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25.1 INTRODUCTION 

Various types of cells use changes in intracellular calcium triggered by hormones, 
neurotransmitters or growth factors as a second messenger to trigger a variety of intracellular 
responses, including contraction, secretion, growth and differentiation. One of the earliest 
experiments that revealed the complexity of the calcium response is that due to Woods et al. 
(1986), who studied the response of hepatocytes to vasopressin, a hormone that mobilizes 
intracellular calcium. They found that over the range of 200 nM to 111M in the hormone 
concentration, stimuli evoke repetitive spikes in the intracellular calcium concentration, rather 
than simply elevating the level of calcium. Moreover, they found that as the hormone 
concentration was raised, the frequency of spiking increased, but the amplitude remained 
nearly constant. Thus the continuously-graded (analog) extracellular hormone signal was 
converted into a frequency-encoded digital signal (the number of calcium spikes). Similar 
dynamic behavior has been found in a large number of cell types since then, and has lead to 
the suggestion that calcium spiking and frequency encoding must have a physiological role. 
Since high calcium levels are cytotoxic, it is necessary to maintain a low average concentration 
of calcium, but since calcium frequently serves primarily as a trigger for other processes, a 
transient elevation above a low mean concentration suffices for this purpose. Moreover, using 
a large transient increase as the trigger permits the use of a sharper threshold for response, 
and hence better noise discrimination. Other possible advantages are suggested by Meyer 
& Stryer (1991), but to date there is little hard evidence that the spiking plays an essential 
physiological role. 

Of potentially greater significance is the fact that the response in many cells is also 
spatially inhomogeneous. In a variety of cell types, waves of calcium release propagate 
across the cell in response to hormonal or other stimuli. For instance, in Xenopus laevis 
oocytes, penetration of a sperm into the egg triggers a localized increase in cytosolic calcium 
that propagates away from the point of entry at approximately 10 l1/sec, inducing cortical 
contraction, meiosis, and structural rearrangement (Gilkey et al. 1978; Nuccitelli 1991). In 
addition, there is evidence that at least some of the hormone-sensitive calcium stores in 
Xenopus oocytes are localized at the animal pole (Lupu-Meiri et al. 1988; Berridge 1990), 
and thus in either fertilization or hormonal stimulation, propagation of the wave is essential 
for inducing the entire cell to respond to a localized stimulus. In hepatocytes the oscillations 
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appear to originate from a single locus and propagate across the cell. Moreover, the initiation 
site seems to be relatively constant in a given cell, even for different agonists. Thus when 
hepatocytes are treated with phenylephrine, followed by washout and restimulation with 
vasopressin, Ca+2 waves originate from the same site. The speed of the waves in hepatocytes 
is typically 20-25 IlJsec. These cells are polarized to a degree and a variety of receptors are 
known to be concentrated at the sinusoidal membrane, which may account for the origin of 
the wave. Finally, spatial variations in calcium are important at the supracellular level as 
well. For instance, calcium waves may be used to synchronize large cell assemblies such as 
ciliated epithelial cells (Meyer 1991), and diffusion of inositol 1,4,5-trisphosphate (InsP3) 
through gap junctions appears to be necessary for the propagation of these waves (Boitano 
et al. 1992). 

In cardiac and smooth muscle cells, calcium is sequestered primarily in the sarcoplas
mic reticulum, whereas in cells that are not electrically excitable it is stored in the endoplasmic 
reticulum. Calcium in the sarcoplasmic reticulum is bound to a high-affinity protein called 
sequestrin, which is thought to reside in organelles called calciomes. Wong et al. (1992) have 
developed a model for calcium-induced calcium release (CICR) from the SR. In non-excitable 
cells at least part of the sequestered calcium can usually be released by binding of InsP3 to 
a receptor that controls the permeability of a calcium channel in the ER membrane. This 
channel is a tetramer which can open to four distinct conductance levels that are multiples of 
a unit step of 20pS (Watras et al. 1991). InsP3 binding is obligatory for opening of the chan
nel (Harootunian et at. 1991), as is calcium (Watras et at. 1991). Low calcium levels promote 
opening of the channels, while high levels inhibit opening (Finch et al. 1991; Bezprozvanny 
et al. 1991). 

Reteptor controlled 
2+ 
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Figure 25.1. A schematic of the transduction system for hormonal stimuli, the calcium transport 
mechanisms, and the InsP3-sensitive and InsP3-insensitive stores. Key: G",: The G protein that 
activates phospholipase C (PLC); PIP2: phosphatidylinositoI4,5-bisphosphate; InsP3: inositol 1,4,5-
trisphosphate; DAG: diacylglycerol; PKC: protein kinase C. Solid lines indicate a material flow, and 
dashed lines indicate a control influence. 

A typical sequence for transduction of an agonist signal into a variation in intracellular 
calcium is as follows (cf. Figure 25.1). The agonist binds to a plasma membrane receptor and 
the complex catalyzes the GDP/GTP exchange in a G protein. The G", component in turn 
activates phospholipase C, the enzyme that catalyzes the hydrolysis of phosphatidylinositol 
4,5-bisphosphate to InsP3 and diacylglycerol. InsP3 then binds to an InsP3 receptor that is 
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part of the calcium channel complex on the ER membrane, and if calcium is also bound at the 
calcium-activating site the channel opens. Frequently, sequestered calcium in cells that are 
not electrically-excitable can also be released, either from the InsP3-sensitive store or from a 
distinct store, through another type of calcium channel that is InsP3-insensitive. For instance, 
Thomas et al. (1991) cite evidence that in hepatocytes only 30-50% of the non-mitochondrial 
calcium is released from the InsP3-sensitive pool, even when the calcium pump is inhibited; 
the remainder is released by calcium ionophores. In Figure 25.1 we indicate that these stores 
are distinct, but that is not known in general. 

Under prolonged hormonal stimulation, or when InsP3 is injected directly into the cell, 
calcium spiking occurs only in a range of hormonal or InsP3 concentrations (DeLisle et al. 
1990). Rooneyet al. (1989) found that there was a correlation between the latent period and 
the subsequent oscillation period over a range of agonist doses and oscillation frequencies. 
In hepatocytes the shape of the oscillations depends on the agonist. The rate of rise of the 
calcium transient is more-or-Iess independent of the agonist, but the declining phase is highly 
dependent on the agonist. For example, phenylephrine-induced transients decay much more 
rapidly than do the transients induced by vasopressin. Thomas et al. (1991) cite evidence 
that protein kinase C may be involved in the re-uptake. 

