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Abstract
The shape of cells and the control thereof plays a central role in a variety of cellular
processes, including endo- and exocytosis, cell division and cell movement. Intra- and
extracellular forces control the shapes, and while the shape changes in some processes
such as exocytosis are intracellularly-controlled and localized in the cell, movement
requires force transmission to the environment, and the feedback from it can affect
the cell shape and mode of movement used. The shape of a cell is determined by
its cytoskeleton (CSK), and thus shape changes involved in various processes involve
controlled remodeling of the CSK.Whilemuch is known about individual components
involved in these processes, an integrated understanding of how intra- and extracellular
signals are coupled to the control of the mechanical changes involved is not at hand for
any of them. As a first step toward understanding the interaction between intracellular
forces imposed on the membrane and cell shape, we investigate the role of distributed
surrogates for cortical forces in producing the observed three-dimensional shapes.
We show how different balances of applied forces lead to such shapes, that there are
different routes to the same end state, and that state transitions between axisymmetric
shapes need not all be axisymmetric. Examples of the force distributions that lead to
protrusions are given, and the shape changes induced by adhesion of a cell to a surface
are studied. The results provide a reference framework for developing detailed models
of intracellular force distributions observed experimentally, and provide a basis for
studying how movement of a cell in a tissue or fluid is influenced by its shape.

Dedicated to Avner Friedman on his 90th birthday. Avner has made very significant contributions to
mathematical biology via his founding of the Mathematical Biosciences Institute at Ohio State University
and his mentorship of many researchers.

B Jay A. Stotsky
jstotsky@umn.edu

Hans G. Othmer
othmer@umn.edu

1 School of Mathematics, University of Minnesota, Minneapolis, MN 100190, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-022-01836-x&domain=pdf
http://orcid.org/0000-0001-6035-5979


1 Page 2 of 43 J. A. Stotsky, H. G. Othmer

Keywords Cell cortex · Helfrich energy · Surface finite element method

Mathematics Subject Classification 92-08 · 92-C17 · 92-C10

1 Introduction

Cell locomotion plays an essential role in both single-cell andmulticellular organisms,
and movement is a complex process that involves the spatio-temporal control and
integration of a number of sub-processes. These include the transduction of chemical
or mechanical signals from the environment, intracellular biochemical responses, and
translation of the intra- and extracellular signals into a mechanical response. The
essential ingredient for motion is that a cell must be able to transmit force to its
surroundings, and this can be done in many ways (Paul et al. 2017; Othmer 2018).
Some cells use cilia to swim while others simply crawl, but some cells interrogate the
environment and adopt the appropriatemode. There are twomajormodes of individual
cellmovement of eukaryotic cells, themesenchymal or crawlingmode,which typically
involves strong adhesion to a surface, and the amoeboid mode, which involves weaker
attachment, and can involve swimming or movement by deformation through tissues
(Lämmermann et al. 2008). A summary of the qualitative shapes of both modes and
how they depend on the cell’s environment is shown in Fig. 1.

Three examples of the diversity of amoeboid movement used by Dictyoselium
discoideum (Dd) and the shapes that arise during movement are shown in Fig. 2. In
one mode cells move by blebbing, which involves cycles of extension of the front and
retraction of the rear (Fig. 2a),while in a second they extend rounded protrusions called
pseudopodia (Fig. 2b). A third, less-studied mode used by eukaryotic cells involves
swimming in a fluid. Barry and Bretscher (2010) showed experimentally that both
Dd cells and neutrophils can swim through fluid-filled voids in their environment by
propagating protrusions down their body length, as shown in Fig. 2c. This mode has
been analyzed using a 2Dmodel and the results give insights into how characteristics of
the protrusions, such as their height, affect the swimmer’s speed and efficiency (Wang

Fig. 1 A summary of the different modes of movement in different environments. FromWelch (2015) with
permission
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Fig. 2 a A Dictyostelium
discoideum (Dd) cell migrating
to the lower right by repetitive
blebbing. Arrowheads indicate
the successive blebs and arcs of
the actin cortex. Reproduced
with permission from Charras
and Paluch (2008). b A
Dictyostelium cell moving by
retraction of one pseudopod and
extension of another.
Reproduced with permission
from Zhang et al. (2002). c
Three snapshots of a swimming
Dictyostelium cell

and Othmer 2015). The protrusions exhibited in these examples involve deformations
of the cell shape that result from localized changes in forces from the CSK, from
osmotic effects and from forces from the microenvironment, which may include other
cells. These shape changes require forces that must be correctly orchestrated in space
and time to produce net motion,
and to understand this orchestration one must couple the intracellular dynamics with
the state of the surrounding fluid or tissuemicroenvironment. Tension in themembrane
and the underlying cortex has emerged as an important factor in this orchestration,
and these tensions play a very clear role in some cells.

The steady-state shapes of vesicles, red blood cells and other cell types have been
studied in great detail, both in the absence of fluid motion and in flows (Seifert et al.
1991; Seifert 1997; Tu and Ou-Yang 2014; Guckenberger and Gekle 2017; Mesarec
et al. 2019; Keren et al. 2008; Mogilner and Keren 2009; Lieber et al. 2015). In
vesicles, which are closed, self-contained lipid bilayers filled with fluid – in essence
a cell without the CSK, the nucleus, and other structures – the intrinsic mechanical
forces are the bending forces of the membrane, and computational results for vesicles
without interior or exterior fluids lead to a variety of shapes. An example of a phase
diagram showing the domains in which various axisymmetric shapes computed in 2D
exist as a function of the reduced volume and the spontaneous curvature, both defined
later, is shown in Fig. 3a, and a sequence of the shapes along the C0 = 0 line is shown
in Fig. 3b, wherein the vertical lines represent discontinuous transitions between the
three types of shape.1 Recent work has extended the free-form shapes of floating
vesicles to their shapes when attached to a substrate, again in the axisymmetric case
(Raval and Gozdz 2020). Several examples of how the vesicle shape changes as the
radius of the circle of attachments to a substrate is increased are shown in Fig. 4.

1 The prolate and oblate shapes are distinguished by whether the axis of radial symmetry (the height of
each shape in Fig. 3b) is shorter or longer than the maximum diameter (the width). Oblate shapes have
a maximum diameters that are longer than their axial length, whereas prolate shapes have a longer axial
lengths.
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Fig. 3 a Phase diagram of the shapes as a function of the reduced volume V and the spontaneous curvature
C0, both defined later. b The qualitative shapes of the vesicles as a function of v along C0 = 0. Modified
from Seifert et al. (1991)

Fig. 4 A sequence of shapes for
a reduced volume of 0.545 and
spontaneous curvature 0. r
represents the radius of the
contact area. Modified from
Raval and Gozdz (2020)

The observed cellular shapes shown in Figs. 1 and 2, and the vesicle shapes shown
in Fig. 3, raise a number of interesting questions. Firstly, can one predict the balance
of forces within a cell needed to produce the various shapes shown in Fig. 2, and to
what extent are the shapes fixed by the mechanical feedback from interrogation of the
microenvironment of the cell? Secondly, how do forces in the CSK and external forces
alter the intrinsic shapes shown in Fig. 3, and how does this affect the movement of
cells? Interestingly, somecells cannotmove if they are only in contactwith the substrate
on the ventral side, but will move when confined in a micro-channel (Bergert et al.
2012), which suggests that the intracellular mechanics may be delicately balanced.

The shape of amoeboid cells, which have a less-structured CSK than mesenchymal
cells, is mainly determined by the internal forces in the membrane and the forces in
the cortex, which implicitly reflect internal CSK forces. As described above, vesicle
shapes due only to membrane forces have been widely studied, but little has been done
to incorporate cortical forces in models of a cell. A detailed model of the membrane-
cortex interaction would be very complex and difficult to analyze, and, as in previous
work (Wu et al. 2018; Stotsky and Othmer 2022), we circumvent this difficulty by
studying the shapes under various specified force distributions. In essence, we extend
earlier work summarized in Fig. 3 by incorporating surrogates for cortical forces in
3D cells that are not necessarily axisymmetric. Some earlier work in this direction is
reported in Stotsky and Othmer (2022), and in this paper we extend these results in
several directions.

However, the analysis herein is not directed solely toward shapes for cell move-
ment, since the same mathematical techniques apply whenever forces are involved in
changing the shape of the membrane. Rather, we focus on the general problem of how
the observed shapes of cells, both localized and cell-level, depend on the distribution
of forces. Membrane curvature plays a central role in determining the shape, andmuch
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Fig. 5 The plasma membrane (purple) is attached to the actin cortex (green) by linker proteins (black
hashes). The cortex is enriched in myosin motors (red), which generate contractile forces. Reproduced with
permission from Moeendarbary and Charras (2015)

Fig. 6 The effect of a
left-to-right gradient of a
tangential force on the shape of
an axisymmetric cell at various
reduced areas (denoted by � on
y-axis) The normal force, fn , in
these shapes is set to 0. Details
of the forces are given later.
Reproduced with permission
from Wu et al. (2018)

is qualitatively known about how binding of proteins to the membrane can change the
local force distribution and hence the curvature that is involved in structures such as
filopodia or in tubulation (Stachowiak et al. 2010, 2012; Simunovic et al. 2016a, b;
Yuan et al. 2021). An overview of the origins of membrane curvature due to protein
binding is given in McMahon and Boucrot (2015), and a review of the physics and the
resulting effects on cell shape is given in Mesarec et al. (2021).

