Symmetry, Invariants, Puzzles, and Cancer

Peter J. Olver University of Minnesota http://www.math.umn.edu/~olver

Wayzata, October, 2016

Math is alive Math is fun Math is important

Math is everywhere!

No matter what your career path will be, the more math you learn, the better you will do, and the more opportunities you will have!

What math do you need to learn?

** Calculus (derivative = rate of change)

Group Theory!

Next to the concept of a function, which is the most important concept pervading the whole of mathematics, the concept of a group is of the greatest significance in the various branches of mathematics and its applications.

— P.S. Alexandroff

Groups

- **Definition.** A group G is a set with a binary operation $g \cdot h$ satisfying
 - Associativity: $g \cdot (h \cdot k) = (g \cdot h) \cdot k$
 - Identity: $g \cdot e = g = e \cdot g$
 - Inverse: $g \cdot g^{-1} = e = g^{-1} \cdot g$

 \implies not necessarily commutative: $g \cdot h \neq h \cdot g$

The integers

..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...

Group operation: addition 3 + 5 = 8Identity: zero 3 + 0 = 3 = 0 + 3Inverse: negative 7 + (-7) = 0 = (-7) + 7

The rational numbers (fractions)

Group operation: addition 1/4 + 5/3 = 23/12Identity: zero 5/3 + 0 = 5/3 = 0 + 5/3Inverse: negative 7/2 + (-7/2) = 0 = (-7/2) + 7/2

The positive rational numbers

Group operation: multiplication $1/4 \ge 5/3 = 5/12$ Identity: one $5/3 \ge 1 \ge 5/3 = 1 \ge 5/3$ Inverse: reciprocal $7/2 \ge 2/7 = 1 = 2/7 \ge 7/2$

The positive real numbers

Group operation: multiplication

Non-singular matrices

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad h = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \qquad ad - bc \neq 0 \neq xw - yz$$

Group operation:

$$g \cdot h = \begin{pmatrix} ax + bz & ay + bw \\ cx + dz & cy + dw \end{pmatrix} \neq \begin{pmatrix} ax + cy & bx + dy \\ az + cw & bz + dw \end{pmatrix} = h \cdot g$$

Identity: $e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad e \cdot g = g = g \cdot e$
Inverse: $g^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \quad g \cdot g^{-1} = e^{-1} = g \cdot g$

Symmetry Groups

A symmetry g of a geometric object S is a transformation that preserves it: $g \cdot S = S$

The set of symmetries of a geometric object forms a group

The group operation is composition: $g \cdot h = first do h$, then do g

The composition of two symmetries is a symmetry The identity (do nothing) is always a symmetry The inverse of a symmetry (undo it) is a symmetry

Discrete Symmetry Group

Rotations by 90°, 180°, 270°

and 0º (identity)

Wallpaper patterns

Tilings — Jameh Mosque, Esfahan, Iran

The Koch snowflake -a fractal curve

****** Scaling symmetry

Dome of the Sheikh Lotfollah Mosque – Isfahan, Iran

Continuous Symmetry Group

Rotations through any angle

Continuous Symmetry Group

Rotations through any angle

and reflections

A continuous symmetry group is known as a Lie group in honor of the nineteenth century Norwegian mathematician Sophus Lie (Lee)

Translations

Rotations

Noncommutativity of 3D rotations — order matters!

Reflections

Scaling (similarity)

Projective Transformation

Projective Transformation

Projective transformations in art and photography

Albrecht Durer – 1500

Musashino Art University

Geometry = Group Theory

Felix Klein's Erlanger Programm (1872):

Each type of geometry is founded on a corresponding transformation group.

Euclidean geometry: rigid motions (translations and rotations)
"Mirror" geometry: translations, rotations, and reflections
Similarity geometry: translations, rotations, reflections, and scalings
Projective geometry: all projective transformations

The Equivalence Problem

When are two shapes related by a group transformation?

- Rigid (Euclidean) equivalence
- Similarity equivalence
- Projective equivalence
- etc.
Rigid equivalence

When are two shapes related by a rigid motion?

Tennis, anyone?

Real Projective equivalence & symmetry

Equivalence of puzzle pieces

Equivalence of puzzle pieces

The Equivalence Problem

When are two shapes related by a group transformation?

Invariants

★★ Solving the equivalence problem requires knowing enough invariants — quantities that are unchanged by the group transformations

Invariants are quantities that are unchanged by the group transformations

If two shapes are equivalent,

they must have the same invariants.

An invariant that depends on several points is known as a joint invariant

Joint invariants

Rigid motions: distance between two points

Joint invariants

Similarity group: ratios of distances R and angles θ

Joint invariants

Projective group: ratios of 4 areas

AB \overline{CD}

Distances between multiple points

1, 1, 1, 1, $\sqrt{2}$, $\sqrt{2}$.