Extracellular calcium is needed in hepatocytes to sustain the calcium oscillations: in 
its absence the frequency of oscillation is reduced and the oscillations eventually run down. 
However in larger cells such as oocytes; the major features of the observed dynamics are not 
dependent on the presence of extracellular calcium or calcium-induced calcium release from 
intracellular stores. Consequently, in this paper we focus on a model in which there is no 
calcium transport between the interior and the exterior of the cell, and no calcium-induced 
calcium release; the oscillations center on the dynamics of the InsP3 receptor. Our objective is 
to develop a model that is complex enough to reproduce the major aspects of the experimental 
observations, yet which is simple enough to be analyzed qualitatively in order to understand 
how the component processes affect the overall dynamics. The major assumptions of the 
model are that calcium binds to the activating site on the channel only after InsP3 has bound 
to the receptor, and that the binding of calcium to the inhibitory site occurs only after calcium 
is bound to the activating site. This assumption of sequential binding leads to a model with 
only a few states that lends itself to qualitative analysis of the effect of various parameters. 
As we shall see later, the oscillations arise from the biphasic response of the InsP3-sensitive 
calcium channel to calcium. 

An outline of the remainder of the paper is as follows. In the following section 
we briefly review some of the previous models for calcium dynamics. In Section 25.3 we 
introduce a simple two-state receptor model and show analytically that under very general 
conditions this scheme cannot produce oscillations. We then introduce a four-state model, and 
in Section 25.4 we show that this model correctly reproduces the experimentally-observed 
bell-shaped response of the activated channel to calcium. We also show how excitability 
arises in this scheme, we demonstrate that it produces oscillations over a range of InsP3 levels, 
and we show that these oscillations show frequency coding as a function of the InsP3 level. 
Finally, in Section 25.5 we illustrate some of the wave phenomena that are possible in this 
model. 

25.2 AN OVERVIEW OF MODELS FOR CALCIUM DYNAMICS 

Calcium oscillations will in general involve many intracellular components, but in 
order to understand which components are essential and which are not, it is helpful to 
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identify major subsystems and determine how they are involved in the overall process. One 
can identify three major subsystems in Figure 25.1, (i) the transduction subsystem whereby 
hormonal signals are transduced via G-proteins into an InsP3 signal, (ii) a system comprising 
the InsP3-sensitive calcium store, and (iii), a system comprising an InsP3-insensitive calcium 
store, which may include voltage- and receptor-gated membrane channels. Of course not all 
cells will necessarily have all of these components. 

Given this subdivision, one can identify a number of distinct ways in which calcium 
oscillations can be generated. Firstly, the transduction system may generate an oscillatory 
InsP3 signal in response to a constant hormonal stimulus. This could arise from a feedback 
loop in which DAG activates protein kinase C, which in turn phosphorylates the G-protein 
that couples the receptor to phospholipase C, thereby leading to a reduction in the production 
of InsP3 and DAG, which would reduce the inhibition of transduction, and so on. We call this 
a type I oscillator, and the model proposed by Cobbold et al. (1991) is of this type. This type 
produces an oscillatory input into the InsP3-sensitive calcium subsystem, and in such systems 
the InsP3 oscillations drive the calcium oscillations. 

In a second class of models the oscillations are generated within the InsP3-sensitive 
calcium store subsystem. As we remarked earlier, it is known that in a number of systems the 
InsP3-sensitive calcium channel is not activated unless calcium occupies an activating site on 
the receptor. Furthermore, the channel conductivity is reduced at high calcium concentrations, 
probably due to the presence of a calcium-binding inhibitory site on the receptor. The model 
proposed by De Young & Keizer (1992); Keizer & De Young (1992) and the model we propose 
later incorporate these observations. In both these models InsP3 is treated as a parameter; 
oscillations in the cytosol calcium arise without any temporal variation in the level of InsP3• 

As we show later, such a system is excitable in the usual sense that there is a threshold level 
of the InsP3 stimulus below which there is no significant response, but above which there 
is a large response. As frequently happens in such systems, tuning the system parameters 
slightly produces oscillatory behavior. In our model InsP3 is both the stimulus that produces 
an excitable response, and the parameter which produces oscillatory behavior in a suitable 
range. This is in accord with the experimental observations, in that injection of InsP3 can 
produce either single calcium transients or calcium oscillations, depending on the stimulus 
level (Dupont et at. 1991). 

In a third class of models the oscillations are confined within the calcium subsystem. 
Since these do not involve transduction of hormonal stimuli, except as they involve modulation 
of calcium channels in the plasma membrane, they will not be treated here. 

In addition to the three pure types described above, there are a variety of mixed 
types, in which there are feedforward or feedback interactions between two or more of the 
subsystems described above. For example, the model of Meyer & Stryer (1988) involves 
cooperative release of calcium from the InsPrsensitive store, coupled with Ca+2 activation of 
PLC. Thus the transduction subsystem and the InsP3 -sensitive store are mutually coupled, and 
oscillations arise from the feedback interaction between these two subsystems. A model due 
to Berridge and co-workers (Goldbeter et at. 1990), which is conceptually similar to a model 
proposed by Kuba & Takeshita. (1981), involves both an InsP3-sensitive calcium store and 
an InsP3-insensitive store. In this model InsP3 is also a parameter, not a dynamic variable. A 
more complicated model, in which the transduction subsystem is linked to calcium dynamics 
has been proposed by Cuthbertson & Chay (1991). 
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25.3 THE MATHEMATICAL MODEL 

25.3.1 Two states for the IP3 receptor do not suffice 

Our interest is in systems in which a steady calcium input into the cytoplasm, either 
from the extracellular space or an internal pool, is not essential for generating the oscillations. 
In the absence of such inputs the total amount of intracellular calcium is conserved if there 
is no transport out of the cell, and it follows that a two-variable model in which the only 
dynamic variables are the concentrations of calcium in the cytosol and in the active storage 
compartment cannot give rise to oscillations, whether or not InsP3 plays a role in the release 
of calcium. This applies, in particular, to the model of Goldbeter et al. (1990), and to that 
of Somogyi & Stucki (1991). It is conceivable however, that a model in which the InsP3 
receptor has two distinct states may give rise to oscillation. However we show in this section 
that oscillations cannot arise in response to hormonal stimulation in such a model under very 
mild restrictions on the functional form of the receptor response to InsP3 and calcium. This 
leads us to a more complex four state model that we describe later in this section and analyze 
in the following section. 