We treat the membrane as an elastic medium and the shapes are computed as
stationary distributions of the free energy of the membrane, subject to constraints of
conserved area and volume, and to the applied forces. The membrane consists of a
lipid bilayer ∼10 nm thick that is attached to a highly-localized component of the
CSK called the cortex, which is 200–300 nm thick (Fig. 5). The cortex is comprised
of a cross-linked filamentous actin network, embedded with motor proteins and linker
proteins that tether the cortex to themembrane, but the connections are dynamic and the
cortical actin filaments are continuously turned over by treadmilling (Fritzsche et al.
2016). The cortex can exert both normal and tangential forces on the membrane, but it
can also slide tangentially under the membrane (Hochmuth et al. 1996; Dai and Sheetz
1999). It is known that the cortical forces are the primary determinant of cell shape
in amoeboid cells (Chugh et al. 2017), and local modulation of cortical mechanics
can drive cell deformations during cell division, migration, and tissue morphogenesis
(Hawkins et al. 2011; Salbreux et al. 2012; Kapustina et al. 2013; Bovellan et al. 2014).
An illustration of the effect of applied tangential forces is shown in Fig. 6.

In many cells these forces generate cell-level flows that are also involved in cell
polarization and localization of components involved in shape changes (Ruprecht et al.
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2015; Liu et al. 2015). In vivo a cell membrane is subject to dilatation, shear, bending
and torsion, but generally only the bending mode is considered when determining sta-
tionary vesicle shapes. In rheological terms the membrane-cortex composite exhibits
both elastic and viscous responses to stress, but here we are only concerned with the
stationary shapes of the cells and thus consider only the elastic component. This is
consistent with experimental approaches that focus on measuring membrane tension
via aspiration experiments, in which there is nomembranemotion (Pontes et al. 2017).
The energetics of the elastic response are represented by the Canham-Helfrich (CH)
functional described in the following section. The CH free energy only accounts for
bending energy and has been widely-used, and in particular is the basis for the shapes
shown in Fig. 3. However, vesicles have no cortical layer and no other forces are
accounted for in computing their shape. Here we impose both normal and tangential
forces as surrogates for the effects of the cortex to shed some light on the role of
cortical forces without formulating a detailed model of the interaction between the
membrane and the cortex – a more general treatment of fluid–structure interaction
for cells immersed in a fluid or tissue is the subject of future work. In the absence of
imposed forces the stationary shapes are minimizers of the CH bending energy subject
to the area and volume constraints, but in general, imposed forces are not conservative,
and we use a virtual work argument to determine the stationary shapes in this case.

In the following section we develop the governing equations and summarize the
background concepts for the analysis of surfaces needed throughout. The two main
components addressed concern the stationary cell shapes, both in the presence and
absence of applied forces, and in Sect. 3 we give a brief description of the numerical
methods used in each case. This is followed in Sect. 4 by computational results for the
stable shapes that exist in the absence of applied forces, when the bending energy and
spatial variations in the bending moduli determine the shapes. The results for constant
moduli are compared with the results described above which were obtained using the
equations for axisymmetric shapes. We also show results for variable bending moduli
and the effects these have on shapes.

In Sects. 5 and 6 we turn to the analysis of shapes under imposed forces. This
includes an analysis of the effect of normal and tangential forces alone and in concert.
We also include a discussion of the potential effects of normal and tangential forces
under various modes of areal constraints. The theoretical results are accompanied by
a number of computational results depicting how the stationary shapes vary as the
normal force, the tangential force, and the reduced volume vary.

Finally, in Sect. 7, we address how adhesion to a surface can alter the cell shapes.
This is done through a simple adhesion model, and suggests that significant shape
changes can occur when cells adhere to a substrate. Interestingly, the resulting equilib-
ria are somewhat different than those obtained in Raval and Gozdz (2020), a difference
that may be due to differences in how we modeled the cell adhesion, and perhaps, also
due to the presence of multiple minimizers of the bending energy, a feature that has
been previously observed in Seifert et al. (1991) and Stotsky and Othmer (2022) for
free-floating cells.
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2 The governing equations

We let � ⊂ R
3 denote the volume occupied by the cell and let S denote its boundary.

We assume that S is a smooth, compact, two-manifold without boundary, parameter-
ized by the map � : D ⊂ R

3 → S, defined so that the position vector x to any point
on the membrane is given by x = x(u1, u2) for a coordinate pair (u1, u2) ∈ D. Let n
denote the outward normal on S, and define basis vectors on the surface via

ei = ∂x
∂ui

i = 1, 2. (1)

In general these are not unit vectors.
The Canham-Helfrich (CH) free energy associated with bending of membranes has

the form (Canham 1970; Helfrich 1973; Zhong-Can and Helfrich 1989)

EB =
∫
S
1

2
kB(2H + C0)

2dS +
∫
S
kGKdS. (2)

Here c1 and c2 are the principal curvatures, H = −(c1 + c2)/2 is the mean curvature,
and K = c1c2 is the Gaussian curvature.2 C0 is a phenomenological parameter called
the spontaneous curvature, kB is the bending rigidity ormodulus –whichmaybe stress-
dependent (Diz-Muñoz et al. 2016), and kG is the Gaussian rigidity or modulus, which
may also vary over the membrane. When kG is constant, the integral of the Gaussian
curvature is constant if � does not change topological type under deformation, and
the integral can be ignored3.

In addition to the bending energy, which to lowest order is proportional to the square
of the local curvature of the membrane in the CH formulation, there are contributions
to the free energy corresponding to the work associated with area and volume changes
when these are conserved. To account for thework done by any applied forces f during
a deformation, we add the virtual work term

∫
S f · δx dS, where δx = ψn + φi ei

is an infinitesimal deformation of the membrane.4 Under the constraints of constant
surface area A0 and volume V0 of the cell, the total free energy takes the form

E = EB +
∫
S

�
(√

g − √
g0

)
du1du2 + P

(∫
�

dV − V0

)
+

∫
S

f · δx dS. (3)

Here g is the determinant of the metric tensor g of the surface, g0 is its value in a
reference configuration in which the area is A0, and P ≡ pext − pin is the pressure
difference across the membrane, which we assume is constant over the membrane and
the internal pressure uniform in the cell. Typically pin is a few hundred pascals higher

2 This definition of the mean curvature is predicated on choosing the outward normal as the normal to the
surface.
3 By ’changes in topological type’ we mean that the current configuration of the surface at time t , cannot
be mapped to the surface at some previous time s < t via a smooth bijective mapping. This can occur, for
instance, if a hole in the surface is formed, or if the surface ruptures into two pieces.
4 As discussed in Appendix D, the total work done by applied forces in a finite deformation can be found
by integrating along the trajectory of the shape evolution.

123



1 Page 8 of 43 J. A. Stotsky, H. G. Othmer

than pext (Salbreux et al. 2012). Here� is a Lagrangemultiplier for the area constraint.
When it can vary over the surface� is inside the integral, which reflects the assumption
that the area is conserved locally. This applies, for instance, in cases in which a 2–4%
stretch leads to rupture of the surface (Boal 2002). If area is only conserved globally
but not locally,� is a constant. In either case the Lagrange multiplier P for the volume
constraint is constant. In still other cases cells have internal reservoirs of membrane
and the area constraint is removed.

In the following sections we consider both variable and constant values of�.� has
units of force/length, which defines a surface stress. The constant term PV0 simply
shifts the free energy and can be ignored, since it disappears after the first variation of
(3) is taken.

A stable stationary shape of a cell is a minimizer of E , and thus a solution of
δ(1)E/δx = 0 for any infinitesimal deformation δx of S. This leads to the following
shape equations for the normal and tangential components of the total force on the
membrane,5

Fn ≡ − δE
δψ

= { − 
s [kB (2H + C0)] − kB (2H + C0)
(
2H2 − C0H − 2K

)

−
s kG + 2�H − P + f n
}

≡ Fn
p (H , K , P,�, kB , kG , u1, u2) + f n (4)

Ft
i ≡ − δE

δφi
=

{
1

2
(2H + C0)

2 ∇s,i kB + K∇s,i kG + ∇s,i� + f ti

}

≡ Ft
i,p(H , K , P,�, kB , kG , u1, u2) + f ti i = 1, 2 (5)

where Fn
p and Ft

i,p are the passive forces induced by membrane deformation, and f n

and f ti are active forces.Here
s,
s and∇s are two forms of the surfaceLaplacian and
gradient, resp., as given in Appendix A, and f n and f ti are the normal and tangential
components of the imposed forces. In the normal equation one sees that� enters via the
term 2�H , which couples areal distension to the curvature in the normal component
of the total force. In light of how the variation is defined, the resultant forces are
defined per unit area. Because eukaryotic cell membranes contain numerous proteins
embedded in the lipid bilayer, the spontaneous curvatures are not known for cells, and
we will assume C0 = 0 except where otherwise stated.

In addition to control of internally-generated forces, represented here by the
imposed forces, another ’lever’ that cells have to control their shape is by spatial varia-
tion of kB and kG . Since kB scales part of the bending energy, large values of kB oppose
the formation of spherical or cylindrical regions with small radii, and instead favor
flatter membranes or saddle structures where c1 = −c2. Larger, spatially-variable kG
also tends to favor saddle-structures since K < 0 reduces the bending energy. How-
ever large uniform kG has no effect unless the topological type of the surface changes,
for example, by budding. If f n = f ti = 0, we do not expect any new equilibria to

5 See Wu et al. (2018) for a derivation of these equations and references to earlier work in Zhong-Can and
Helfrich (1989); Capovilla et al. (2003); Yin et al. (2005) and others.
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arise in the limit kB → ∞ over the entire surface, but rather that the pressure and
surface stress simply scale with kB .

