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A fundamental problem in developmental biol-
ogy is understanding how complex patterns and
organised tissues develop from a small group
of nearly identical cells. A wealth of experi-
mental data has exposed the complexity of the
molecular networks guiding cellular decisions of
organisation and patterning – networks whose
output evolves over space and time as devel-
opment progresses. Integrating this data into
reaction–diffusion (RD) mathematical models that
describe the spatiotemporal dynamics of molecu-
lar species during development provides a rigorous
approach to test the plausibility of hypothesised
mechanisms guiding pattern formation, to under-
stand how the complexity is regulated and to
optimise experimental design. RD modelling pro-
vides a complementary mode of inquiry that both
depends on and informs experimental research.
RD systems are used in developmental biology to
model morphogen-mediated pattern formation.

Introduction

The role of mathematical models in
development
During the early stages of metazoan development, a zygote under-
goes rapid mitotic proliferation during the blastula stage, which
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is followed by cellular movement, differentiation and germ layer
specification during the gastrula and later stages. Throughout this
early process, zygotic gene expression is regulated by a precisely
coordinated flurry of maternal and zygotic cues (mRNA (messen-
ger ribonucleic acid) distributions, cytokines, etc.), thereby regu-
lating pattern formation, cellular proliferation, differentiation and
morphogenesis. These same processes are employed again dur-
ing organogenesis. The patterns serving as the output for these
analyses are the spatially restricted gene expression domains that
arise as an effect of signalling from mobile instructing molecules
called morphogens. This is all accomplished in a spatially and
transiently reproducible manner that is robust to environmental
variation. These properties of robustness and reproducibility are
puzzling and difficult, if not impossible, to resolve from a classi-
cal, exclusively experiment-based approach.

Fundamental questions of pattern formation during develop-
ment must then be addressed through the specification and
quantitative characterisation of the spatiotemporal programs con-
trolling the formation and interpretation of the morphogen distri-
butions. This stage of analysis is where mathematical modelling
can make significant contributions. The judicious application of
mathematical models integrated with imaging and biophysical
data enables new mechanisms of pattern formation to be tested
and vetted, yielding novel insights into the core processes gov-
erning development.

In this pedagogical article, an introductory description
of the prerequisite concepts and techniques used in these
approaches will be provided. The basic equations governing
reaction–diffusion (RD) systems are developed in Box 1, and
an example of how alternative transport mechanisms may be
approximated as diffusion is shown in Box 2. It is common to
assume that a reaction-transport phenomenon can be approx-
imated as RD (Kicheva et al., 2007), but such simplification
carries a caveat. The use of effective diffusion as an approx-
imation for transport mechanisms is often based on a highly
simplified model of reality and thus may not provide mechanistic
insight into the actual mode of transport (Bollenbach et al., 2005;
Gonzalez-Gaitan and Jülicher, 2014; Lin and Othmer, 2017).
Similarly, unknown reaction kinetics may be approximated
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with phenomenological forms that reduce aspects of a model’s
mechanistic descriptive power. An apt aphorism for this word of
caution is that ‘all models are wrong, but some are useful’ (Box,
1979). It is the responsibility of the modeller to appropriately
frame the scope and context of the questions being addressed
with the model at hand. With these concepts in mind, examples
of how RD models are used to describe and test hypotheses
of mechanisms for morphogen-meditated pattern formation in
diverse developmental contexts are provided. These examples
illustrate the utility of an iterative approach between experimen-
tation and mathematical modelling which neither approach can
provide on its own.

Reverse engineering of development

To understand the role of RD equations in addressing ques-
tions in developmental biology, it is helpful to use a mental
framework typified by engineering analogies. An organism can be
thought to be the product of an evolutionarily engineered system
where dynamical networks of components interact to accomplish
some performance objective. Such objectives include pattern for-
mation, positional specification and precision, scale invariance,
growth control and robustness to signal perturbation and param-
eter variation (Umulis and Othmer, 2015). Identifying compo-
nents of such a network and describing their relationships are
akin to reverse engineering, which attempts to deconstruct sys-
tems or objects and determine the design of the system and how
the system works. In this framework, the concepts of forward
and inverse problems and top-down and bottom-up approaches
to reverse engineering are important to understand.

In a forward problem, one knows the components of the
system and inputs and predicts an output. A living organism
undergoing development executes a forward problem. Input
components – including the genome, maternal mRNA, DNA
(deoxyribonucleic acid) and RNA (ribonucleic acid) poly-
merases – are subject to the biophysics and biochemical kinetics
governing their activity to produce the embryo’s phenotype and
morphology (Jaeger et al., 2004; Lobo et al., 2014). Conversely,
an inverse problem uses a measured output and the postulated
architecture of the system to determine the inputs used to gen-
erate that output. These inputs are not necessarily unique, and
it may be the case where several, many or infinite sets of inputs
can produce a single output state. This is a property evident in
diverse biological systems using different mechanisms across
species to accomplish similar objectives (Mdluli, 2017; Zinski
et al., 2017).