Suppose that the receptor can exist in one of two states, and that transitions between 
these states occur according to the first -order scheme 

(25.1 ) 

To incorporate the InsP3 binding to the bare receptor R, as well as the activating and inhibitory 
effects of calcium, we suppose that 

kl = klO!o(I, C), (25.2) 

where I and C are the concentrations of InsP3 and cytosol calcium, respectively. The function 
io should be monotone increasing in I, monotone increasing in C at low C, and monotone 
decreasing in C at high C. In addition to the calcium flux through the InsP3-sensitive channel, 
we suppose that there is a basal calcium leakage between the store and the cytosol, and a pump 
from the cytosol into the store (ef Figure 25.1). Finally, we suppose that the conductivity of 
the InsP3-sensitive channel is an increasing function of the fraction of receptors in the state 
R*. Let z denote the fraction of receptors in the state R*; then the governing equations for C 
and z can be written 

dC 
dt 

(1 + vr)(-Yo + Itf(z)) (Co - C) - g(C) 

dz 
dt = klOio(I, C)(l - z) - k_lz. 

(25.3) 

Here 10 is the basal permeability of the ER (which includes the channel conductance in the 
absence of InsP3), and II is the density of InsP3-sensitive channels per unit volume of ER. 
The function i(z) represents the dependence of the channel conductivity on the fraction of 
channels in the conducting state RI C+, and we assume that l' :::: O. Co is the volume-average 
intracellular calcium concentration, which is defined by the relation 

G _ C + vrCs 

0- 1 + Vr ' 
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where Vr is the ratio of the ER volume to the cytosol volume and Cs is the calcium concentration 
in the store. The function g represents the active pump, and thus g( C) ~ 0 and g' (C) ~ 0.1t is 
necessary that C ~ 0, and that z E [0, 1], and it is easy to see that the set Q == {( C, z) I C ~ 0 
and z E [0, I]} is invariant under the flow of (25.3). 

The stable steady state of the system at low values of InsP3 should correspond to low 
values of cytosol calcium, and we wish to determine whether this can be destabilized and lead 
to oscillations at a critical value of InsP3. Thus consider the Jacobian of (25.3) at a steady 
state (C*, z*), which is the matrix 

_ [ -(1 + vr)(-ro + ,d(z*)) - g'(C*) (1 + vrhd'(z*)(Co - C*) 1 
K- klO~~(I,C*)(I-Z*) -klOfo(I,C*)-k_l· 

In order to destabilize the system to growing oscillations (i. e. in order to produce a Hopf 
bifurcation) as I is increased, the sum of the diagonal terms must vanish, whereas the off
diagonal terms must have opposite signs. However, neither of these conditions can be met 
under the stipulated conditions on the functions fa, f and g. Thus the steady state cannot be 
destabilized by increasing the hormone concentration, and hence the InsP3 concentration, and 
we conclude that under the forgoing conditions, a single-pool, InsP3-gated model with two 
receptor states cannot undergo a Hopf bifurcation. In fact one can prove that the system can 
never oscillate, but this will not be done here. Thus we must incorporate more receptor states, 
and we next introduce a scheme with four states that can produce oscillations. One can show 
that a three-state version of this model can also oscillate, but the dynamic behavior possible 
is limited. 

25.3.2 A four-state single pool model 

We suppose that the receptor has four states, and that the transitions between them 
occur according to the following scheme. 

kl 
I+R ---t RI +---

k_l 
k2 

RI+C ---t RIC+ (25.4) +---
k-2 

RIC+ +C 
k3 

RIC+C----t 
+---
k-3 

As before, R denotes the bare receptor, I denotes InsP3 and C denotes the cytosol calcium 
concentration. Further, RI denotes the receptor-InsP3 complex, and RIC+ (respectively, 
RIC+C-) denotes RI with calcium bound at the activating site (respectively, the activating 
and inhibitory sites). In addition, there is calcium diffusion between the calcium store and 
the cytoplasm, and a calcium pump between the cytosol and the calcium store. At present I 
is treated as a parameter. 

Let Xi, i = 2, ... 5, denote the fractions in states R, RI, RIC+ and RIC+C-, respec
tively. Then the governing equations are 

dC 
dt 

dX2 

dt 

(1 + vr)(-ro + ,d(X4))(CO - C) - g(C) 
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dX3 
dt 

dX4 
dt 

dxs 
dt 

= -(k_1 + k2C)X3 + kllx2 + k-2X4 

-(k-2 + k3C)X4 + k2CX3 + k_3 XS 

283 

(25.5) 

(25.6) 

We suppose that f( x) = x, i. e. that the channel conductivity is a linear function of the fraction 
of channels open. The calcium pump between the cytoplasm and the ER is known to be a 
tetramer with four calcium binding sites, and therefore we assume that 

-C4 

g(C) = cfl 4· 
+P2 

We define XI = C / Co, and after eliminating Xs by use of the conservation condition 
El=2 x k = 1, we can write the governing equations in the form 

(25.7) 

where>. == 1 + Vr, k2 = k2CO, k3 = k3CO, PI = pI/Co, and P2 = fu/Co. In this scaling 
all Xi range between 0 and 1, and it is easy to see that the set {Xi I 0 :5 Xi :5 I} is invariant 
under the flow of (25.7). As we show in Section 25.4, this scheme is sufficiently robust to 
reproduce many of the observations. 

25.3.3 Parameter values 

In this section we give the values of parameters in the four-state model that are used 
in later simulations and give the rationale for their choice. 

The ratio of the ER volume to the cytoplasmic volume Vr is taken to be 0.185, after 
Alberts et al. (1989). The leakage rate between the calcium store and cytoplasm is known to 
be small. We use the value /0 = 0.18-1, but the value of this parameter does not significantly 
influence the dynamics as long as it is small. 

The average calcium concentration is taken as Co = 1.56pM. This leads to a maximal 
calcium concentration in the ER (with zero calcium concentration in the cytoplasm) of lOpM, 
which is in the physiological range (De Young & Keizer 1992). 

Joseph et al. (1989) report that the dissociation constant for InsP3 binding to mi
crosomal ER fractions in the absence of calcium is approximately 0.15pM. We choose 
kl = 12.0(pM· 8 t l and LI = 8.08-1, which gives]{1 = 0.15pM. 

There are no experimental data on the kinetic constants of calcium binding to the 
channels. We choose the set of values of k2, k_2, k3, and k-3 given in Table 25.1 so as to 
make activation a much faster process compared to the binding of calcium to the inhibitory 
site. This set of data also provides an adequate fit to the bell-shaped channel opening curve 
in response to calcium changes and the saturation curve for the channel opening in response 
to InsP3 increases. 
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Table 25.1. Parameter values for the four-state model 

Parameter Value Parameter Value 
Vr 0.185 kl 12.0 (flM . s) -\ 

/0 O.ls -I k2 15.0 (flM . s) -\ 

/1 20.5s -I k3 1.8 (flM . s tl 
PI 8.5 (flM . s) I k_1 8.0s -I 

ih O.5flM k-2 1.65s -\ 

Co 1.56flM k-3 0.21s -\ 

/1 is a parameter that incorporates both the effect of calcium channel density and the 
channel conductance. Although the channel conductance is known for cerebellum cells (Wa
tras et at. 1991), the channel concentration is not reported there. However, the value of /1 
we use is consistent with that conductance and the channel densities reported for other cells. 
The calcium pumping parameters PI and ih are also unknown. We choose them, as well as 
the remaining kinetic constants, so as to qualitatively reproduce the following experimental 
results. 