At the other extreme of very small kB the membrane may become wrinkled with
large curvature variations, since the bending force would be comparatively weak com-
pared to other forces in that case. In fact if kB = 0 and kG is uniform, then in the
absence of any other force the stationary shape is arbitrary with no preference for any
particular configuration. On the other hand, when kB is finite and kG is small and
spatially-variable, the kB-terms simply dominate, leading to stable membrane shapes.
As computational results will show later, these remarks, while not rigorous rules, gen-
erally tend to hold in practice. Possible effects of local discontinuities in the second
order derivatives of kB and kG are discussed in Yin et al. (2005), and our results are
complementary to theirs in that we consider larger-scale variations in kB and kG over
the surface.

The case of constant bending and Gaussian rigidities and zero applied forces has
been more widely studied, and when kB and kG are constant the foregoing variational
Eqs. (4) and (5) simplify to

Fn = − δE
δψ

= −2kB
s H − 4kBH
(
H2 − K

)
+ 2�H − P + f n (6)

Ft
i = ∇s,i� + f ti i = 1, 2. (7)

In addition, if the area is only conserved globally, then � is a constant and the normal
and tangential equations are decoupled. In that case, only the normal equation is
required to determine the cell shapes, and the tangential equation is trivial. However,
there can be area sources and counter-balancing area sinks in the membrane, and while
f ti 
= 0 it has no impact on the cell shape, it can influence the distribution of these
sources and sinks.

To find the stationary shapes for the free energy one could simply set Fn and
Ft
i equal to zero and solve the resulting system, the first equation of which is 4th-

order in space. This presents significant numerical difficulties (Stotsky and Othmer
2022), but more importantly, since the equations may well have multiple solutions, as
already happens in the 2D results shown in Fig. 3, it suggests an alternate approach
via Onsager’s variational approach (Doi 2011).

The Onsager approach to the evolution of the state of a system near a stationary
state is as follows. Suppose that X ∈ Rn describes the state of a system and let E be
its free energy. Then assume that the evolution of the state near a steady state is given
by the kinetic equation

dX

dt
= −ϒ∇XE, (8)

whereϒ is a symmetric, positive-definitematrix and∇X is the gradient in the X -frame.
This form, or an equivalent form in the entropy, has been used in numerous contexts
when a system is near thermodynamic equilibrium. In the present context we will in
general start far from stationary shapes and thus there is little physical justification
for a linear relation like (8), but since we are only seeking stationary shapes and are
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not concerned with the kinetics of the approach to equilibrium, we can use the form
in (8). We believe that this approach is reasonable since using the Onsager relations
is equivalent to specifying a rule for determining the path a system takes through
configuration space as it approaches a minimum energy state. Far from equilibrium,
this path may in reality follow a more complex evolution law, but the underlying
energy minimizers (the equilibrium shapes) are not affected by this choice. On the
other hand, the evolution law could affect the size and shape of the basin of attraction
around eachminimizer (e.g. sensitivity to initial conditions), howeverwe found that for
the axisymmetric case, where the minimizers are known, they were readily obtained
given reasonable starting shapes, and no unusual sensitivity to the initial shape was
observed.

Thus we define the pseudo-flow

μd
dψ(u1, u2)

dτ
= Fn

p (H , K , P,�, kB , kG , u1, u2) + f n (9)

μd
dφi (u1, u2)

dτ
= Ft

i,p(H , K , P,�, kB , kG , u1, u2) + f ti i = 1, 2 (10)

wherein we have chosen ϒ to be diagonal. When the cortical forces are incorporated
the resulting evolution is no longer a gradient flow for the bending energy alone, and
one simply looks for steady states of (9) and (10), which in general are not minimizers
of the CH free energy. When the bending moduli are constant the equations simplify
considerably, and we consider this case first.

Before solving these equations, we define non-dimensionalized forms. To do so, we
introduce characteristic length and time scales L0 = 1μm and T0 = 1 s, along with
a reference energy-level and force density: k̄ = 1 × 10−19 J and F0 = 1pN/μm2.
Then, define x∗ = x/L0, H∗ = HL0, k∗

B = kB/k̄, k∗
G = kG/k̄, K ∗ = K L2

0,
�∗ = �L0/F0, P∗ = P/F0, F∗ = F/F0, μ∗

d = μd/(F0T0/L0), c.f. Stotsky and
Othmer (2022); Wu et al. (2018). In the following analysis and discussion we drop the
star-notation, but will assume the relevant variables are non-dimensionalized unless
otherwise stated. A table of commonly used variables along with their dimensional
ranges is given in Table 1.

3 Numerical solution of equations

In each case we used the methods developed in Stotsky and Othmer (2022) to solve
the shape equation. The basis behind the numerical methods is to develop weak forms
of the various forces and then implement a parametric surface finite element method
(Dziuk and Elliott 2013) to discretize the weak forces. For curvature forces, it is
convenient to consider x and H = 2Hn – the surface position, and a vector curvature
– as separate variables. They are related via the identity:


sx = −H . (11)
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With this approach, weak formswith favorable numerical properties for computational
simulation have been developed (Dziuk 2008; Bonito et al. 2010, 2011).

To begin, we triangulate an initial surface using software packages FELICITY and
Jigsaw (Walker 2018; Engwirda 2016). The initial surfaces are chosen to be prolate
and oblate spheroids of the form

Oblate: ex2 + y2 + z2 = R2

Prolate: x2 + ey2 + ez2 = R2
(12)

with e ≥ 1. By adjusting e the full range of reduced volumes from 0 to 1 can be
obtained.

We then approximate the solution of the surface evolution equations by first sup-
posing that within each triangle Ti in a triangulation T , the solution is a quadratic
function of a local parametrization of the surface. This leads to the following finite
element space,

S =
{
φ ∈ C0 (T ) ,φTi ∈ P2(Ti )

}
(13)

consisting of functions φ which are C0-continuous globally, and locally quadratic
when restricted to any particular triangle in T . With this, we can write a nonlinear
weak form of the forces as

a(x,φ) =
∫
S
F(x) · φdS. (14)

As was done previously (Stotsky and Othmer 2022), the bending forces due to the
mean-curvature term with C0 = 0 can be written in weak form as

∫
S
FB · φdS =

∫
S

[
∇sφ : ∇skBH − ∇sx

(
∇sφ + ∇sφ

T
)

: ∇skBH

+ (∇s · φ) (∇s · kBH) + kB
2

|H|2∇s · φ

]
dS,

(15)

and when C0 is a nonzero constant, this can be modified by replacing H by H +C0n,
except for the last term, which is replaced by kB/2(|H|2 − C2

0 )∇s · φ.
Area conservation and volume conservation are enforced by an approximatemethod

that penalizes deviations in the volume contained in S, and deviations in the area of
each surface triangle. This leads to area conservation forces of the form

∫
S
FA · φdS = kA

∫
S

(√
g − √

g0√
g0

)
∇sx : ∇sφdS (16)

and the approximate volume conservation is achieved by introducing a force,

∫
S
FV · φdS = kV

(
V − V0

V0

)∫
S
n · φdS (17)
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where V and V0 are the initial and reference volume of the region contained in S.
For sufficiently large kA and kV , deviations in the surface area and volume are less
than 1% during simulation. Further, while the numerical method has no particular
requirements regarding the initial shape,we used spheroidal initial shapeswith varying
degrees of eccentricity to initialize the simulations with shapes of arbitrary reduced
volume. The reference volume V0 and area Ao are with regard to these initial shapes.

With this approximate method � and P can be approximated as � = kA
√
g−√

g0√
g0

and

P = kV
V−V0
V0

. In the limit kA → ∞ and kV → ∞, these values of � and P tend
towards limiting values which are equal to the values of � and P if conservation were
enforced exactly.

In some cases, only global surface area conservation applies and then the area
conservation force simplifies to 6

∫
S
FA · φdS = kA

(
A − A0

A0

) ∫
S

∇sx : ∇sφdS. (18)

To compute minimizers of the surface energy functional, we must numerically
evolve the pseudo-evolution equations via a time-stepping method. As earlier, the
normal and tangential forces associated with variations in E were associated to the
components of normal and tangential flow velocities in Eqs. (9) and (10). This yields
an evolution equation of the form

∂δx
∂t

= V = V nn + V t
i e

i = 1

μd
(Fnn + Ft

i e
i ). (19)

We found that solving this system directly after discretization requires extremely small
time steps and hence very large computational times. To allow for larger time-steps,
we modify this force-velocity relation in a way that yields a monotonically decreasing
energy and produces the same final shapes. This is done by treating the membrane as
though it were embedded in a viscous fluid as was done in Stotsky and Othmer (2022),
which means that (19) can be written in the form

V =
∫
S

1

μd
K (x − y)F( y)dSy (20)

where K is the fundamental solution of the Stokes equation due to a point force,

K (x) = 1

8π

[
I

1

‖x‖ + x ⊗ x
‖x‖3

]

6 We later argue that global area conservation is an inappropriate constraint in some cases.
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Fig. 7 At each t , the non-dimensional bending energies,EB/kB (withEB defined fromEq. (2)) are computed
as the membrane, S evolves under the flow the velocities V = F/μd (blue) and V = (K ∗ F)/μd (red)
discussed in the text. Time is measured in seconds along the x-axis. It can be seen that both tend towards
the same equilibrium energy. On the blue curve, the points that are off the curve correspond to times at
which remeshing was done, leading to momentary bumps in the energy

where ⊗ indicates the tensor product of two vectors, and I is the 3x3 identity matrix.
Given a discretization of the surface, this is approximated as

V =
N∑
i=1

1

μd
K δ(x − yi )Fi d Ai (21)

where the Fi d Ai are approximations of the force times a local area at discrete points
on the surface, and K δ is a regularization of K using regularized Stokeslets (Cortez
2001)7 A comparison of the evolution of the total energy using the discretization of
Eqs. (9) and (10) and the approximate method is shown in Fig. 7. For the results shown
in later figures we check the final shape in each case by a short-in-time computation
using the discretization of Eqs. (9) and (10).