The process of reverse engineering a biological system can
be undertaken using a full range of bottom-up and top-down
approaches. Both approaches begin by identifying performance
objectives met by the system. A bottom-up approach then pro-
ceeds with an effort to identify the most relevant molecular
components within a certain context through methods such as
‘-ome’ analysis (genome, transcriptome, proteome, epigenome,
lipidome, etc.). Once a subset of molecules is flagged among the
global population through differential expression, the molecules
may be studied at higher resolution to build hypotheses of how
they achieve certain emergent properties. A top-down approach
seeks to identify parsimonious (i.e. minimal) models to produce

these observed properties. These are useful for proposing the-
oretical mechanisms which may serve as a falsifiable basis for
targeted empirical investigation and later refinement or elimina-
tion. From either direction, a way to model the network dynamics
is needed to investigate mechanistic questions.

RD equations are useful in both top-down and bottom-up
approaches to describe aspects of patterning in development
at different levels of detail. RD equations are a type of par-
tial differential equation (PDE) used to describe transient and
spatially dependent morphogen distributions and their dynamic
interactions with other molecules. RD equations are immedi-
ately applicable from a top-down approach to match observations
qualitatively when little is known about the underlying struc-
ture. On the other hand, they can also be used to provide a
quantitative framework for testing hypothesised inputs and mech-
anisms on their ability to produce a specific set of outputs. In
between top-down and bottom-up approaches, RD equations may
also be used in ‘middle-out’ approaches to see if the currently
known components are sufficient or to suggest new factors if
key behaviours are missing. For example, they could be used to
propose additional regulatory molecules or interactions not yet
identified in a process sufficient to drive the network dynamics
towards a performance objective (Umulis et al., 2006).

Processes Modelled
by Reaction–Diffusion Equations

RD equations are built from three classes of terms. The first is
the transport of components through mechanisms that may be
described as diffusion. The others are production and clearance
of components through interactions within the system or through
independent reactions. These equations have the following form
for each component:

Rate of change of the local concentration

= transport +
∑

production −
∑

clearance

Production terms are the reactions and interactions that increase
a component’s concentration, and clearance terms are those
that decrease its concentration. Specifying these terms is done
by hypothesising the biophysical and biochemical mechanisms
involved in morphogen dynamics. The transport term is usually
represented by diffusion, but the utility of these equations may
be extended beyond the small subset of biological processes truly
controlled by free diffusion. Effective diffusion may approximate
systems where free diffusion is inhibited or active transport mech-
anisms influence the concentration profile (Bollenbach et al.,
2005; Umulis and Othmer, 2013).

The end goal, however, is not simply to describe the distribution
dynamics of morphogens, but to use this information to answer
specific scientific questions. For instance, the set of RD equations
may be used to demonstrate the sufficiency of a proposed set
of mechanisms to produce certain biological phenomena or to
test the efficacy and side effects of a proposed therapeutic treat-
ment in a disease model. Other routes of investigation involve

2 eLS © 2018, John Wiley & Sons, Ltd. www.els.net



�

� �

�

A Primer on Reaction–Diffusion Models in Embryonic Development

Table 1 Examples of morphogen-mediated patterning models using RD equations in diverse systems

Context Model description Primary questions addressed Reference

Bicoid in Drosophila Single component, linear,
SDD

Can physiologically relevant diffusion
coefficients facilitate the good fit between
the SDD model and biophysical Bicoid
data?

Gregor et al. (2007)

Bmp in zebrafish Multicomponent,
nonlinear

Is the BMP shuttling mechanism for gradient
formation conserved between Drosophila
and zebrafish?

Zinski et al. (2017)

Nodal/Lefty in zebrafish Two-component
activator–inhibitor,
nonlinear

Does differential clearance or differential
diffusivity facilitate the Nodal signalling
gradient?

Müller et al. (2012)

Shh in mouse neural tube
patterning

Multicomponent,
nonlinear

What role do non-steady-state dynamics of
network components play in
morphogen-mediated tissue patterning

Saha (2006)

Gap genes in Drosophila Multicomponent,
nonlinear

Discrimination among model regulatory
topologies through a novel fitting method

Perkins et al. (2006)

Wnt/Dkk in mouse hair
follicle formation

Two-component
activator–inhibitor,
nonlinear

Is a Turing-type RD model sufficient to
explain hair follicle pattern formation?
(Note: here, reaction–diffusion is used
synonymously with the specific Turing
mechanism.)

Sick et al. (2006)

Fgf in zebrafish Single component, linear Is the simple source–sink mechanism
sufficient to describe the Fgf8 morphogen
profile?

Yu et al. (2009)

Bmp and Wnt in mouse
digit formation

Three component, linear
and nonlinear analysis

Is a Turing-type RD model sufficient to
explain digit formation in the forelimb, and
what are the implicated molecules?

Raspopovic et al. (2014)

Bmp in Drosophila Multicomponent,
nonlinear

How do BMP-receptor binding enhancement
and positive feedback affect robustness and
bistability?

Umulis et al. (2006)

questions regarding the information-carrying capacity encoded
in a morphogen distribution and how the information carried
in this signal is interpreted by cells locally and globally. Mor-
phogens commonly modelled with RD equations include TGF-β,
BMP, NODAL, WNT, SHH and FGF (Table 1). Examples will
be explored in a following section.