• In the absence of InsP3, the equilibrium Ca2+ concentration in the cytoplasm should be 
of the order of 50nM (cf Figure 25.4). 

• The Kd for InsP3 binding to the channel increases to about 0.5flM in the presence of 
I flM calcium (Joseph et at. 1989). 

• The Ca2+ oscillations should occur in a reasonable range of InsP3 concentration and 
the system should be excitable for InsP3 below this range. 

• When the InsP3 concentration is in the range that produces oscillations, the system 
should exhibit frequency coding. 

The parameter values are listed in Table 25.1. The corresponding parameters needed for the 
nondimensional equations can easily be calculated from these values. 

25.4 ANALYSIS OF THE LOCAL DYNAMICS IN THE FOUR-STATE MODEL 

25.4.1 Steady-state analysis 

From the steady~state version of (25.7) we find that 

(kif) K- I X3 = - X2 = I X2 
k_1 

(k2XI) 
K 21XI X3 X4 = -- X3 -L2 

KIK2 
X2 = 

K 2(KI + 1) + XI + K3XT 

where K3 == k3 / k_3. Therefore the fractions in the states Rf and Rf C+ are given by 

K2 
(25.8) 
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XI 
X4 = /(2(/{I+l)+xl+/{3xI =X4(XJ), (25.9) 

The InsP3 dependence of these fractions enters through /{I, and it follows that Xi ~ 0, 
i = 2,3,4, as InsP3 ~ 0, as they should. Furthermore, X4 ~ 0 as XI ~ o. 

Since the fractions in the various receptor states at steady state can be expressed in 
terms of the dimensionless calcium concentration, these fractions can be computed knowing 
the solution of the scalar equation 

Plxj 
>{,o + /'l x4)(1 - xJ} = -4--4' 

P2 + XI 
(25.10) 

where X4 is given by (25.9). Before analyzing this equation we consider the case in which 
calcium is clamped, as in the experiments by Bezprozvanny et al. (1991). 

It follows from (25.9) that the fraction of channels open at a fixed calcium con
centration increases with the calcium concentration at low concentrations and decreases at 
high concentrations. One finds that the maximum open fraction occurs at the dimensionless 
calcium concentration 

Xi = 

and that the fraction open at this value is 

Since /{ I = k_1 / kl I, the maximum increases as yfJ for small I. The width of the graph of 
X 4 (x I) at half the maximal open fraction is determined by the roots of the equation 

~x: = X4(XJ), 

from which one finds that the half-width is 

+ _ /4 - 2x.i + (1 - 4/{3/{2(/{1 + l))(x.iF 
Xl - Xl = T * 

li3X4 

_ )'3 7( 1-+-2-Vrf{=2/{=3=(/{=I=+=1~)) 

/{3 

Thus the half-width is very weakly dependent on the InsP3 concentration. The graph of X 4 (x I) 
is shown in Figure 25.2(a), and the experimentally-derived curve is shown in Figure 25.2(b). 
Certainly the model parameters could be tuned to reproduce the experimental results as well 
as desired, but because there is no complete set of data available for the system from which 
Figure 25.2 is obtained, we have not done this. 

Now consider the steady state Equation (25.lO), which reads 

). ( + /'IXI ) (1 _ ) _ Plxj 
/'0 /{3 xT + Xl + /(2(/{1 + 1) Xl - pi + xi" (25.11 ) 

The left-hand side of (25.11) has the value )./,O at XI = 0, it vanishes at XII, and has 
a unique minimum in (0,1). On the other hand, the right-hand side vanishes at Xl = 0, is 
monotone increasing in XI, and attains its half-maximal value at XI = /{4. Depending on the 
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Figure 25.2. (a) The theoretically-predicted graph of the fraction of activated channels as a function 
of cytosol calcium. (b) The experimentally-measured curve for InsP3 = 2.0p,M (from Bezprozvanny 
et al. 1991.) 

choice of parameters, there may be one or three steady states at a fixed InsP3 concentration. 
However, if K4 is chosen sufficiently large there is a unique positive steady state for all values 
of I. It is easy to show that the steady-state calcium concentration is a monotone increasing 
function of I. It then follows from (25.9) that the fraction of channels open at the steady state 
is monotone increasing in I provided that the steady state level of calcium is such that Xl < xi 
for all IE (0,00). A plot of the fraction open computed for the standard parameters is shown 
in Figure 25.3(a), and the experimentally-observed curve for cerebellar cells is shown in 
Figure 25.3(b). One can formally compute 8xt/81 from (25.9) and (25.10) to determine the 
asymptotic dependence of the fraction open on InsP3, but the results are too complex to be 
useful in the range of interest. However, one finds numerically that the theoretical curve given 
in Figure 25.3(a) can be fit moderately well using a Hill function in InsP3 with an exponent 
of 1.75. Experimental values of the Hill coefficient for InsP3-induced calcium release range 
from 1.0-1.3 (Volpe et al. 1990) to greater than 3.7 (Delisle 1991). 

25.4.2 Excitability and Oscillations 

As we observed earlier, the experimentally-observed dynamics of the InsP3-triggered 
calcium release hav~ the hallmarks of a classical excitable system as the phrase is used, for 
example, in the context of nerve conduction equations (Alexander et al. 1990; Othmer 1991). 
To understand the origin of excitability in this system it is helpful to represent the kinetic 
mechanism schematically as follows. 

12 15 
R ~ RI ~ RIC+ 

8 1.65 

1.8 -+--
0.21 

(25.12) 

The first forward reaction involves binding of InsP3, while the last two forward reactions 
involve binding of calcium. The numerical values of the rate constants are indicated, and 
from these one sees that binding of calcium to the activating site is an order of magnitude 
faster than binding of calcium to the inhibitory site at all concentrations. Similarly, InsP3 
binding is fast as long as InsP3 is ~ 0(0.1). 