To evolve the surface using a discretization of (19), we begin with the shape
obtained from the first step, and then use a semi-implicit backwards Euler-
method. Essentially, in the backwards Euler method certain nonlinear terms are
approximated by their values at the previous time-step, whereas linear terms
containing the highest order derivatives are solved for implicitly. The full details of
this approach are described in Stotsky and Othmer (2022).

In addition, occasional remeshing was required to maintain stability of the simula-
tions after significant deformations occurred. To remesh, a provisional remeshing was
first created from the current surface mesh using features of the Jigsaw library. Then,

7 A comparison of dimensions in Eqs. (19) and (20) shows that K must be scaled by a factor of 1/L . This
is becauseμd is not a Newtonian viscosity, but rather is a drag coefficient. This is done in the computations.
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geometric consistency was enforced by solving


sx = −H (22)

on the new mesh as in Bonito et al. (2010).
Typical simulations used several thousand surface points in the triangulations, and

time-steps of around 10−5 − 10−4 compared with the characteristic time-scale of the
evolution, which is 1 s. Simulations were allowed to run between several thousand up
to 25,000 steps and took several hours to a day in most cases. In physical time, these
simulations correspond to a range of half a second to several seconds.

4 Shape changes in the absence of applied forces

Wefirst consider the shapes that can be obtained in the absence of any additional forces.
The case of constant bending moduli in axisymmetric 2D surfaces has been studied
in Seifert et al. (1991) and elsewhere. Thus, as a test of our methods, we reproduce
Fig. 8 of Seifert et al. (1991). Starting from the prolate and oblate spheroids described
by Eq. (12), the steady-state minimizers of the Helfrich energy are computed from
the pseudo-evolution equations. Recall that the reduced volume is a function of the
eccentricity e in each case, and as such, distinct prolate and oblate minimizers can be
found over a wide-range of reduced volumes.

At any point during the evolution, the bending energy associated with these mini-
mizers is computed as

E(S) =
∫
S
kBH

2dS (23)

and we set the bending modulus kB = 1 here. The stationary energy levels are of
particular interest as they are thought to correspond to shapes that cells (or vesicles)
tend to favor. The Gaussian curvature term of the Helfrich energy can be ignored
because when kG is constant, the integral

∫
S
kGKdS (24)

is a constant so long as the topological type does not change. While the equations
used here are non-dimensional, even without that the integrals

∫
S H2dS and

∫
S KdS

are dimensionless, and thus the energy levels computed from those terms are scale-
independent. In other words, if wewere tomagnify or shrink the system by an arbitrary
factor, the bending energy would remain unchanged, although other energy terms such
as the surface stress would certainly be altered.

In Fig. 8 the bending energy as a function of the reduced volume is shown.
Both branches begin with spherical minimizers (with a reduced volume � = 1,

spheres are the only possible shape). As � is reduced, the prolate branch first yields
pill-like shapes followed by spherically-capped cylinders of increasing length. The
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Fig. 8 a The bending energy defined in Eq. (23) as a function of reduced volume for oblate (red) and
prolate (blue) Helfrich energy minimizers. b The pressure drop for the minimizers found in (a). Note that
the pressure corresponds to the Lagrange multiplier for volume, which is just a single number, in contrast
to a pressure field which may exist in a fluid. c Shapes along the prolate branch. d Shapes along the oblate
branch. e The color-scale increases from blue to yellow and indicates the value of |H |. Note that to aid
visualization, the figures within (c) and (d) are not drawn to scale relative to each other, e.g. at the length
scale of our computations, the left-most shape in (c) is several times as long as the right-most shape in
(c). The scale-bar at the bottom indicates the reduced volume in (c) and (d). All units in this figure are
dimensionless

oblate branch first yields flattened spherical shapes followed by discocyte-like shapes
that eventually self-intersect (not shown).

These results closelymatch those reported in Seifert et al. (1991), where the axisym-
metry was assumed a priori. As discussed there, although there are multiple local
minima, only one shape is a global minimizer. The prolate shapes are the global mini-
mizers for reduced volume levels � > 0.651, and for smaller �, oblate shapes are the
global minimizers followed by stomatocyte-like shapes for � < 0.54. A phase tran-
sition occurs where the energy curves for these branches of minimizers cross, which
involves a discontinuity.

It is important to note that this phase-transition reflects mechanics only, but does
not take into account the kinetics of the phase-transition, which could be slow if a large
amount of deformation or large amount of energy is needed to achieve the transition.
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This means that cells may spend a great deal of time in shapes that correspond to local
minima rather than global minima.

4.1 Effects of intrinsic curvature

Intrinsic curvature also plays a role in the stationary shapes of vesicles. It can arise
from various types of chemical differences in the two sides of the bilayer membrane,
or in cases where the fluid on either side of the membrane exhibits different chemical
interactions with the membrane.

The effect of intrinsic curvature on cell membranes (rather than vesiclemembranes)
is less well understood, and specific values for the intrinsic curvature of a cell mem-
brane are not known. However, the ability of various membrane-imbedded proteins to
locally alter the curvature of the cellmembrane suggests that alterations inC0 may play
an important role. Since 2H = −(c1 + c2), positive C0 decreases the bending energy
(2H + C0)

2 term, and thus facilitates regions of negative mean curvature. These can
appear as saddle-like structures, or concave regions of the membrane. In one figure
below, a large enough C0 leads to a dramatic invagination of the membrane. It seems
plausible that cells may induce such changes in C0 in order to achieve endocytosis.

On theother hand,C0 < 0 tends to forceH to bepositive, and thiswouldbe expected
to lead to sphere-like subdomains of the membrane connected by thin cylindrical
regions. As the cylindrical regions become thin enough, this could potentially lead to
topological changes such as budding. Our model does not allow for such topological
changes, butwe can simulate the shapes that result as the cell approaches such changes.

In our simulations, we consider C0 to be a uniform constant defined over the entire
membrane. With reduced volume � = 0.75 a series of shapes that results from C0 ∈
[−3.5, 4] are depicted in Fig. 9.

For large negative C0, the shape approaches two spheres touching only at a small
neck. As C0 increases, the shapes smoothly pass through the prolate stationary shape
at C0 = 0. At C0 ≈ 2, there is a transition to an oblate type shape, and finally above
C0 ≈ 2.5, the resulting shapes are parachute-like shapes with an increasingly narrow
neck region, as depicted in Fig. 10.

For positive C0, the cell shape passes through non-axisymmetric intermediaries as
it transitions from a prolate shape to an oblate shape. The images in 10 pick up the
evolution after an oblate shape has already been reached, but examples of this prolate-
to-oblate transition are depicted in Fig. 13 under a different setting. For C0 ≈ 0, the
shapes remain prolate and axisymmetric as they approach equilibria. The stationary
shapes match similar 2D shapes found in Seifert et al. (1991) qualitatively, and our
results expand upon earlier results since we compute the full series of intermediary
shapes along the path of the pseudo-evolution through configuration space and did not
assume axisymmetry at the outset – rather it emerges that the axisymmetric shapes are
stable. Unfortunately, as C0 increases above C0 ≈ 3, the neck becomes increasingly
narrow, and the current numerical simulations may not sufficiently resolve the shape
evolution. As noted above, in living cells, such thin neck-regionsmay potentially occur
during endocytosis or vesicle fission events just prior to topological changes. Thus,
the difficulty in resolving such regions may be in part due to numerical difficulties
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Fig. 9 Depictions of the effect of C0 on cell shape. From upper left to lower right, C0 = −4,−2, 0, 2, 3.5.
Coloration indicates themagnitude of H in each imagewith the same colorbar as shown on the top left. Note
that our values for C0 are of opposite sign from those reproduced in Figure 3a. Unless stated otherwise, all
subsequent figures have coloration reflecting the magnitude of H

Fig. 10 Evolution of the interior
region of Fig. 9e. Note the
narrow “neck" region connecting
the inner part of the surface with
the exterior part of the surface

in resolving small length scales, and also due to these simulations reaching the limit
of applicability of a model that does not take into account topological changes. Fur-
thermore, biological topological changes sometimes involve specialized enzymes that
catalyze the topological change, and including these highly-localized effects would
add significantly to the complexity of our model.

5 The effects of normal and tangential forces and variations in the
moduli

To simplify the discussion of these effects, we introduce some notation. For any vector
field, v ∈ R

3 defined in a neighborhood of the surface S, let P denote the projection
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tensor

P = I − n ⊗ n (25)

which projects v onto the tangent space at each point in S. We then decompose the
field into normal and tangential components as

v = (n ⊗ n)v + Pv = vn + vt = vnn + vt,i ei .

First we consider the case of constant bending moduli, in which case Eqs. (4) and
(5) can be written as

n · μd
∂x
∂t

= Fn = Bn − P + 2�H + f n

P · μd
∂x
∂t

= Ft = ∇s� + f t (26)

where

Bn = −2kB
s H − 2kBH
(
2H2 − 2K

)

are the bending forces,which only have a normal component in this case. The derivative
∂x/∂t is the Lagrangian velocity of a point on the surface, and hence we will write

∂x
∂t

≡ V = V nn + PV t (27)

in normal and tangential components. To better understand the effects of the imposed
forces, we analyze how, starting from a shape that minimizes the Helfrich energy at a
fixed area and volume – hereafter called a CH shape – the application of forces alters
the normal and tangential force balances, thereby leading to new shapes.