Derivation of RD equations
for morphogen patterning
Using the qualitative version of the mass-balance equation from
the previous section, a mass balance is developed in Box 1 that
includes the reaction and transport terms leading to the basic
equation (B.1.3).

In models of biological systems, more complexity must be
considered than shown in the derivation of Box 1, that is there
may be:

1. Multiple mobile species. Several mobile morphogens may
be involved in a patterning model, represented by the vector
c= (c1, … , ci, … , cn).

2. Multidimensional transport. Morphogen transport in higher
dimensions involves fluxes in the y and z directions (across
boundaries of ΔAy and ΔAz), expressed using the dot product

between the gradient operator∇ = (𝜕∕𝜕xî, 𝜕∕𝜕yĵ, 𝜕∕𝜕zk̂) and
the flux vector J= (Jx, Jy, Jz) for each ci ∈ c.

3. Stationary species. Some molecular species may be immo-
bilised, and their concentrations are represented by the
vector s= (s1, … , sj, … , sm). When modelling 3D dif-
fusible morphogens, an important distinction between 3D-
and 2D-bound immobile molecules must be made when
implementing these equations (e.g. ubiquitous immobile
extracellular matrix (ECM) molecules in 3D and diffusible
transmembrane receptors in 2D). In some instances, bound
complexes will continue to diffuse on the cell membrane,
requiring the gradient operator and a definition of flux on the
cell membrane. Here, we will assume a spatially uniform
distribution of these components within the domain based
on an assumption that the total concentration of immobile
species is constant (Umulis et al., 2008).

4. Reactions. The net effect of reactions governing each com-
ponent may be represented by the summation of individual
reactions Rc,i(c, s, p) and Rs,j(c, s, p). Each of these R terms
represents a single reaction that is a function of the other
components in the system (c and s) and parameters (p). These
may also include zeroth-order reactions which are not depen-
dent on any concentrations.

eLS © 2018, John Wiley & Sons, Ltd. www.els.net 3
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Box 1 Derivation of transport continuity equation with reaction in one dimension

R(c)

J(xix )

c(xix −1,t)

ΔAΔΔ

ΔxΔΔ

0

c(xix ,t)

xx
L

R(c) R(c)

J(xix +1)

c(xix +1,t)

xix +1xix

In the simplest case of a one-dimensional system on the domain Ω= [0, L] that involves a single morphogen, we can develop
the spatiotemporal morphogen concentration along a region of interest, c(x, t), as follows. Imagine the system to be divided
into n small control volumes of length Δx and cross-sectional area ΔA, where the concentration within each volume is uniform.
Within the ith volume, given by ΔA • Δx, the change in quantity of the morphogen over a small time period Δt is equal to the
difference between the quantity at the initial time, t𝜏 , and final time, t𝜏 +Δt (or equivalently, t𝜏 + 1). This is equal to the sum
of the flux J into and out of the volume through boundary areas at positions xi and xi +Δx plus the rate of reaction within the
volume R(c). The reaction term represents the net rate of morphogen creation or destruction as it depends on local concentration
within that volume. Flux and chemical reactions take place over the course of a small time, Δt. Thus, the quantity of morphogen
within this ith volume is:

ΔA • Δx•(c(xi, t𝜏 + Δt) − c(xi, t𝜏 )) = ΔA • Δt•(J(xi) − J(xi + Δx)) + ΔA•Δx•Δt•R(c) (B.1.1)

Checking units: (
[L2]•[L]•

[M
L3

])
=
(
[L2]•[t]•

[ M
L2t

])
+
(
[L2]•[L]•[t]•

[ M
L3t

])
= [M]

Terms in square brackets denote generalised units of M (quantity), L (length) and t (time). It is a useful practice to check units
often when mathematically formalising physical systems.

Dividing each term in equation (B.1.1) by ΔA • Δx • Δt yields:

c(xi, t𝜏 + Δt) − c(xi, t𝜏 )
Δt

=
J(xi) − J(xi + Δx)

Δx
+ R(c) (B.1.2)

Taking the limit as Δt→ 0 and as the number of control volumes along the system n→∞, Δx→ 0, these may be expressed
as the partial derivative with respect to t and x. This allows the concentration, flux and reaction rate to be expressed as continuous
quantities, yielding the most basic RD PDE:

𝜕c
𝜕t

= −𝜕J
𝜕x

+ R(c) (B.1.3)

The solution, c(x, t), may be determined when boundary conditions at x = 0 and L and initial conditions at t= 0 are known or
specified.

