related by a rigid motion?

Tennis, anyone?

Projective equivalence \& symmetry

Equivalence of puzzle pieces

Equivalence of puzzle pieces

The Equivalence Problem

When are two shapes related by a group transformation?

Invariants

* Solving the equivalence problem requires knowing enough invariants - quantities that are unchanged by the group transformations

Invariants are quantities that are unchanged by the group transformations

If two shapes are equivalent, they must have the same invariants.

Joint invariants

An invariant that depends on several points is known as a joint invariant

Joint invariants

Rigid motions: distance between two points

Joint invariants

Similarity group: ratios of distances R and angles θ

Joint invariants

Projective group: ratios of 4 areas

$$
\frac{A B}{C D}
$$

Distances between multiple points

$1,1,1,1, \sqrt{2}, \sqrt{2}$.

The Distance Histogram invariant under rigid motions

$$
1,1,1,1, \sqrt{2}, \sqrt{2} .
$$

If two sets of points are equivalent up to rigid motion, they have the same distance histogram

> Does the distance histogram uniquely determine a set of points up to rigid motion?

The Tinkertoy Problem

The Tinkertoy Problem

Zome System
** David Richter

Does the distance histogram uniquely determine a set of points up to rigid motion?

Answer: Yes for most sets of points, but there are some exceptions!

领 Mireille (Mimi) Boutin and Gregor Kemper (2004)

Yes:

$$
1,1,1,1, \quad \sqrt{2}, \quad \sqrt{2}
$$

No:

Dístance histogram for points on a líne

Does the distance histogram uniquely determine a set of points up to rigid motion?

Distance histogram for points on a líne

No:

$$
\begin{gathered}
P=\{0,1,4,10,12,17\} \\
Q=\{0,1,8,11,13,17\} \\
\eta=1,2,3,4,5,6,7,8,9,10,11,12,13,16,17
\end{gathered}
$$

\Longrightarrow G. Bloom, J. Comb. Theory, Ser. A 22 (1977) 378-379

Limiting Curve Histogram

Limiting Curve Histogram

Limiting Curve Histogram

Brinkman, D., and Olver, P.J., Invariant histograms, Amer. Math. Monthly 119 (2012), 4-24

Distinguishing Moles from Melanomas

- Anna Grim and Cheri Shakiban, 2015

Distance Histogram - Melanoma

Distance Histogram - Mole

CUMULATIVE HISTOGRAM: Mole versus Melanoma

TYPICAL MOLE CUMULATIVE HISTOGRAM

TYPICAL MELANOMA CUMULATIVE HISTOGRAM

CONCAVITY POINT ANALYSIS

CONCAVITY POINT FREQUENCY

7

For smooth objects - curves, surfaces, etc., we need to use calculus to find

Differential Invariants

A Differential Invariant

Curvature is a measure of "bendiness".

Curvature $=$ reciprocal of radius of osculating circle

Curvature is a measure of "bendiness".

What everyday device can measure curvature?

Can you reconstruct the racetrack?

Can you reconstruct the racetrack?

Can you reconstruct the racetrack?

κ is (Euclidean) curvature
S is (Euclidean) arclength

Racetrack comparison problem

Racetrack comparison problem

The Invariant Signature

The invariant signature of a planar curve is the set traced out by curvature and the rate of change of curvature (its arclength derivative).

original curve

invariant signature

The invariant signature

Theorem

Two curves are related by a rotation and translation if* and only if they have the same invariant signatures.

Proof idea

Theorem (Élie Cartan 1908)
Shapes are related if and only if they have the same relationships among their differential invariants.
(Calabi, Haker, Olver, Shakiban, Tannenbaum 1998)

Diagnosing breast tumors

Anna Grim, Cheri Shakiban

Benign - cyst

Malignant - cancerous

A BENIGN TUMOR

Contour

Signature Curve

A MALIGNANT TUMOR

Contour

Signature Curve

Applications to Jigsaw Puzzles

A practical algorithm

Step 1. Compute invariant signatures of both pieces.
Step 2. Compare signatures to find potential fits.
Step 3. Put them together, if they fit.
Repeat until puzzle is assembled....

Assembling the puzzle...
亿

ज Ht ES ज N

Piece Locking

* \star Minimize force and torque based on gravitational attraction of the two matching edges.

The Baffler Nonagon
䫆

The Baffler Nonagon - Solved

Putting Hlumpty Dumpty Together Again

\longrightarrow Anna Grim, Ryan Slechta, Tim O'Connor, Rob Thompson, Cheri Shakiban, Peter Olver

A synthetic 3d jigsaw puzzle

Assembly of synthetic spherical puzzle

- Uses curvature and torsion invariants

A broken ostrich egg

(Scanned by M. Bern, Xerox PARC)

An egg piece

All the king's horses and men

The elephant bird business plan

The elephant bird of Madagascar

(Image from wikipedia.org)more than 3 meters tallextinct by the 1700'sone egg could make about 160 omelets

Elephant loird egg shells

(Extract from "Zoo Quest to Madagascar", BBC 1961)

The elephant bird of Madagascar

(Image from Tennant's Auctioneers)

- pictured egg is 70% completecomplete egg recently sold for $\$ 100,000$

Puzzles in archaeology

Puzzles in surgery

Puzzles in biology - Autostitcher for histological sections

Acknowledgments:

Thanks to Rob Thompson and Cheri Shakiban for sharing their slides!

Undergraduates: Dan Brinkman, Anna Grim, Dan Hoff, Tim O'Connor, Ryan Slechta
Ph.D. students (past and present): Mimi Boutin, Steve Haker, David Richter, Jessica Senou, Rob Thompson
Collaborators: Eugene Calabi, Cheri Shakiban, Allen Tannenbaum