5.1 Normal forces with global or local area conservation

In certain cells, it has been observed that over short enough time scales, area changes
by more than a few percent cause rupture of the membrane (Boal 2002). However,
other cells readily add and remove membrane material to create sustained membrane
flows. While the full range of behaviors is beyond our current model, we elaborate
here two simple cases. In the first, area is locally conserved, and this corresponds to a
membrane that is not exchanging mass with the cytosol. In the second case only the
global surface area is conserved, which allows for local sources and sinks.

Let us consider the CH force balance, written as

μd
∂ψ

∂t
≡ μdV

n = Bn − P + 2�H (28)
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μd
∂φi

∂t
≡ μdV

i,t = ∇ i
s� i = 1, 2 (29)

and determine what occurs when forces are applied. As written, this force balance
applies when the area is conserved locally, but when area-conservation is global � is
constant, and in that case the gradient term vanishes in the tangential equation.

If the tangential force is zero but the normal force is non-zero, the balance equations
under global area conservation reduce to

μdV
n = Bn − P + 2�H + f n

μdV t = 0.

Thus, when the moduli are constant there is no tangential motion, regardless of the
normal forces. We also see that if the surface was a stationary shape prior to force
application, i.e.,if

0 = Bn − P + 2�H , (30)

then if f n = const a new steady state is found by adding that same constant to P , but
there is no change in shape.

More generally, if a steady shape exists upon force application, then f n must be
balanced by changes in Bn and � as well as P . For instance if f n = const× H , then
changing � while leaving P and Bn fixed yields a steady state. More generally, we
can write

f n =
(∫

f ndS∫
dS

)
+

(∫
f n HdS∫
HdS

)
H + f̃ n (31)

and we can see that adjusting P by the mean-value of f n , � by the H -weighted
mean-value of f n , and Bn by − f̃ n yields a new equilibrium. Since only changes in
Bn lead to changes in the surface shape (at a fixed area and volume), then f̃ n is the
component of the normal force that leads to shape changes whereas the other terms in
f n contribute to pressure and surface stress changes.
Now consider the case with local area conservation with no tangential force, for

which

μdV
n = Bn − P + 2�H + f n

μdV t = ∇s�.

This suggests that there could be a steady-state tangential flow. However, we note that
for a time-independent shape, the normal velocity vanishes and local area conservation
implies that ∇s · V t = 0 and therefore 
s� = 0. For smooth closed surfaces this
implies that � is a constant, since

0 = −
∫
S

�
s�dS =
∫
S

‖∇s�‖2 dS ⇒ ∇s� = 0 ⇒ � = const.
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In particular, it must be the same constant as in the global area conservation case.
Thus, upon application of normal forces, local and global area conservation should

lead to the same results. However, note that this ignores fluid–structure interaction
since we only consider the shape equation. If fluid–structure interaction is included,
there is no reason to expect the same results. In particular, if

∫
f dS 
= 0, there will be

rigid body motion, and while this has no effect on the force distribution in the shape
equations, this could lead to different results with normal and tangential forces acting
on the surface when considering fluid–structure interaction.

5.2 Tangential forces with global or local area conservation

Next, consider global area conservation with tangential applied forces. If the normal
and tangential components are balanced prior to force application, then we have

0 = Bn − P + 2�H ,

and a trivial balance in the tangential direction prior to force application because � is
constant. The normal force balance is unchanged and thus there is no change in shape
upon application of tangential forces, but the latter can induce a tangential flow that
acts as parallel transport along the tangential force field given by

μdV t = f t . (32)

This differs from the case in which local area is conserved, where the tangential
force balance is

μdV t = ∇s� + f t . (33)

Local area conservation implies that ∇s · V t = 0 when the normal velocity is zero,
but the applied force may or may not be solenoidal. If it is, then it follows from (33)
that � is constant, since 
s� = 0.

The tangential balance can be written as

f t = μdV t − ∇s� (34)

and we can identify this with the Hodge decomposition (Renteln 2013) of f t into
solenoidal and irrotational components (see Appendix B ). We can then write

∇s × f t = μd∇s × V t = μd∇s × ∇s × ψ = −μd
sψ.

∇s · f t = μd∇s · V t − 
s�

whereψ and� are uniquely determined due to the orthogonality of the Hodge decom-
position (the curl operator on a manifold is discussed in Appendix B). Thus the
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application of a non-solenoidal tangential force field yields a variable tension dis-
tribution � which affects the normal force distribution via the �H term in

μdV
n = Bn − P + 2�H . (35)

Since �H is determined from the tangential force balance, the values of Bn , P and
μdV n must adjust to balance �H . In particular, if Bn changes this indicates that the
shape changes in response to tangential forces, a phenomenon impossible in the case
of global area conservation alone.

5.3 Combined normal and tangential forces

When area is only conserved globally, there are no cross-terms that appear in the
normal and tangential balances, and the effects of the normal and tangential forces
combine linearly. However, this result is rather uninteresting since tangential forces
do not cause shape changes in this case. On the other hand, when area is conserved
locally, it is difficult to saymuch in general since the two balances are coupled by terms
involving � and depend nonlinearly on the surface shape. Nonetheless, in simulation
it is interesting to note that the effects appear not to deviate too much from “linear”
behavior in the sense that if one considers a convex combination of a normal and a
tangential force, e.g.

f = β f nn + (1 − β) f t (36)

for β ∈ (0, 1), the steady-state shapes appear to smoothly transition between that
observed with β = 0 (only tangential forces) and β = 1 (only normal forces) without
passing through intermediary configurations that are of a different character. It is also
interesting that in some cases, normal and tangential force effects can cancel out
leading to relatively little change in the surface shape. That this can occur can be
gleaned from the fact that if f t is solenoidal, then

∇s · f t = 
s� = 0 ⇒ � = const (37)

or if f n = −2H� (with constant �), then the bending forces (which depend on
shape) need not be altered to balance the effect of the tangential forces. Of course,
this need not always be the case, and the normal and tangential forces may combine
synergistically to yield more extreme shape changes as well.

5.4 Effects of heterogeneous bendingmoduli

Finally, we consider a qualitative description of the force balances when the moduli
vary. With variable kB or kG , changes occur to the normal and tangential force balance
as compared with constant moduli. To clarify the roles of the bending moduli, we
assume that there are no applied forces ( f n = 0 and f ti = 0).
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First, the normal bending forces become

Bn = −2
s(kBH) − 4kBH(H2 − K ) − 
skG

and there are now tangential forces related to bending,

Bt = 2H2∇skB + K∇skG

At steady state, with no surface flows, these bending moduli gradients act to set the
distribution of �, e.g.

0 = −Bt + ∇s�

Thus, in the presence of variable bending moduli, � is variable even if there are no
external forces applied. In particular, we find that


s� = ∇s · Bt

This variable � also shows up in the normal force balance as 2H�. This force also
acts non-locally since 
−1

s is a non-local operator.
On the other hand, under global area conservation only, the tangential gradients

will lead to a surface flow,

μdV t = K∇skG + 2H2∇skB . (38)

If kB and kG are Lagrangian functions, i.e.,they are functions of material points on
the surface, this surface flow leads to regions of low kB and kG expanding, and high
kB and kG regions shrinking. Given the form of the bending energy, this result is to
be expected, since decreasing kB and kG will reduce the energy.8

6 Shape changes under applied forces

We compute the normal and tangential vectors at each point on the surface and incor-
porate forces of the form

f n = f n(u1, u2)n (39)

or

f ti = f t (u1, u2)ei (40)

8 In light of this observation, and the fact that tangential forces do not affect the cell shape under global
area conservation, we believe that using global area conservation in models of cell shape is problematic.
However, since previousworks on vesicle shapes often use this approach, and because it is numerically easier
to implement than local conservation, we give a description of what occurs here. Subsequent numerical
computations use local area conservation.
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Fig. 11 The variation of cell shapes that evolve from prolate starting shapes in response to differing levels
of normal and tangential forces, and at several reduced volume levels

in the pseudo-evolution Eqs. (9) and (10). The functions f n(u1, u2) and f t (u1, u2)
are scalar valued functions of the surface coordinates that gives the force magnitude
in the normal/tangential directions at each point on the surface, and though these
forces are considered in non-dimensional form, the force magnitude is on the order of
0.1pN/μm2 – 10pN/μm2 in dimensional terms.

6.1 Uniformmoduli

We now discuss a phase-diagram showing how the cell shapes are altered at vari-
ous levels of reduced volume, under different combinations of normal and tangential
forces. This diagram is shown in Fig. 11 for prolate shapes, and Fig. 12 for oblate start-
ing shapes. We set the forces in Eqs. (39) and (40) to increase linearly from zero from
left to right along the x-axis, which we have chosen to align with the radial symmetry
of the starting shapes. In order to avoid a discontinuity at the right-hand pole of a cell
when tangential forces are imposed, we modify f t (u1, u2) in a small region near the
pole by multiplying it by a smooth function of the x-axis coordinate that is zero at the
pole and increases rapidly to one away from the pole.

Note that in each case the effects of the normal and tangential forces are in oppo-
sition to some degree. For instance, in the prolate phase-diagram, one can see that
at each reduced volume level, combinations of normal and tangential forces lead to
less deformed shapes than normal or tangential forces alone. This is more difficult to
observe in the oblate diagram, as there is greater variation in the shapes that occur. At
low force levels the steady state shapes tend to be discocytes (cup-like), but at high
levels of tangential forces the oblate shapes transform into more prolate steady-states.
However, a significant effect can be seen for shapes with large δ f t as δ f n is increased
from 0. At zero normal force the prolate shape has the larger bulb at the right end,
but it switches to the left as the normal force is increased. We also note that there are
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Fig. 12 Variation of initially-oblate cells in response to different levels of normal and tangential forces at
several reduced volume levels. In many cases the oblate shapes are transformed into prolate shapes under
the applied forces

interesting shapes obtained as the equilibria are approached. For instance, in Fig. 13,
various non-axisymmetric shapes are obtained as the oblate starting shape eventually
reaches a prolate equilibrium shape under application of forces. Furthermore, note
that without forces, there is some degree of bistability since for given reduced vol-
umes, there can be multiple local minima of the Helfrich energy, but in some cases,
this bistability appears to vanish under strong enough forces. In particular, it seems as
though large enough tangential forces applied to oblate shapes can lead to a transition
towards prolate shapes (e.g. notice the similarity between the results with δ f n = 0
and δ f t = 10 in Figs. 11 and 12).