The contributions lead to the following extended form of
equation (B.1.3) for each morphogen ci ∈ c and immobile species
sj ∈ s:

𝜕ci(x, y, z, t)
𝜕t

= −∇ • J
i
+

∑
ci Rxns

Rc,i(c, s, p) (1)

𝜕sj(t)
𝜕t

=
∑

sj Rxns

Rs,j(c, s, p) (2)

Here, ∇ • Ji represents all forms of transport, both active and pas-
sive, where ∇ is the differential operator or gradient defined as
i𝜕/𝜕x + j𝜕/𝜕y + k𝜕/𝜕z. However, these equations are not use-
ful for modelling biological systems in their current form. The
transport term must reflect experimental data to be physiologi-
cally relevant and therefore must be re-expressed. The flux of a
single morphogen ci in one dimension resulting from the passive
process of free diffusion may be described by Fick’s first law of
diffusion: Ji,x =−Di(𝜕ci/𝜕x), where Di is the diffusion coefficient,

4 eLS © 2018, John Wiley & Sons, Ltd. www.els.net
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Box 2 Approximation of active transport equation along microtubules as effective
diffusion

p–, s–

p+, s+

Microtubule-mediated molecular transport provides an effective means of intracellular transport for moving components within
the cell, and in some cases between nuclei in a syncytium (e.g. in the Drosophila blastoderm embryo). Assuming isotropic
microtubule orientation (i.e. no cellular polarisation), this active transport process may be approximated as effective diffusion,
derived here in one dimension as in Othmer et al. (1988).

As in the figure above, suppose that protein cargo travels along a microtubule to the right (positive motion) at constant speed,
but at any time it can change direction and travel to the left (negative motion) – and vice versa – by jumping between dynein
and kinesin motor proteins. A model tracking the probability density of proteins travelling in a positive or negative direction
may be expressed as:

𝜕p+

𝜕t
+

𝜕(s+p+)
𝜕x

= −𝜆+p+ + 𝜆−p− (B.2.1)

𝜕p−

𝜕t
−

𝜕(s−p−)
𝜕x

= 𝜆+p+ − 𝜆−p− (B.2.2)

Here, p+(p−) are proteins travelling in the positive (negative) direction with speed s+(s−) switching from positive to negative
directed motion at a rate 𝜆+ (vice versa for 𝜆−). In general, s± and 𝜆± can vary in space. In the special case, where s+ = s− = s and
𝜆+ = 𝜆− = 𝜆, equations (B.2.1) and (B.2.2) can be combined to give the telegraph equation for total particle density p= p+ + p−:

𝜕2p

𝜕t2
+ 2𝜆

𝜕p

𝜕t
= s2 𝜕

2p

𝜕x2
(B.2.3)

Taking the limit as 𝜆→∞ and s→ with s2/2𝜆 ≡ Deff as the constant effective diffusion coefficient, the diffusion equation for
molecular transport by velocity jump may be used as an approximation for microtubule-mediated transport:

𝜕p

𝜕t
=
(

s2

2𝜆

)
⏟⏟⏟

Deff

𝜕2p

𝜕x2
(B.2.4)

Equation (B.2.4) is appropriate only when s and 𝜆 are spatially constant. This illustrates how simple diffusion equations may
be used to approximate active transport processes. In cases where speeds and turning rates are nonuniform, cargo concentration
becomes nonuniform due to directed or biased effective diffusion. For more detail on nonuniform processes, see Erban and
Othmer (2005).

or diffusivity, of species ci. The negative sign indicates that
the flux is from high to low concentration. Extending to 3D,
this becomes Ji =−Di∇ci. Substituting into equation (1) and
assuming constant diffusion coefficients yields:

𝜕ci

𝜕t
= Di∇

2ci
⏟⏟⏟
Transport

+
∑

ci Rxns

Rc,i(c, s, p)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Production & Clearance

(3)

𝜕sj

𝜕t
=

∑
sj Rxns

Rs,j(c, s, p)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Production & Clearance

(4)

This form may apply phenomenologically to modes of trans-
port beyond free diffusion when viewed on a long time scale,
as illustrated in Box 2 (Othmer et al., 1988). The correct con-
ditions, in this case, require dilute solutions of constant viscosity
and isotropic random directed motion for this form to be valid
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(Crowder, 1997). More generally, the diffusion coefficient may
not be constant, and thus the flux takes the form ∇ • Di∇ci.

A mobile component’s diffusivity affects the spatial range of
its influence. This parameter may be determined experimentally
by fluorescence recovery after photobleaching (FRAP) (Carisey
et al., 2011) and fluorescence correlation spectroscopy (FCS)
or fluorescence cross-correlation spectroscopy (FCCS) (Ries and
Schwille, 2012). These techniques provide data relevant to very
different contexts of time and length scales. FCS measures
very small volumes and is appropriate for the determination
of a molecule’s free diffusion, whereas FRAP is done over a
larger volume spanning several or many cells and is useful for
determining effective diffusion (Wang et al., 2016). This raises
several difficulties in extracting diffusion coefficients and kinetic
parameters.

Along with the experimental determination of a morphogen’s
diffusivity, it is essential to understand quantitatively the bio-
chemical mechanisms and reactions controlling the concentra-
tion profile, both intracellularly and extracellularly. Furthermore,
when specifying the regulatory terms, the system’s biochemical
mechanisms must be known or hypothesised. These formula-
tions further add to the system’s degrees of freedom through
uncertain parameters or uncertainty in the mechanisms them-
selves. These reactions can be described by mass-action kinet-
ics, Michaelis–Menten or reversible Michaelis–Menten kinetics,
Hill’s equation, allostery and cooperativity and other methods as
detailed in textbooks elsewhere.