The Distance Histogram —

invariant under rigid motions

1, 1, 1, 1, $\sqrt{2}$, $\sqrt{2}$.

If two sets of points are equivalent up to rigid motion, they have the same distance histogram

Does the distance histogram uniquely determine a set of points up to rigid motion?

The Tinkertoy Problem

The Tinkertoy Problem

Zome System

****** David Richter

Does the distance histogram uniquely determine a set of points up to rigid motion?

Answer: Yes for most sets of points, but there are some exceptions!

 \cancel{a} Mireille (Mimi) Boutin and Gregor Kemper (2004)

Yes:

1, 1, 1, 1, $\sqrt{2}$, $\sqrt{2}$.

 $\sqrt{2}, \quad \sqrt{2}, \quad 2, \quad \sqrt{10}, \quad \sqrt{10}, \quad 4.$

Dístance hístogram for poínts on a líne

Does the distance histogram uniquely determine a set of points up to rigid motion? Dístance hístogram for poínts on a líne

No:

$$P = \{0, 1, 4, 10, 12, 17\}$$
$$Q = \{0, 1, 8, 11, 13, 17\}$$
$$\eta = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17$$

 \implies G. Bloom, J. Comb. Theory, Ser. A **22** (1977) 378–379

Limiting Curve Histogram

Limiting Curve Histogram

Limiting Curve Histogram

Brinkman, D., and Olver, P.J., Invariant histograms, Amer. Math. Monthly 119 (2012), 4-24

Distinguishing Moles from Melanomas

• Anna Grim and Cheri Shakiban, 2015

Distance Histogram — Melanoma

Distance Histogram — Mole

CUMULATIVE HISTOGRAM: Mole versus Melanoma

TYPICAL MOLE CUMULATIVE HISTOGRAM

TYPICAL MELANOMA CUMULATIVE HISTOGRAM

CONCAVITY POINT ANALYSIS

CONCAVITY POINT FREQUENCY

For smooth objects — curves, surfaces, etc.,

we need to use calculus to find

Differential Invariants

A Differential Invariant

Curvature is a measure of "bendiness".

Curvature = reciprocal of radius of osculating circle

Curvature is a measure of "bendiness".

What everyday device can measure curvature?

Can you reconstruct the racetrack?

Can you reconstruct the racetrack?

Can you reconstruct the racetrack?

 κ is (Euclidean) curvature

S is (Euclidean) arclength

Racetrack comparison problem

Racetrack comparison problem

The Invariant Signature

The invariant signature of a planar curve is the set traced out by curvature and the rate of change of curvature (its arclength derivative).

The invariant signature

Theorem

Two curves are related by a rotation and translation if* and only if they have the same invariant signatures.

Proof idea

Theorem (Élie Cartan 1908)

Shapes are related if and only if they have the same relationships among their **differential invariants**.

(Calabi, Haker, Olver, Shakiban, Tannenbaum 1998)

Díagnosíng breast tumors

Anna Grim, Cheri Shakiban

Benign – cyst

Malignant – cancerous

A BENIGN TUMOR

A MALIGNANT TUMOR

Applications to Jigsaw Puzzles

- Step 1. Compute invariant signatures of both pieces.
- Step 2. Compare signatures to find potential fits.
- **Step 3.** Put them together, if they fit.

Repeat until puzzle is assembled....

Piece Locking

 $\star \star$ Minimize force and torque based on gravitational attraction of the two matching edges.

The Baffler Nonagon

The Baffler Nonagon — Solved

Putting Humpty Dumpty Together Again

Anna Grim, Ryan Slechta, Tim O'Connor, Rob Thompson, Cheri Shakiban, Peter Olver

A synthetic 3d jigsaw puzzle

Assembly of synthetic spherical puzzle

• Uses curvature and torsion invariants

A broken ostrich egg

(Scanned by M. Bern, Xerox PARC)

An egg piece

All the king's horses and men

The elephant bird business plan

The elephant bird of Madagascar

(Image from wikipedia.org)

more than 3 meters tall

extinct by the 1700's

one egg could make about 160 omelets

Elephant bird egg shells

(Extract from "Zoo Quest to Madagascar", BBC 1961)

The elephant bird of Madagascar

(Image from Tennant's Auctioneers)

complete egg recently sold for \$100,000

Puzzles in archaeology

Puzzles in archaeology

Puzzles in surgery

Puzzles in biology — Autostitcher for histological sections

Acknowledgments:

Thanks to Rob Thompson and Cherí Shakíban for sharing their slídes!

Undergraduates: Dan Brinkman, Anna Grim, Dan Hoff, Tim O'Connor, Ryan Slechta

Ph.D. students (past and present): Mimi Boutin, Steve Haker, David Richter, Jessica Senou, Rob Thompson

Collaborators: Eugene Calabi, Cheri Shakiban, Allen Tannenbaum