6.2 Shape changes with heterogeneous bendingmoduli

While a number of studies have analyzed the oblate, prolate, and stomatocyte min-
imizers of the Helfrich energy, few have considered the effect of variations in the
bending or Gaussian-curvature moduli. In living cells, the cortical layer underlying
the cell membrane varies in thickness, and due to the tight coupling between the two
layers, the thickness of the cortical layer may well lead to variations in the bending
moduli between different regions of the cell. This is especially relevant since to first
order the bending rigidity kB is expected to scale as hα with the thickness h, where
α ≈ 2 for a bilayer membrane (Bermudez et al. 2004) and α = 3 for a rigid plate
(Boal 2002). Since the force will also scale with h, this suggests the potential for
complex mechanical control mechanisms where cells affect shape changes through a
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Fig. 13 Sequence of intermediate shapes as cell transforms from oblate starting shape to a prolate equilib-
rium after forces are added. In this case, δ f n = δ f t = 10. Note that the final shape shown here is not quite
at steady state and so does not look exactly like the equilibrium shape in Fig. 12 at δ f n = δ f t = 10

combination of cortical forces and regulation of the passive mechanical properties of
the membrane-cortex system.

To understand the effects of variations in the moduli, we defined various forms
of variation in the moduli and then computed the stationary shapes. In particular,
consider a cylindrical coordinate frame such that any point (x, y, z) ∈ R

3 is written
as (x, r cos θ, r sin θ). If the cell is radially symmetric, then we could describe the cell
shape by a function r = r(x) independent of θ .

Now, let dx = max x − min x be the length of the cell along its axis of radial
symmetry. Then we impose a variation in the modulus as

kB(x) = 1 + δkB
2

(
1 + tanh

(
2π

x − x̄

dx

))
(41)

where x̄ is the midpoint of the cell, and δkB a parameter used to adjust the magni-
tude of the variation in the modulus. The same variation is applied to the Gaussian
curvature modulus as well with δkB replaced by δkG . In Fig. 14 we show how the
prolate branch shapes are altered in the presence of variations in the bending modu-
lus and Gaussian-curvature modulus for several values of δkB and δkG . As expected,
significant variations in the cell shape occur when the moduli vary across the surface,
and the effects of δkB and δkG are different. In areas where the bending modulus kB
is large (the left bulb of the cells in 14), the bending energy is reduced by deforma-
tions that increase the radius of curvature of the surface (and hence reduce H ) in the
high-kB regions. The net effect is that the left-hand bulb of the cells grows and the
right bulb shrinks. On the other hand, large kG areas tend to become saddle shaped,
but the overall effect on the entire surface is more difficult to understand. In some
cases, the saddle-like region between the two bulbs of the prolate cells can become
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Fig. 14 A phase diagram depicting some of the different CH energy minimizers that occur in the presence
of variations in the bending moduli in the absence of applied forces. Mean-curvature modulus variations
refer to changes in kB and Gaussian modulus variations refer to changes in kG . To aid visualization, the
cells have been oriented such that kB and kG are increasing from right to left in this figure, with maxima
at the left pole of the cells

accentuated and eventually lead to a loss of axisymmetry. In other cases, axisymme-
try is maintained, but the rightward-bulb of the cell becomes enlarged relative to the
left. However, more work is needed to understand exactly how the various forces are
balancing to induce these changes.

The above effects are seen for small to moderate axisymmetric variations. Larger
deviations unfortunately cause difficulty for the numerical methods, and so were not
explored here. However, later on we do explore some effects of non-axisymmetric
variations, and it appears that quite different behaviors can be observed in that setting.

Interestingly, some of the shapes obtained by varying δkB and δkG closely resemble
shapes obtained under normal and/or tangential forces. In Fig. 15, we compare the
shape with δkB = 8 to thar for δ f n = 15.

In Fig. 14, the shapes are axisymmetric, which may be expected since the variation
in kB and kG preserve axisymmetry, but in some cases this symmetry is lost. This can
be understood by looking at the energetics. In Fig. 16, we plot the distribution of kB
over the surface. One can see that the final equilibrium shape has flatter regions (lower
H ) where kB is high, separated by more sharply curved regions of low kB .

However, in living cells, it may be that more complex variations in the bending
moduli can be induced. For instance, if the cell is to achieve more intricate changes in
shape, there must be mechanisms by which symmetries such as radial symmetry can
be broken. While a full discussion of how cells may implement such mechanisms is
beyond the scope of our work here, we present a few example shapes that result from
non-axisymmetric moduli variations in Fig. 17. There we have set

kB(x) = 1 + δkB
2

(
1 + tanh

(
2π

x − x̄

dx

))
e−5(y/dr )2 (42)
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Fig. 15 In a the equilibrium shape for δkB = 8 is shown, and in b the equilibrium shape for δ f n = 15 is
shown. The resulting shapes are quite similar in appearance. The reduced volume is 0.75 in these images

Fig. 16 Evolution of the
distribution of kB over the
surface as it deforms. Coloring
corresponds to kB which ranges
from 1 (dark blue) to 6 (yellow).
The y-axis is the bending energy,
computed as an integral over the
surface from Eq. (2). The first
shape is axisymmetric, and one
can see that as the axisymmetry
is broken, there is a significant
drop in the bending energy

where dx is as above, and dr is the maximum radius of the cell in the (y, z)-plane (and
likewise for kG). The resulting modulus variation yields a thin strip of membrane with
an elevated modulus varying from front to back. Some resulting equilibrium shapes
are depicted in Fig. 17.

Interestingly, these non-axisymmetric bending moduli distributions have strong
effects on the cell shapes. As noted earlier, for variable kB the shell becomes flatter
where kB is large, because the membrane becomes more rigid there and this leads to
less bending. One could also imagine that cells may induce such changes in bending
rigidity as a means of stabilizing themselves against mechanical forces.

In contrast, non-axisymmetric variations in kG cause a rather different set of defor-
mations. In this case, the cell adopts a quasi-triangular appearance, with two distinct
pseudopodia-like regions. The fact that such a shape is obtained can be explained in
terms of the variation in kG since the region between the two pseudopodia exhibits
a saddle-structure where the Gaussian modulus is negative (see Fig. 17 bottom row),
and since kG is largest in that region, this facilitates minimization of the Gaussian
curvature energy term. While other mechanisms describing cytoskeletal force gener-
ation have been proposed for the formation of such appendages in cells, it would be
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Fig. 17 a Starting shapewith coloration corresponding to the initial bendingmodulus distribution.bSteady-
state shapes for non-axisymmetric variations in the bending moduli. In the top row, kB is varied, and in the
bottom row, kG is varied. The coloration corresponds to the curvature in (b). The left images in (b) are for
δkB,G = 2 and the right images are for δkB,G = 4

interesting to determine if cells have a means of adjusting kG to facilitate such shape
deformations.

When one compares these results with the effect of δkB and δkG for axisymmetric
initial shapes, it appears that radial symmetry imposes some degree of stability in the
shape of the cell, and once broken, a cell may undergo more significant deformations
that would have otherwise been impossible. This is not surprising since radial symme-
try can essentially be thought of as a constraint on the cell motion, and without radial
symmetry larger deformations may be possible for a given amount of energy input.
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Fig. 18 A cell that is axisymmetric when free-floating encounters an adhesive membrane, leading to a loss
of symmetry as the cell adheres to the membrane. Left is pre-adhesion, right is post-adhesion. The left-right
asymmetry is due to a normal forces being applied in a linearly increasing density from left to right

7 The shape of cells in contact with a surface

Wenext consider the interaction of a cell with a rigid surface. This has been considered
in the axisymmetric case in Raval and Gozdz (2020), and here we suppose that the
symmetry is broken. This occurs when an initially-axisymmetric cell–here with a
prolate shape–interacts with a planar surface (see Fig. 18).

Such situations are common in biology where cells can adhere to various extracel-
lular structures. In particular, cells can use finely controlled adhesion to induce motion
by modulating intracellular forces in response to the local extracellular forces.