Examples of Reaction–Diffusion
Models

Systems of RD equations display diverse dynamics, depending
on the mechanisms described by the reaction terms. The models
studied most thoroughly have been classified based on the inter-
actions in these mechanisms.

A brief description of the turing model
and positional information

RD equations are used to describe pattern formation in systems
ranging from cell biology to ecology and are fundamental to
the two characteristic concepts for developmental pattern for-
mation established by Alan Turing and Lewis Wolpert – Turing
pattern formation (Turing, 1952) and positional information (PI)
(Wolpert, 1969). Initially, Turing and PI models of pattern for-
mation were proposed from a top-down perspective – establishing
thought paradigms through which pattern formation during devel-
opment is often interpreted. Currently they are also used as a
framework for bottom-up approaches. Though these theories are
distinct in origin, they are closely related. A thorough concep-
tual description of these mechanisms and how patterns may arise
by each individually or in combination can be found elsewhere
(Green and Sharpe, 2015). Broadly speaking, there is more con-
trol over the spatial pattern in PI, but the range of patterns is more
restricted than in Turing mechanisms.

Briefly, the Turing model describes a system where a spatial
pattern emerges from an initially uniform state. In a homogenous
‘well-mixed’ system, the kinetic mechanism is asymptotically
stable – that is, in the long run, it will reach a time-invariant
equilibrium state. In the Turing mechanism, the interaction of
reaction and diffusion destabilises the uniform state, leading
to a spatially nonuniform steady state (Turing, 1952). Specific
examples of RD mechanisms driving pattern propagation include
an activator–inhibitor pair (Figure 1a) and substrate depletion.
Examples of the former with minor revisions are provided in this
article.

The theory of PI proposes a mechanism of pattern formation
that requires a prepattern or initial asymmetry that determines
the localisation of a morphogen source or sink. Morphogens
then diffuse from the source and create a concentration gradient
along some body axis (Wolpert, 1969). Cells along the gradient
sense their local morphogen concentrations to infer their posi-
tion relative to the global scale, and cellular decisions in the
form of downstream gene activation are made based on the con-
centration requirements defining the boundaries between regions
(Figure 1b).

Turing activator–inhibitor models

The classical two-component Turing mechanism consists of an
activator and inhibitor (Figure 1a). In the original conception of
this model, the activator activates both itself and the inhibitor,
and the inhibitor blocks the activator. The inhibitor has a signif-
icantly larger diffusion coefficient than the activator such that it
extends its negative influence on the activator beyond the activa-
tor’s reach of local autoenhancement. This mechanism enables
the establishment of a repeating pattern in the spatial concen-
trations of both components. Examples of this type of pattern
traditionally discussed include the stripes and spots in fur, scales
and skin – although recently, Turing-like mechanisms have been
implicated in important morphogenetic processes during early
development as well. For instance, it was confirmed that in
zebrafish, the Nodal/Lefty system that determines mesendoderm
specification during the blastula stage (Müller et al., 2012) as
well as left–right asymmetry (Schier, 2009) functions because
of disparities in the diffusion coefficients for these components.
The inhibitor (Lefty) has roughly 3- to 20-fold greater diffusion
coefficients than the activator (Nodal), depending on the specific
molecules compared (Nodal: Cyclops and Squint; Lefty: Lefty1
and Lefty2) (Müller et al., 2012).

The equations used to model this system are nonlinear because
of the interactions between the components, as shown below:

𝜕A
𝜕t

= DA∇
2A + 𝜙A + 𝜌A

A2

I + 𝜀
− kAA (5)

𝜕I
𝜕t

= DI∇
2I + 𝜌IA

2 − kII (6)

Here, A is the activator (Nodal), I is the inhibitor (Lefty), 𝜌A and 𝜌I

are cross-reaction coefficients, kA and kI are decay rate constants
and 𝜙A is a constant production term for A. The form presented
here is one of the several RD equations for activator–inhibitor

6 eLS © 2018, John Wiley & Sons, Ltd. www.els.net
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the French Flag pattern
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Figure 1 The Turing model and the positional information model of morphogen-mediated pattern formation. The x axes indicate the spatial position along
a line of cells. (a) In the Turing model, stochastic fluctuations induce random deviations from a uniform steady state in the concentration of a diffusive
signalling molecule (green) which are amplified and propagated due to the reactions between the components (vi) to form a periodic pattern that may
collide with other similar patterns with different orientations and starting positions (vii), generating intricate designs (viii). Once a concentration threshold is
reached, cells respond by initiating downstream gene transcription and taking on a ‘green’ phenotype. (b) In Wolpert’s model of positional information, (i) a
signalling molecule concentration gradient emanates from a source, (ii) where multiple phenotypes (red, white or blue) may result based on concentration
thresholds. Source: Green, http://dev.biologists.org/content/142/7/1203. Licensed under CC BY 4.0.