There are two aspects of excitability that are of interest here: (i) the response to 
pulses of InsP3 and (ii), the response to a pulse of calcium in a system with fixed InsP3. We 
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Figure 25.3. (a) The theoretically-predicted fraction of channels open as a function of the InsP3 
concentration. In this figure the calcium is not clamped, but rather, is obtained from the solution of the 
full set of steady state equations. (b) The experimentally-measured curve for cerebellar cells. 100% 
corresponds to 14% open. (From Watras et at. 1991) 

consider the former case first. In the absence of InsP3, X2 = 1, Xi = 0, i = 3,4,5, and the 
calcium concentration is low. If a step change in InsP3 is made, InsP3 binds rapidly with R, 
and calcium rapidly binds with the RI complex at the activating site. Since RI C+ opens 
the calcium channels, the cytosol calcium increases, which in tum produces more activated 
receptor. Thus the initial rapid response only involves XI,· .. X4, and one of the receptor 
fractions can be eliminated by the conservation condition. More precisely, if one rescales 
the full system (25.5) and makes use of the difference in kinetic coefficients in (25.12) to 
eliminate xs, and if one uses the conservation condition to eliminate X2, then one arrives at 
the system 

On the surface X3 = ° one has 

X3 = 
klI + (k-2 - klI)X4 
LI + k2xl + hI . 

Therefore, on the intersection of X4 = ° with this surface one has that 

klk2Xd 
X4= --------------------------

k-lk_2 + k3Xl(k2 + k-d + klI(k_2 + k3 + k2Xl) 

Similarly, on XI = ° one has 

X4 = C(;(:l~l) -70) 171. 

(25.13) 

(25.14) 

(25.15) 

(25.16) 

In Figure 25.4(a) we show the intersections of the null surfaces XI = ° and X4 = ° with 
the null surface X3 = 0, projected into the XI - X4 plane. One sees from (25.15) that on 
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X4 = 0, X4 is an increasing function of XI. while on Xl = 0, X4 is independent of Xl. It 
is easy to see that depending on the value of I, there may be one or three steady states in 
the fast dynamics. For instance, when I = 0.36 there are three, and the significance of this 
value will become clear later. In Figure 25.4(a) we also show the Xl and X4 components 
of the full system (25.5), starting at the steady state for I = 0, and applying a square-wave 
stimulus of amplitude I = 0.36 and duration either 3 or 4 seconds. One sees there that a 
3-second stimulus is subthreshold, while a 4-second stimulus is superthreshold. It is clear in 
that figure that the unstable manifold of the intermediate steady state of the fast system, which 
is a saddle point, serves as a threshold, and stimuli which carry the state above this manifold 
produce a significant amplification of cytosol calcium, while stimuli that leave the state below 
this manifold can be termed subthreshold. The time course of the calcium component of the 
response for the foregoing stimuli is shown in Figure 25.4(b), and these illustrate that this 
system is excitable in the sense used in Othmer (1991). 
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Figure 25.4. (a) The intersection of the null surfaces XI = 0 and X4 = 0 with the null surface X3 = 0, 
proje~ted into the x I - X4 plane. The dashed curve represents the response of a system at steady state 
with I = 0 to a square-wave impulse in InsP3 of amplitude I = 0.36 and of 3 seconds duration, and 
the heavy solid curve is the response to a 4 second stimulus of the same duration. (b) The time course 
of the calcium component for these stimuli. 

The response for an InsP3 stimulus of fixed duration and varying amplitude is shown 
in Figure 25.5. This figure also shows that the latency in the response is inversely-related 
to the amplitude of the stimulus, as is observed experimentally. It is clear that one could 
compute the threshold stimulation for a variety of amplitude-duration pairs and thereby 
construct an amplitude-duration curve for this excitable system, but this is not done here. A 
similar analysis can be done to understand excitability with respect to calcium perturbations 
at fixed InsP3. In this case we freeze X5 at its steady-state value for the given value of 
InsP3 and analyze the fast dynamics as before. In Figure 25.6(a) we show the time course 
of calcium and in Figure 25.6(b) the time course of the fraction of open channels for two 
initial perturbations in calcium. It is clear from these figures that a sufficiently large pulse 
triggers an excitable response, and in view of this, one expects that these dynamics can 
generate propagating calcium waves when InsP3 is spatially-uniform and a spatially-localized 
perturbation of calcium is introduced. It should be noted in Figure 25.6(a) that the initial pulse 
triggers a secondary response, which is what is observed experimentally when REF2 cells 
that are treated with vasopressin are exposed to a calcium pulse (Harootunian et al. 1991). 
In the experimental context the secondary response is broad (cf. Figure 2(b) in Harootunian 
et ai. (1991)), but this is the result of cell-to-cell differences in the population. 
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Figure 25.5. The response of a system at steady state to a square-wave stimulus in InsP3 of 4 seconds 
duration and of the amplitude indicated on the figure. Note that a sufficiently large stimulus generates 
a secondary response that coincides time-wise with the response generated to a stimulus of smaller 
amplitude. 

As I is increased, one finds that oscillations set in at I '" 0.366 and persist until 
I '" 2.57. We show the amplitude of the calcium component of the periodic solution in 
this range in Figure 25.7. It should be noted that the maximum amplitude of the oscillations 
decreases somewhat over the oscillatory range of InSP3, but the period changes by an order 
of magnitude. Thus the system exhibits the experimentally-observed frequency coding. In 
Figure 25.8 we show the calcium concentration and the conducting channels at I = 0.4, 
which is in the oscillatory regime. Note that there are two phases in the early part of each 
cycle, a phase in which calcium rises slowly and the fraction of channels open begins to rise, 
followed by a phase in which the channels open very rapidly and calcium rises rapidly. 

In the preceding figures the concentration of InsP3 has been held fixed. However, 
under normal circumstances InsP3 is degraded, and thus the foregoing results only strictly 
apply when a non-hydrolyzable analog of InsP3 is used. However, it is clear that if InsP3 is 
degraded, and if the initial concentration is larger than the upper limit of the oscillatory range 
of InsP3, then as InsP3 decreases the system sweeps through the entire range of oscillatory 
dynamics. The details of the dynamics will of course depend on the rate at which InsP3 is 
degraded. By controlling the InsP3 level experimentally one can control the passage through 
various dynamical regimes. This is illustrated in Figure 25.9(a), where we show the calcium 
concentration as a function of time when the time course of InsP3 is as given in the figure 
caption. The experimentally-observed behavior for endothelial cells under the same stimulus 
protocol (albeit on a different time scale) is shown in Figure 25.8(b), which is reproduced 
from R. Jacob, J. E. Merritt & Rink (1988). 

25.5 WAVES 

One of the most striking aspects of calcium dynamics in oocytes is the wide variety of 
wave patterns that are observed (Lechleiter et at. 1991; Lechleiter & Clapham 1992). A model 
based on calcium-induced calcium release that can qualitatively reproduce these observations 
is proposed in Girard et al. (1992). This model uses the model of Goldbeter et at. (1990) 
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Figure 25.6. The time course of calcium (a) and the fraction of open channels (b). The system is in a 
steady state for fixed I = 0.36 when T E (0,5), and a square wave of calcium of amplitude 1.2 (solid 
lines) or amplitude 1.15 (dashed lines) is imposed for 0.1 second at T = 5. 

for the local dynamics. However, as we noted earlier, calcium transport across the plasma 
membrane plays an essential role in this model, yet the major features of the calcium dynamics 
in oocytes do not depend on this, at least on a short time scale. Furthermore, it is known that 
there are no ryanodine receptors, and therefore there is no InsP3-insensitive calcium pool, in 
Xenopus oocytes (D. Clapham, personal communication). In hamster eggs the InsP3-sensitive 
pool plays an essential role in the calcium waves, for when the eggs are treated with antibodies 
to the InsP3 receptor, the waves are blocked (Miyazaki et al. 1992). 