Hereweconsider a planar surface that interacts via adhesionwith the cellmembrane.
We will denote the cell membrane as S (as before), and the planar surface as P . As a
general starting point, we assume that this adhesive-interaction arises from some sort
of interaction energy, and that this adhesion energy depends upon the proximity of the
cell-membrane to the surface. In particular, we assume that S is smooth enough that
for each x = (x1, x2, x3) ∈ S, we can consider a small square neighborhood of area
d A centered at x inscribed onto S. Since P is planar, the same can be done at each
y = (y1, y2, y3) ∈ P . Then, we assume that the adhesion energy acting on these two
subsurfaces is of the form

Eadh(d Ax, d A y) = U (x, y)d Axd A y

This assumes the existence of some functionU (·, ·) that has units of energy/(length)4
that characterizes pairwise interactions between points on S and P . When the inter-
action takes this form, the total adhesion energy acting on d Ax is found by summing
over all disjoint d A y. In the limit d A → 0, this results in

eadh(d Ax,P) ≡ Eadh(d Ax,P)

d Ax
=

∫
P
U (x, y)d y

where the left-hand side represents an energy density with respect to area on S. Since
the area of d A is independent of x, we can just write this as eadh(x,P). The force on x
is then found as Fadh(x) = −∇xeadh(x,P). All that remains now is to specifyU (x, y).
For simplicity, we suppose that this takes the form of a Lennard–Jones potential, and
set

U (x, y) = 4k

((
σ

‖x − y‖
)12

−
(

σ

‖x − y‖
)6

)
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Fig. 19 Depiction of cells that are adhered to a surface at z = 0. There is a left-to-right asymmetry due
to a linearly increasing adhesivity (k(x) in Eq. (43)), with stronger adhesion at the right-hand side of the
cell. At low levels of adhesion (left-hand figures, max k = 1), the cell retains a prolate shape, whereas
under strong adhesion (right-hand figures, max k = 3) the resting state becomes flattened out. In the top
row, the view is looking at the profile of the cell with z = 0 on the bottom. The bottom row is an overhead
view of the adhered cells. Notice that under low adhesion, the cell retains a prolate shape, whereas as the
adhesion increases, a more oblate shape is obtained. On the right, the shape is nearly axisymmetric because
the adhesion level is quite strong uniformly, even though there is still a gradient from left-to-right

where σ is a characteristic length of the interaction, and for dimensional consistency,
we must have that k is an energy/(length)4. Since this choice ofU (x, y) depends only
on ‖x − y‖, we can writeU (R) ≡ U (x, y) for shorthand where R = ‖x − y‖. Given
our assumption thatP is a planar surface of infinite extent, we can compute Fadh(x,P)

explicitly as

Fadh(x,P) = −∇x1,x2,x3

[∫ 2π

0

∫ ∞

0
U

(√
r2 + x23

)
rdrdθ

]

= 8π zk

((
σ

z

)12

−
(

σ

z

)6
)
ez = 2π zU (z)ez

(43)

where x3 = z is the distance (height) of the membrane point from the boundary.
While this last result depended on a specific choice for the pairwise interaction,

other types of interaction potentials can just aswell be substituted. For instanceDLVO-
theory and polymer brush models are often used to describe adhesion in biological
settings (Israelachvili 2011).Wedonot expect that these different interaction potentials
will qualitatively change the resulting cell shapes up to a choice of parameters that
govern how strong the attractive/repulsive forces are.

Finally, since cells can modulate their adhesive interactions with the environment,
we expect that k and σ could potentially vary along the cell membrane. Thus, we
also consider the case with the adhesion parameter, k increasing from front-to-back
(left-to-right in Figs. 18 and 19) along the length of a cell.

The resulting shapes that occur with various levels of adhesion strength in the
membrane are shown Fig. 19.
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Fig. 20 Effect of forces, reduced volume, and adhesion on cell shape. It is noteworthy that the roundedness,
which increases as adhesivity is decreased and the reduced volume is increased, resembles themesenchymal-
to-amoeboid transition that plays an important role in the transition from stationary cells to migratory cells
in cancer metastasis and other contexts

In Fig. 19, we see how the shape of cells is altered with adhesion to a surface.
Interestingly, the results appear quite different than those found in Raval and Gozdz
(2020) (depicted in Fig. 4). This discrepancy likely arises from several differences
in our simulations, and possibly due to the presence of multiple minimizers of the
Helfrich energy.

In Fig. 20 we show a phase diagram with various shapes obtained under several
levels of adhesion, normal forces, and reduced volumes.

As the reduced volume is lowered, we observe that the adhered cells are able
to increase their contact area with the surface leading to flatter shapes, whereas for
higher reduced volume, the cells remain fairly spherical. Since cell volume (and hence
sphericity) is controlled over longer timescales in part by osmotic pressure balances
and transport of fluid through the cell membrane, this suggests the potential for inter-
esting interactions between cell adhesion and osmotic control. As an example, in
glioblastoma tumor cells, it has been theorized that cells are able to migrate through
brain tissue by clinging to blood vessels and modulating their fluid content to slip past
obstacles (Cuddapah et al. 2014).

8 Discussion

The current work serves to better understand how cortical forces determine cell shapes,
and this can be used to determine the modes of blebbing and how the internal and
external fluids affect the cell motility. To this end we herein proposed a high-level
description of the membrane-cortex interaction that incorporates both the elasticity
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of the combined cell membrane and cortex that can be used to study the role if intra-
and extracellular fluidsl. Our aim her was to first identify general principles – for
example, how does tension affect cell morphology and the intercellular pressure –
before developing more detailed models. As a result, what is learned will be broadly
applicable to many cell types.

A number of interesting results are already attainable at this level of modeling.
For instance, it appears that active force generation, as well as modulation of passive
mechanical properties such as bending rigidities may play important roles in coordi-
nating complex motion that cells undertake as they explore their local environment or
undergo directed motion.

While many studies have considered the crucial role that the cytoskeleton plays in
directing cell movement, we have also seen that reduced volume has a very strong
affect on cell shape. This suggests that osmotic pressure variation, and subsequent
mass transport across a cell membrane may play an important role in conjunction with
cytoskeletal mechanics in determining the movement patterns of a cell.

In the context of a cell adhering to a surface, the contact region between the cell
and the surface depends upon the reduced volume of the cell, and a cell that can
control its reduced volume level via mass transport across its membrane, may be able
to additionally adjust its adhesion to a surface.

An interesting and important adaptability between two leading modes of motion –
tension-driven cell swimming and cyclic-blebbing cell swimming – is implied by our
work. In a highly confined environment, such as a narrow microfluidic channel, the
abilities of extension and propogation of cyclic small blebs of the blebb-driven cells
is suppressed. While a natural way to overcome this for an efficient locomotion is that
the cells adopt a retrograde cortical flow, which provides the tangential forces on the
cell surface (Wu et al. 2018), to propel themselves.

To further understand how cells are able to coordinate these distinct aspects of
shape control in order to achieve efficient and effective motion in response to external
or internal signals will require a great deal of theoretical and experimental work, and
there are many future directions that may be of interest.
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Appendix A Summary of surface notation

Notation and basic quantities

A smooth surface S ⊂ R
3 will be parameterized by u = (u1, u2) and the position

vector in R
3 to the surface is denoted x(u). The surface tangent vectors (which may

be nonunitary) at each point on S are defined by the parametric derivative of x with
respect to the surface coordinates, namely,

ei (u1, u2) = ∂x
∂ui

(u1, u2) i = 1, 2 (A1)
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and the surface normal n is defined by the relations n · ei = 0, n · n ≡ 〈n, n〉 = 1.
The covariant metric tensor of the surface is defined as gi j = ei · e j , the contravariant
surface metric tensor is the inverse tensor defined by the relation gi j g jk = δki , and
the determinant of gi j is denoted by g ≡ det(gi j ). The contravariant basis vectors,
denoted ei are the dual basis vectors to the covariant basis vectors, and are defined via
ei = gi j e j . Here and hereafter a repeated upper and lower index denotes summation.

The Levi-Civita symbol is defined in covariant and contravariant form as

εi j = ei j
√
g

εi j = ei j/
√
g

where e12 = −e21 = 1 and e11 = e22 = 0.
The second derivative of x is given by Gauss’ formula

ei, j ≡ ∂2x
∂ui∂u j

= �k
i j ek + Bi jn, (A2)

where n is the outward normal to the surface and the factor �k
i j is called a Christoffel

symbol and is defined as

�k
i j = ek · ∂ei

∂u j
. (A3)

This is a surface directional derivative in the direction of ei , where , i denotes the
derivative with respect to ui . The components of the surface curvature tensor B are
defined as

Bi j = n · ei, j = −n, j · ei . (A4)

Weingarten’s equation relates the variation of the normal to the curvature tensor via

n,i = −B j
i e j , (A5)

where B j
i = gik Bk j is found by raising the first index of Bi j . The mean curvature is

H = − 1
2 B

i
i , and the Gaussian curvature is given by K = det(B·· ).

Derivatives in the direction of the tangent vectors or their dual are called covariant
derivatives. The components of the covariant derivative of a co- and contravariant
vector w defined on S are

∇ j (wi ) ≡ ∂wi

∂u j
− wk�

k
i j and ∇ j (w

i ) ≡ ∂wi

∂u j
+ wk�i

k j , (A6)

where in each case the second termaccounts for the variation of the basis on the surface.
This leads to definitions of the gradient and divergence of a vectorfield onS as follows.
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Hereafter we consider only contravariant vectors and define ∇s(·) ≡ ∇i (·)ei ; then the
surface gradient of a scalar is the standard parametric gradient

∇s F = (∇i F)ei (A7)

and the surface gradient of a contravariant vector is

∇sF = ei∇i (F
j e j + Fnn)

= ei F j
;i e j + ei Fn

;in + ei Fnn;i

=
(
F j

;i − FnB j
i

)
ei e j +

(
F j B ji + Fn

;i
)
ein.

(A8)

where a semicolon denotes the covariant derivative, i.e., ∇iw
j ≡ w

j
;i .

The divergence of a vectorfield is given by

∇s · F = ∇i (F
j e j + Fnn) · ei = F j

; j − FnBi
i = Fi

;i + 2HFn

In particular we have

∇s · n = ei∇i · n = −B j
i e

i · e j = −Bi
i = 2H . (A9)

Finally, we have the following definitions for the Laplacian, and a modified Laplacian
that appear in the pseudo-evolution equations when kG is variable,


s f = 1√
g
∂i

(√
ggi j∂ j f

)
, 
s f = 1√

g
∂i

(√
gK Bi j∂ j f

)
,

where f is an arbitrary smooth function.