Turing mechanisms and is referred to as the Gierer–Meinhardt
system (Gierer and Meinhardt, 1972). This is a ‘top-down’ phe-
nomenological model, and in its original form had 𝜀= 0, which
is unrealistic for low levels of I. Here, we add the parameter 𝜀
to obviate this issue. The experimental result presented by this

article identifying the differential diffusivities between Nodal and
Lefty is important for its confirmation that the theoretical require-
ment for this characteristic in an activator–inhibitor pair is indeed
satisfied in this biological example. However, this is referred to as
a ‘Turing-like’ mechanism in this article because it is not truly a
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Turing mechanism, as was suggested in Green and Sharpe (2015).
The authors of the Nodal/Lefty study are careful to point out
that ‘Nodal and Lefty expression is biased by prepatterns, and
the tissue response is restricted by size and time scales’ (Müller
et al., 2012). In other words, there is no initial symmetry to break
due to the prepattern of maternal Nodal-activating transcription
factors along the blastula margin, and there is no observable peri-
odicity in gene expression because of the size and timescale lim-
itations. However, this activator–inhibitor pair could reasonably
be expected to autoregulate from symmetrical initial conditions if
there was no prepattern present and form a periodic pattern under
different spatiotemporal conditions. The Nodal/Lefty system in
this context therefore may satisfy conditions of sufficiency for
classification as a bona fide Turing mechanism, but the actual-
ity of the biological system more accurately fits a PI system with
Gierer–Meinhardt reactions.

Digit patterning in the limb bud is also a morphogenetic sys-
tem where Turing mechanisms have been proposed (Newman
and Frisch, 1979). Although detailed mathematical analysis has
shown the 1979 model to be incorrect (Othmer, 1986), evidence
has been found in the mouse for a three-component network with
Turing instability controlling this system. In this model, Bmp,
Sox9 and Wnt are the primary nodes controlling patterning, and
Fgf signals and Hoxd13, as illustrated in Figure 2. The latter
may enable the onset of initial instability and scale invariance
(Raspopovic et al., 2014). The evolution of the primary compo-
nents is governed by the following equations:

𝜕Sox9
𝜕t

= 𝜙Sox9 + k2Bmp − k3Wnt − (Sox9)3 (7)

𝜕Bmp

𝜕t
= DBmp∇

2Bmp + 𝜙Bmp − k4Sox9 − k5Bmp (8)

𝜕Wnt
𝜕t

= DWnt∇
2Wnt + 𝜙Wnt − k7Sox9 − k9Wnt (9)

Here, the 𝜙 terms represent basal production or inputs. Though
biologically unrealistic, the cubic Sox93 in equation (7) was
added to ‘guarantee a symmetrical saturation of Sox9 around
the steady-state Sox90 = 0’, where this saturation ‘represents the
maximum transcriptional rate of Sox9’ to prevent unbounded
growth. The authors acknowledge that this is unrealistic, though

k5

k2

Bmp

Sox9

Wnt

k3

k9
k7↑ k4↓

Hoxd13–Fgf

Figure 2 The three-component Bmp–Sox9–Wnt PI-driven Turing network
guiding digit patterning described by the base equations (7–9). Positional
information provided by Hoxd13–Fgf expression modulates the suppression
of Wnt and Bmp by Sox9, initiating Turing instability, which enables the
initiation and propagation of a self-regulating pattern.

its qualitative effects are necessary for the model, and its form
does not alter their conclusions. The equations were solved on
a growing finite element mesh, which was hard-coded to mimic
the overall limb bud shape during outgrowth without regard to
mechanisms controlling this growth. Initial conditions were set
to homogeneous values for Sox9, Bmp and Wnt, with noise
added to each component. The self-regulating dynamics result-
ing from these core equations created randomly oriented striped
patterns of Sox9 on the growing limb bud. When the model was
modified to incorporate Fgf (expressed in the apical ectodermal
ridge along the limb bud margin that controls outgrowth) and
Hoxd13 expression domains as well, a regular radial Sox9 pattern
emerged closely resembling the out-of-phase wild-type expres-
sion between Sox9 and Wnt/Bmp, which underlies the patterning
of digits. Fgf and Hoxd13 are proposed to modulate the negative
interactions between Sox9 and Bmp and between Sox9 and Wnt
through the constants k4 and k7, respectively. These parameters
were chosen to be targets of Fgf and Hoxd13 because screen-
ing simulations indicate that proportionately varying them with
the Fgf and Hoxd13 concentrations caused an increase in the
pattern wavelength, aligned orientation of the stripes along the
gradient and afforded scale invariance. However, there is yet
no explanation of a mechanism that may relate these compo-
nents with their associated parameters. In this model, the onset of
diffusion-driven Turing instability for the three primary compo-
nents only comes about in regions of Hoxd13 expression, which
only occurs in regions of Fgf expression. This incorporates a com-
ponent of PI driven by Fgf upstream of the Turing network. The
authors proceeded to support their model by predicting dynam-
ics under perturbed conditions with Wnt and Bmp pathways
blocked, and the simulations appeared to be qualitatively simi-
lar to experimental results. In addition, it is necessary for Bmp
to diffuse more quickly than Wnt as Bmp effectively acts as an
indirect inhibitor for Wnt through Sox9, though as we will soon
discuss, further modelling has shown that this may not be the
case.