In this section we briefly describe some of the wave patterns that are predicted by the 
InsP3-controlled model developed here. We include diffusion of both calcium and InsP3, and 
therefore the governing equations in a spatially distributed system are as follows. 

ax} 

at 
ay 
at 
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Figure 25.7. (a) The amplitude at steady state (solid and dashed lines) and the maximum amplitude of 
a periodic solution (open and filled circles) of calcium as a function of the InsP3 concentration. Solid 
lines and circles indicate stable solutions; dashed lines and open circles indicate unstable solutions. (b) 
The period in seconds of the periodic solutions in (a). These results were obtained using the software 
package AUTO (Doedel1986). 

(25.17) 

Here y is the dimensionless concentration of InsP3, ~ denotes the Laplace operator, DCA and 
D I are the diffusion coefficients of calcium and InsP3, respectively, and H is the dimensionless 
hormone concentration. Note that we have augmented the previous equations (25.7) to 
incorporate source terms of InsP3 and first-order decay. In a spatially-uniform system InsP3 

relaxes exponentially to the value H. We can thereby mimic experiments in which there 
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Figure 25.8. The time course of the calcium concentration (a) and the fraction of conducting channels 
(b) for the periodic solution at 1= 0.4. 

are spatially-distributed sources of InsP3 by specifying the spatial variation of H. We shall 
describe the solutions of these equations for one- and two-dimensional domains, and for a 
variety of source distributions. In all cases we impose homogeneous Neumann (i. e. zero-flux) 
boundary conditions on the boundary of the domain. The numerical procedure used is based 
on a fully-implicit time-stepping algorithm and finite difference approximations to the spatial 
derivatives. Unless otherwise stated, we use the value 5. x 10-4 mm2 I sec for both DCA and 
D[, and the spatial extent of all systems is I mm. . 

We first solve these equations in a one-dimensional domain. In Figure 25.10 we 
show the contour lines for waves that originate at a pacemaker located at the center of 
the domain (by a pacemaker region we mean that if InsP3 in the equations for a spatially
uniform system is fixed at the specified H, then the dynamics in that system would be 
oscillatory). In Figure 25.IO(a) the period of the pacemaker is approximately 12.2 seconds, 
and 1:1 locking with a period of 14.4 seconds results. The speed of the resulting waves 
is approximately 16.5 pi sec, which is in the experimentally-observed range for various 
systems. However, much more complex patterns result when the pacemaker region has a 
shorter period, particularly when several pacemakers interact. In Figure 25 .1O(b) we set 
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(b) 

Figure 25.9. (a) The theoretically-predicted calcium concentration. and (b) the experimentally
observed results for endothelial cells. In (a) the InsP3 concentration is held at 0.5 for T E (3,30). 
then is increased to InsP3 = 5. for 20 seconds. and held at InsP3 = 1 thereafter. 

H = 0.5 near x = 0.25. which gives rise to a period of approximately 8 seconds, and 
H = 1.0 near x = 0.5, which produces a period of approximately 4.6 seconds. Note that 
every other wave that emanates from x = 0.25 is blocked. whereas only 2 of every 5 waves 
that emanate from x = 0.5 propagate. What is noteworthy here is that the faster pacemaker 
does not entrain the slower one; they coexist stably for as long as we have continued the 
computations. 

A similar phenomenon exists in higher dimensions. In Figure 25.11 we show two 
snapshots of the contour pattern generated by three interacting pacemakers. In this figure 
H = 0.4 within a disk of radius 0.0707 centered at (0.5,0.75), H = 1.0 within a disk of 
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Figure 25.10. (a) The contour lines for waves generated by a pacemaker at the center of the domain 
(H =: 0.4 for x E (.475, .525)). (b) The wave patterns when two pacemakers interact. In both (a) and 
(b) H =: 0.36 outside the pacemaker regions. 

radius 0.0707 centered at (0.25,0.25), and H = 1.5 within a disk of radius 0.0707 centered 
at (0.5,0.25) (the last of these produces a period of approximately 3.95 seconds). Again 
the conclusion is similar to that in one space dimension; pacemakers of widely-disparate 
periods can coexist stably, apparently indefinitely. In the two-dimensional system we have 
not established that the overall pattern is in fact periodic. 

Other types of waves are also possible. In Figure 25.12 we show a spiral wave that 
exists when H = 0.36 throughout the medium. By examining a sequence of time snapshots 
of the wave, one finds that the period is approximately 14.9 seconds and the wavelength is 
260 fl, which yields a speed of 17.45 fl / sec. Just as mUltiple pacemakers can coexist stably, so 
too can a spiral and a pacemaker. In Figure 25.13 we show two time snapshots that illustrate 
this coexistence. In this figure H = 0.5 in a disk of radius 0.0707 centered at (0.5,0.5), and 
H = 0.35 elsewhere. The coexistence of these Vl:'aves is more sensitive to parameter values 
than the multiple pacemakers. If one slightly alters the combination of H values either the 
pacemaker or the spiral will dominate the asymptotic behavior, depending on the alteration. 
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Figure 25.11. The contour pattern of waves produced by three pacemaker regions. H = 0.36 outside 
the pacemaker regions. 

However, such solutions are more than a passing curiosity, for they are seen experimentally 
in oocytes. 

25.6 DISCUSSION 

As we noted in Section 25.2, there are a number of distinct classes of models for 
calcium dynamics. Models based on calcium-induced calcium release developed by Berridge 
and co-workers can reproduce many aspects of the local dynamics, and it has recently been 
shown that they generate traveling waves (Girard et al. 1992; Dupont et al. 1991). Similarly, 
models that involve calcium-activated PLC can also reproduce the observed behavior in 
some systems. Although it is known that some systems have several types of calcium 
stores (Brundage et al. 1991; Bazotte et al. 1991), it is also known that the InsP3-sensitive 
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Figure 25.12. A spiral wave propagating through a medium in which H = 0.36 everywhere. 

store plays an essential role in some systems, and that some systems do not have a calcium
sensitive store (Wakui et al. 1989). Within the context of models for a a single InsP3-sensitive 
pool, one can consider schemes in which InsP3 oscillates and those in which it does not, but 
oscillation of InsP3 is not essential, as shown by experiments using the non-metabolizable 
InsP3 analogue InsP3S3 (Wakui et al. 1989). This leads to a model based on one calcium pool 
with the InsP3 signal as a parameter which controls the various types of response. 