Appendix B Hodge decomposition of vector fields on 2-Manifolds

For any smooth vector field in R
3, the Hodge-Helmholtz decomposition states that

this vector can be written as the sum of several components in the following way,

v = vs + vc + h (B10)

where vs is irrotational, vc is divergence free, and h is a harmonic function. In fact,
these three components are unique, and mutually orthogonal. This follows from the
identities ∇ · ∇ × a = 0, and ∇ × ∇b = 0 for vector field a and scalar field b. This
allows us to write the decomposition explicitly as

v = ∇φ + ∇ × ψ + h. (B11)

where φ is a scalar field and ψ is a vector field. Unfortunately, there is no analogous
curl operator when the dimension of the space is not 3.
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However, with some modifications, this decomposition generalizes to manifolds
with arbitrary dimension so long as the differential operators corresponding to the gra-
dient, divergence, and curl are appropriately redefined.Thegeneral case is knownas the
Hodge-decomposition which is a standard topic in differential geometry texts (Renteln
2013). Rather than introducing the significant amount of new notation required to
define the Hodge-decomposition, we will apply the main results to 2-dimensional
manifolds embedded in R3.

In the language of differential geometry, smooth functions on a manifold, M are
called 0-forms, and “vectors" defined contravariantly as

α = αi ei (B12)

are known as 1-forms. In a 2-dimensional manifold, there are also 2-forms which are
defined as linear combinations of anti-symmetrized tensor products of two 1-forms,
or

γ = 1

2
(αiβ j − α jβi )ei e j = α ∧ β. (B13)

In the 2-dimensional setting, the dimension of the space of 2-forms is one, hence we
can label J = e1 ∧ e2 = e1e2 − e2e1 as the single linearly independent 2-form, and
write

α ∧ β = 1

2
(εi jαiβ j )J (B14)

where εi j is the 2-dimensional Levi-Civita symbol. With this in mind, the Hodge-
decomposition theorem states that for any 1-form v, we may write

v = ∇iφei + εi j∇iψe j + h (B15)

where h satisfies ∇s · h = 0 and ∇s × h = 0. In this case φ is a 0-form and ψ is
the density of a two form, ψ J . Furthermore, because we are assuming S is a closed-
surface, h ≡ 0.

If we identify εi j∇iψ with (∇s × ψ) j then we have recovered an analog of the
Helmholtz-decomposition for a 2-dimensional closed manifold,

v = ∇sφ + ∇s × ψ . (B16)

On two-dimensional manifolds, there is a second curl operator which takes 1-forms
to 2-forms. It is defined by

∇s × ξ = (εab∇aξb)e1 ∧ e2. (B17)

These two curl operators can be understood as specializations of the 3D curl operator
if we consider the case of a planar surface lying in the plane z = 0. Let us consider a
normally oriented vector field on that surface. Then the vector field can be written as
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v = vz(x, y)ez since the normal vector to z = 0 is ez . Let us extend this vector field
to a vector field in R

3 by multiplying it by a smooth function φ(z) where φ(0) = 1
and φ′(0) = 0. Then, at z = 0, the curl of ṽ = φ(z)v(x, y) is

∇ × ṽ =
∣∣∣∣∣∣
ex ey ez
∂x ∂y ∂z
0 0 φvz

∣∣∣∣∣∣ = (
∂yv

zex − ∂xv
zey

)
.

and this is precisely what ∇s × vz reduces to. Thus for a flat surface, ∇s × ψ ≡
∇ × (ψn). The second curl operator can be found by considering the curl of vector
fields v = vx ex + vyey . Extending to ṽ = φ(z)v(x, y), we can compute ∇ × ṽ as
above. This will yield that the coefficient of ∇s × v is the coefficient of the normal
component of ∇ × ṽ.

Finally, for a two-form with density ψ ,

∇s × (∇s × ψ) = εab∇a

(
εbc∇cψ

)
= εabεbc∇a∇cψ

= εabεbc∇a∇cψ = −
sψ

These identities allow us to recover φ and ψ given v as

∇s · v = 
sφ

∇s × v = −
sψ

and see that this decomposition is orthogonal in the sense that

∫
S

(∇sφ) · (∇s × ψ) dS = −
∫
S

φ∇s · (∇s × ψ) dS = 0. (B18)

Appendix C Derivation of weak curvature forces

We sketch the derivation of Eq. (15). The derivation of these equations with kB = 1
and C0 = 0 is presented in detail in Dziuk (2008).

First, consider the area integral,

A(S) =
∫
S
dS =

∫
U

√
gd A

where S is the membrane embedded in R
3 and U ⊂ R

2 is the image of a local
coordinate chart on S (in the case where S cannot be covered by the inverse image
of U , this is extended to a collection of Ui that cover S so long as S is smooth and
bounded).
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Let x be the identity on S (e.g. S = {x}), and consider a variation x �→ x + εδx
with Sε = {x + εδx}. Then the variational derivative with respect to ε of A,

lim
ε→0

A(Sε) − A(S0)

ε
≡ δA(δx)

is found as

δA(δx)=
∫
U

δ
√
gδxd A=

∫
U

√
g(∇s · δx)d A =

∫
S

∇s · δxdS=
∫
S

∇sx : ∇sδxdS

where the last step is possible since, in terms of contravariant derivatives,

∇s · δx = ∇iδx · ei = ei ei : ∇k(δx)ek = ∇sx : ∇sδx

But, with sufficient regularity of S,
∫
S

∇sx : ∇sδxdS = −
∫
S


sx · δxdS =
∫

H · δxdS

Thus, if we consider the integral

E(S) =
∫
S
kB |H + C0n|2dS,

and let x be varied as x �→ x + εδx, then

δE(δx) = 1

2

∫
U
kB |H + C0n|2δ(√g)[δx]d A +

∫
U
kBδH[δx] · (H + C0n)

√
gd A

(C19)

= 1

2

∫
S
kB |H + C0n|2(∇s · δx)dS +

∫
S
kBδH[δx] · (H + C0n)dS

(C20)

where we have assumed that kB does not change with variations in x and that C0 is a
constant. We have also used the fact that δn ·n = 0 in the above formula. The term δH
will be defined weakly as linear operator acting on δx. Following the same steps as in
Dziuk (2008), we simplify by considering the variational derivative of the relation

∫
S
H · δxdS =

∫
S

∇sx : ∇sδxdS (C21)

to obtain δH weakly. Since the variation δx already appears in Eq. (C21), this is
essentially the calculation of a second-order variational derivative of A(S). This leads
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to a bilinear functional δH(ψ, δx) where δx and ψ are arbitrary smooth functions.
Replacing ψ by H + C0n and following the calculation in Dziuk (2008) yields

〈δH, (H + C0n), δx〉 =
∫
S

−H · (H + C0n)∇s · δx − ∇s(H + C0n) : ∇sδx

− (∇s · (H + C0n))(∇s · δx)

+ (∇sδx + (∇sδx)T )∇sx : ∇s(H + C0n)dS

.

(C22)

If in addition, there is a variable kB , we replace H+C0n by kB(H+C0n). Combining
the results yields Eq. (15). If C0 is variable on the surface, there are additional terms
due to the variation of

∫
S
C0ndS.

It does not appear that the resulting terms present any particular difficulties if C0 is
smooth, but we did not considered this extension in this article.

Appendix DWork done by applied forces

While the change in energy due to the various energy-related terms is straightforward
to compute, the work due to the applied forces is not.

On the one hand, if the shape is in mechanical equilibrium prior to the application
of forces, we must have that after a new equilibrium is established under those forces,

Enew = Eold + W

where W is the work done by the forces (assuming no dissipation occurs). However,
it is also interesting to more directly obtain a result for the work done. To do so, note
that the power generation due to the forces is found as

P(t) =
∫
St

f · udSt

where St is the position of the surface at time t and u is the surface velocity. The total
work done is then

W =
∫ T

0
P(t)dt

In order to write this as a force times a displacement, we must account for changes in
orientation of each point on the surface as it evolves.

However, since we have applied forces of the form

f (u1, u2, t) = f i (u1, u2)ei (u1, u2, t) + f n(u1, u2)n(u1, u2, t)
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time-dependence only occurs due to the changing coordinate frame {ei , n} on the
surface. In this sense, f (x) can be understood as a rotation and translation of a time-
independent vector-field f 0 on S0. Let us then consider normalized basis vectors Ẽi

and ẽi on S at t = 0 and t = τ > 0 respectively (denoted by S0 and Sτ here). Let
R(x, t) be the rotation matrix that maps the basis vectors of the frame {Ẽi , N} at
X ∈ S0 to those in{ẽi , n} at x(X, t) on St .9

Then, we can compute the power being exerted on St as an integral over S0 as

P(t) =
∫
S0

f 0 · R−1udS0

where we have assumed incompressibility of the surface at all t , and R−1 is the inverse
map of R.

Since f 0 is constant on the reference surface, we can compute

W =
∫
S0

f 0 ·
(∫ T

0
R−1(t)udt

)
dS0 ≡

∫
S0

fi d
i + f ndndS0.

To understand this, recall the reference frame {Ẽi , N} at t = 0, and note that

∫ T

0
R−1udt =

∫ T

0

(
Ẽi ẽ

i + Nn
)

(ui ẽi + unn)dt

=
∫ T

0
ui Ẽi + unNdt = di Ẽi + dnN

which is essentially keeping the component values of u but changing the coordinate
frame to match f 0. This essentially computes how far each point moved parallel to
f during the surface evolution and thus gives us a formula involving a force times a
displacement.

While this result seems useful conceptually, in practice, thework is easier to approx-
imate either as the sum of the changes in the other energy terms, or by approximating
P(t) at each time step and integrating over time.
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