Although two-component networks are thought to require
differential diffusivity to be self-organising with the inhibitor
diffusing faster than the activator, a theoretical analysis of three-
and four-component Turing networks has shown that differential
diffusivity is not the only mechanism by which self-organising
patterns can arise when a nondiffusive species is included (Mar-
con et al., 2016). This work explores two additional network
classes: one that allows for but does not require equal diffu-
sivities and another that is entirely independent of diffusivity.
No new examples of these alternative networks have yet been
demonstrated in developmental biology, and though much of
this was previously known in general (Othmer, 1986), these
insights were used by the authors to reanalyse the Lefty/Nodal
and Wnt/Bmp/Sox9 systems discussed here. In the Lefty/Nodal
system, a nondiffusive component representing pSmad2/3 activa-
tion was added, and two possible topologies were identified that
could meet the constraints imposed on the system. The analysis
of this new three-component network reclassifies the Lefty/Nodal
system as one where differential diffusivity between activator
and inhibitor is not a strictly necessary condition, though the
empirically observed diffusivities act to make the system more
robust. In the limb bud model, the three-component network was

8 eLS © 2018, John Wiley & Sons, Ltd. www.els.net
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changed to a five-component network to incorporate pSmad1/5/8
and β-catenin as nondiffusive nodes with Sox9. Opposing Bmp
expression and Bmp activity was seen when β-catenin indirectly
inhibited Sox9 through pSmad rather than the direct relationship
in the three-component network between Wnt (thus presum-
ably β-catenin) and Sox9. Their analysis also showed that the
three-component network did not actually require differential dif-
fusivity as previously thought as long as Wnt and Bmp clearance
rates are not equal. It will be interesting to see future experimen-
tal and modelling work identifying other developmental systems
making use of these proposed Turing mechanisms.

Models with prepattern

Though presently known biological examples of genuine Tur-
ing mechanisms are in somewhat short supply, there are many
instances where diffusing morphogens demonstrate Wolpert’s
theory of PI in developing systems. This section will explore
a progression of increasingly complex PI models including
the source–sink model, synthesis–diffusion–degradation (SDD)
model and larger nonlinear models.

Source–sink model

In its original form, the source–sink model is the simplest pro-
posed morphogen-mediated RD model. This theoretical model
consists of a morphogen generation term at a source point and
an elimination term at a sink point with only diffusion elsewhere
(Crick, 1970). In one dimension at steady state, this creates
a linearly decreasing gradient from source to sink. However,
no such system has been observed in biology, and biologically
useful models referencing this mechanism involve one or more
adjustments to the original formulation. This model may be
attributed to systems where the source and sink are spread
over a small region. Recently, the Bmp gradient patterning the
zebrafish dorsal–ventral axis was shown to use such a distributed
source–sink mechanism (Pomreinke et al., 2017; Zinski et al.,
2017). Commonly, models will be referred to as source–sink
models though they more accurately fit the description of a SDD
model, as in the Fgf8 gradient in zebrafish embryos (Yu et al.,
2009).

Synthesis–diffusion–degradation model

The protein Bicoid (Bcd) in Drosophila was the first pro-
tein formally classified to function as a morphogen (Driever
and Nüsslein-Volhard, 1988; Frohnhöfer and Nüsslein-Volhard,
1986). This protein is translated from maternally supplied mRNA
localised around the anterior tip of the embryo and diffuses from
there to provide PI along the anterior–posterior axis. Its profile
can be seen in Figure 3, as in Grimm et al. (2010). This gradient
was first modelled to address the question of developmental scale
invariance using a slightly altered version of the source–sink
model called the SDD model (Gregor et al., 2005). The SDD
model differs from the source–sink model in that the clearance
domain is not restricted and may be ubiquitous, or its rate may be
dependent on the concentration dynamics of another molecule.
Assuming bcd mRNA to be concentrated at a point at the anterior
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Figure 3 The Bicoid morphogen gradient. (a) Confocal image of nuclear
localised Bicoid gradient along the Drosophila AP axis. (b) Semiquantitative
signal intensity data along the length of the egg following the exponentially
decaying profile seen in synthesis–diffusion–degradation models. Adapted
with permission from Grimm et al. (2010). © Company of Biologists.

pole, Bcd protein was modelled along one dimension with a
constant linear decay rate, k:

𝜕c
𝜕t

= D
𝜕2c
𝜕x2

− kc (10)

Here, production gives rise to a constant flux boundary con-
dition at x= 0 (− 𝜕c/𝜕x(0)= J), and there is a no-flux bound-
ary condition at x= L(𝜕c/𝜕x(L)= 0). At steady state (𝜕c/𝜕t= 0),
equation (10) simplifies to:

𝜕2c
𝜕x2

= kc
D

(11)

On a spatial domain 0≤ x≤ L, the nondimensionalised equilib-
rium solution to this second-order ordinary differential equation
(ODE), where 𝜉 = x/L is:

c(𝜉) = 𝜆J

[
e(2−𝜉)∕𝜆 + e𝜉∕𝜆

e2∕𝜆 − 1

]
(12)