The bell-shaped channel opening in response to the calcium levels, which emerges 
from the four-state model developed here, has been observed in cerebellum cells, using 
reconstituted membrane containing the channels (Bezprozvanny et al. 1991). Moreover, 
activation of channels at low calcium concentrations and inhibition at high concentrations 
are seen in a variety of cell types (Zhao et al. 1990; Wakui & Petersen 1990; Parker & 
Ivorra 1990; Meyer & Stryer n.d.). As we have seen, single-pool models based on an InsP3 -

controlled channel must incorporate more than two states for the InsP3 receptor in order to 
generate oscillations. This is true even when the activating and inhibitory effects of calcium 
on the channel dynamics are incorporated. The reason is that the bell-shaped dependence of 
openings on calcium reflects different time scales, that of the fast activation and that of the 
slow inhibition, that must be incorporated in the dynamics in order to generate oscillations. 
The two-state model is too severe a reduction to reflect these scales. 

A multi-state model for the InsP3 receptor has been developed by DeYoung and 
Keizer (1992; 1992). Our model differs from theirs in the following respects: (i) The 4-state 
model can be studied analytically to understand the origin of the excitable and oscillatory 
behavior, whereas this is not possible in the 8-state model they propose. (ii) In the DeYoung
Keizer model a channel is assumed to be open only if three subunits in the channel are in 
the state RI C+, whereas we assume that a channel can conduct with only one subunit in 
this state. This implies that the channel in our model can open to 4 different levels, while in 
theirs it can only open to one level. A major advantage of our four-state model is that we can 
obtain the bell-shaped distribution directly, and thus show that it arises naturally when there 
are sequential activation and inhibition calcium binding steps. Moreover, parametric analysis 
is relatively easy, and the effects of changing on- and off-rates are easy to predict. 
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The local dynamics of our model show four different types of response to different 
levels of InsP3 concentrations, namely; a subthreshold response, an excitable response, an 
oscillatory response with frequency coding, and the over-saturated response. Our model can 
generate either an oscillatory or an overdamped approach to a high calcium level, depending 
on the parameters. The second type of response is observed in experiments when InsP3 is 
very high. The parameter values we used in this paper do not show this type of response, but it 
is possible with another set of parameters. The different types of responses cover essentially 
all the local aspects of calcium dynamics observed to date. The distributed versions of our 
model show traveling waves in one spatial dimension, and target patterns and spiral waves in 
two spatial dimensions. The new types of wave interaction patterns predicted from numerical 
calculations are confirmed by experimental results. 
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Further numerical simulations are needed on the fertilization waves in the Xenopus 
oocyte, the sea urchin egg (Swann & Whitaker 1986), and endothelial cell populations (Boi
tano et al. 1992), where the stimuli are localized. By incorporating positive feedback of Ca2+ 
on InsP3 generation in our model, we have shown that spatially-localized hormone stimuli can 
generate constant amplitude propagating waves. These results will be reported elsewhere. 

Exchange of calcium between the cytoplasm and the extracellular medium is not 
included in our model, but it can easily be incorporated. If it were, the model would 
predict that the oscillations die out when calcium is removed from the extracellular medium. 
Similarly, we could include a calcium-sensitive store, and other types of interactions between 
the subsystems identified in Section 25.2. 

ACKNOWLEDGMENTS This research was supported in part under NIH grant #GM29123. 

REFERENCES 

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., & Watson, J. D. 1989. Molecular biology of 
the cell. second edn. New York: Garland Publishing, Inc. 

Alexander, J. c., Doedel, E. J., & Othmer, H. G. 1990. On the resonance structure in a forced excitable 
system. SIAM J. Appi. Math., 50(5), 1373-1418. 

Bazotte, R. B., Pereira, B., Higham, V. Shoshan-Barmatz S., & Kraus-Friedmann, N. 1991. Effects 
of ryanodine on calcium sequestration in the rat liver. Biochemical Pharmocology, 42(9), 1799-
1803. 

Berridge, M. J. 1990. Inositoll,4,5-trisphosphate-induced calcium mobilization is localized in Xeno
pus oocytes. Proc. Roy. Soc. B, 238, 235-343. 

Bezprozvanny, I., Watras, J., & Ehrlich, B. E. 1991. Bell-shaped calcium-response curves of 
Ins(I,4,5)P3- and calcium-gated channels from endoplasmic recticulum of cerebellum. Nature, 
351,751-754. 

Boitano, Scott, Dirksen, Ellen R., & Sanderson, Michael J. 1992. Intercellular propagation of calcium 
waves mediated by inositol trisphosphate. Science, 258(Oct.), 292-295. 

Brundage, Rodney A., Fogarty, Kevin E., Tuft, Richard A., & Fay, Fredric S. 1991. Calcium gradients 
underlying polarization and chemotaxis of eosinophils. Science, 254(Nov.), 703-706. 

Cobbold, P. H., Sanchez-Bueno, A., & Dixon, C. J. 1991. The hepatocyte calcium oscillator. Cell 
Calcium, 12, 87-95. 

Cuthbertson, K. S. R., & Chay, T. R. 1991. Modelling receptor-controlled intracellular calcium 
oscillations. Cell Calcium, 12, 97-109. 

De Young, G., & Keizer, J. 1992. A single-pool inositoll,4,5-trisphophate-receptor-based model for 
agonist-stimulated oscillations in Ca+2 concentration. Proc. Nat. Acad. Sci., 89, 9895-9899. 

Delisle, S. 1991. The four dimensions of calcium signalling in Xenopus oocytes. Cell Calcium, 12, 
217-227. 

DeLisle, S., Krause, K. H., Denning, G., Potter, B. V. L., & Welsh, M. 1. 1990. Effect of inositol 
trisphosphate and calcium on oscillating elevations of intracellular calcium in Xenopus oocytes. 
J. Bioi. Chern., 265,11726--11730. 

Doedel, E. 1986. AUTO: Software for continuation and bifurcation problems in ordinary differential 
equations. Tech. rept. California Institute of Technology. 

Dupont, G., Berridge, M. J., & Goldbeter, A. 1991. Signal-induced Ca2+ oscillations: Properties of a 
model based on Ca2+ -induced Ca2+ release. Cell Calcium, 12, 73-85. 

Finch, E. A., Turner, T. J., & Goldin, S. M. 1991. Calcium as a coagonist of inositol 1 ,4,5-triphosphate
induced calcium release. Science, 252, 443--446. 

Gilkey, J. c., Jaffe, L. F., Ridgeway, E. B., & Reynolds, G. T. 1978. A free calcium wave traverses 
the activating egg of the medaka, Oryzias latipes. J. Cell Bioi., 76, 448-466. 

Girard, S., Luckhoff, A., Lechleiter, 1., Sneyd, J., & Clapham, D. 1992. Two-dimensional model of 
calcium waves reproduces the patterns observed Xenopus oocytes. Biophys. J., 61, 509-517. 



Chapter 25. A Model of Calcium Dynamics 299 

Goldbeter, A, Dupont, G., & Berridge, M. J. 1990. Minimal model for signal-induced Ca2+ oscilla
tions and for their frequency encoding through protein phosphorylation. Proc. Natl. Acad. Sci. 
USA,87,1461-1465. 

Harootunian, AT., Kao, J. P. Y., Paranjape, S., & Tsien, R. Y. 1991. Generation of calcium oscillations 
in fibroblasts by positive feedback between calcium and IP3. Science, 251, 75-78. 

Joseph, S. K., Rice, H. L., & Williamson, J. R. 1989. The effect of external calcium and pH on inositol 
trisphosphate-mediated calcium release from cerebellum microsomal fraction. Biochem. J., 258, 
261-265. 

Keizer, J., & De Young, G. W. 1992. Two roles for Ca2+ in agonist stimulated Ca2+ oscillations. 
Biophys. J., pp. 649-660. 

Kuba, K., & Takeshita., S. 1981. Simulation of intracellular Ca2+ oscillations in a sympathetic 
neurone. J. of The or. Biol., 93, 1009-1031. 

Lechleiter, J., & Clapham, D. 1992. Molecular mechanisms of intracellular calcium excitability in X. 
laevis oocytes. Cell, 69, 283-294. 

Lechleiter, J., Girard, S., Peralta, E., & Clapham, D. 1991. Spiral calcium wave propagation and 
annihilation in Xenopus laevis oocytes. Science, 252, 123-126. 

Lupu-Meiri, M., Shapira, H., & Oron, Y. 1988. Hemispheric asymmetry of rapid chloride responses 
to inositol trisphosphate and calcium in Xenopus oocytes. FEBS Letts., 240, 83-87. 

Meyer, T., & Stryer, L. Transient calcium release induced by successive increments of inositol 
1,4,5-trisphosphate. Proc. Nat. Acad. Sci. USA. 

Meyer, T., & Stryer, L. 1988. Molecular model for receptor-stimulated calcium spiking. Proc. Natl. 
Acad. Sci. USA, 85, 5051-5055. 

Meyer, Tobias. 1991. Cell signaling by second messenger waves. Cell, 64,675-678. 
Meyer, Tobias, & Stryer, Lubert. 1991. Calcium spiking. Ann. Rev. Biophys. Biophys. Chem., 20, 

153-174. 
Miyazaki, S., Yuzaki, M., Nakada, K., Shirakawa, H., Nakanishi, S., Nakade, S., & hiba, K. Mikos. 

1992. Block of Ca2+ wave and Ca2+ oscillation by antibody to the inositoll,4,5-trisphosphate 
receptor in fertilized hamster eggs. Science, 257, 251-255. 

Nuccitelli, R. 1991. How do sperm activate eggs? Curro Top. Dev. Bioi., 25,1-16. 
Othmer, H. G. 1991. The dynamics of forced excitable systems. In Nonlinear Wave Processes in 

Excitable Media, Holden, A V., Markus, M., & Othmer, Hans G. (eds), pp. 213-232. NATO, 
Plenum Press. 

Parker, I., & Ivorra, I. 1990. Inhibition by Ca2+ of inositol trisphosphate-mediated Ca2+ liberation: 
A possible mechanism for oscillatory release ofCa2+. Proc. Natl. Acad. Sci USA, 87, 260-264. 

R. Jacob, J. E. Merritt, T. J. Hallam, & Rink, T. J. 1988. Repetitive spikes in cytoplasmic calcium 
evoked by histamine in human endothelial cells. Nature, 335(Sept.), 40-45. 

Rooney, Thomas A., Sass, Ellen J., & Thomas, Andrew P. 1989. Characterization of cytosolic calcium 
oscillations induced by phenylephrine and vasopressin in single fura-2-loaded hepatocytes. J. 
BioI. Chem., 264(29),17131-17141. 

Somogyi, R., & Stucki, J. W. 1991. Hormone-induced calcium oscillations in liver cells can ~e 
explained by a simple one pool model. J. Biol. Chem., 266( 17), 11068-11077. 

Swann, Karl, & Whitaker, Michael. 1986. The part played by inositol trisphosphate and calcium in the 
propagation of the fertilization wave in sea urchin eggs. J. Cell Bioi., 103(6 Pt. 1),2333-2342. 

Thomas, A P., Renard, D. C., & Rooney, T. A 1991. Spatial and temporal organization of calcium 
signalling in hepatocytes. Cell Calcium, 12, 111-126. 

Volpe, P., Alderson-Lang, B. H., & Nickols, G. A 1990. Regulation of inositol 1,4,5-triphosphate
induced Ca2+ release. I. effect of Mg2+. Am. J. Physiol., 258, CI077-C1085. 

Wakui, M., & Petersen, O. H. 1990. Cytoplasmic Ca2+ oscillations evoked by acetylcholine or 
intracellular infusion of inositol trisphosphate or Ca2+ can be inhibited by internal Ca2+. FEBS 
Lett., 263, 206-208. 

Wakui, M., Potter, B. V. L., & Petersen, O. H. 1989. Pulsatile intercellular calcium release does not 
depend on fluctuations in inositol trisphosphate concentrations. Nature, 339, 317-320. 



300 Hans G. Othmer and Yuanhua Tang 

Watras, J., Bezprozvanny, I, & Ehrlich, B. E. 1991. Inositol 1,4,5-trisphoshate-gated channels in 
cerebellum: Presence of multiple conductance states. J. Neuroscience, 11(10), 3239-3245. 

Wong, Alan Y. K., Fabiato, Alexandre, & Bassingthwaigthe, J. B. 1992. Model of calcium-induced 
calcium release mechanism in cardiac cells. Bulletin of Mathematical Biology, 54(1), 95-116. 

Woods, N. M., Cuthberson, K. S. R., & Cobbold, P. H. 1986. Repetitive transient rises in cytoplasmic 
free calcium in hormone-stimulated hepatocytes. Nature, 319, 600--602. 

Zhao, Hong, Loessberg, Peggy A., Sachs, George, & Muallem, Shmuel. 1990. Regulation of intracel
lular Ca2+ oscillation in AR42J cells. J. Biol. Chem., 265(34), 20856-20862. 