The term 𝜆 =
√

D∕k is the length constant. If the morphogen
production rate is assumed to be constant, and c0 is the original
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concentration at 𝜉 = 0, then the length constant is the distance
between the source and the point at which the concentration
has dropped to c0/e. Equation (12) can then be simplified under
steady-state conditions and for the diffusive range of most mor-
phogens (Umulis, 2009).

c(𝜉) ≈ c0e−
𝜉∕𝜆 (13)

This simple model matches the exponential decay profile seen
by imaging Bcd distribution, but crucially only for unrealistically
large values of D, as was pointed out in a follow-up study (Gregor
et al., 2007). Previous work had detected a pre-existing gradient
of bcd mRNA at the anterior end of the embryo (St Johnston
et al., 1989), and though this feature was not accounted for in
the SDD model, the model brought into question the still widely
held assumption that Bcd protein was secreted from a point source
at the anterior pole of the embryo. This was done by showing
that the biophysical parameters required for this assumption to
match imaging data did not match measured values. Later, the
mRNA gradient was proposed to pattern the Bcd protein gradient
in its entirety (Spirov et al., 2009) or in concert with its protein
diffusion (Little et al., 2011). In the latter study, the SDD model
was also extended to allow for temporally varying parameters
over several nuclear cycles, resulting in simulations that fit data
very tightly over several time points.

Models leading to scale invariance
Even in networks composed of few components, the incorpora-
tion of nonlinear terms may lead to complex dynamics that are not
readily understood intuitively from the network topology. Nonlin-
ear equations are also often analytically not solvable in general
and require the use of numerical approaches to generate approxi-
mate solutions. The complexities raised by these points are com-
pounded by the combinatorial explosion of possible topologies
resulting even from simple theoretical systems, further establish-
ing the need for computational analysis. For example, a molecule
interacting with a morphogen may affect its transport, produc-
tion, clearance or a combination thereof (as shown in the general
form of RD equations) and may be nonlinearly dependent on
one or more other components. The breadth of expressive power
resulting from these interdependent reactions may be appreciated
through a theoretical analysis of the relationships within such a
simple two-component system composed of a freely diffusing
morphogen and modulator (Umulis and Othmer, 2013). In this
model, either component may have a positive, negative or neu-
tral effect on the diffusivity, production rate and clearance rate
of the other (Figure 4). This generates 36 = 729 permutations of
possible network topologies between the two components. When
autoenhancement and autoinhibition of these rates are consid-
ered, it becomes 56 = 15 625.

This theoretical two-component morphogen–modulator system
is an example of top-down analysis of combinatorial nonlinear
networks. It was recently explored with the aim to constrain the
topological landscape of networks to only those serving the per-
formance objective of scale invariance (Othmer and Pate, 1980).
In this analysis, the morphogen is defined as a freely diffus-
ing molecule encoding PI secreted from a source at one end of
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Figure 4 A theoretical morphogen-modulator two-component system.
Dashed lines indicate autoregulation for either component’s own transport,
clearance or production not analysed in the cited work.

a one-dimensional domain. The modulator is either bound uni-
formly along the domain or freely diffusing. If diffusive, it is
either secreted from the same source as the morphogen, secreted
from a source opposite the morphogen or uniformly secreted
along the domain. The reaction topologies explored include all
non-auto-regulatory relationships of positive or negative influ-
ence on the other component’s production, clearance or diffusiv-
ity, as in Figure 4. That is, these terms for the morphogen, c, are
functions of a modulator, m, and vice versa.

𝜕c(x, t)
𝜕t

= 𝜕

𝜕x

(
Dc(m)𝜕c

𝜕x

)
+ Rc(c,m) (14)

𝜕m(x, t)
𝜕t

= 𝜕

𝜕x

(
Dm(c)

𝜕m
𝜕x

)
+ Rm(m, c) (15)

Analysis using these RD equations of nonlinear coupled PDEs
investigated how the various regulatory arrangements influence
the system’s ability to maintain the relative morphogen concen-
tration when subjected to variable length scales. An example
result is that, of the 729 possible topologies for freely diffus-
ing morphogen and modulator, fewer than 6% can maintain scale
invariance for any case of modulator production (Karim, 2017).

A subset of these scale invariant topologies well represented
in biological systems are those exhibiting ‘expansion-repression’
feedback (Ben-Zvi and Barkai, 2010). This subset includes all
topologies where the morphogen represses an ‘expander’, and
the expander enhances morphogen signalling through any direct
or indirect mechanism, whether increased diffusion, increased
production or decreased clearance. Nonlinear terms are intro-
duced when diffusion, production or clearance of one com-
ponent depends on the concentration of the other. Another
network shown to exhibit scale invariance is the ‘long-range
accumulation and feedback’ mechanism proposed to act between
Chordin and Sizzled proteins during Xenopus development (Ino-
mata et al., 2013). This network shares similarities with the
expansion–repression relationship, though detailed theoretical
analysis of the mathematical relationships among various scaling
mechanisms has yet to be conducted.
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Facilitated diffusion

A more bottom-up approach for investigating the mechanisms
of morphogen gradient formation is to closely integrate exper-
imental data with theoretical models. A set of ‘core equations’
is established including the primary actors of the signalling net-
work and the interactions and independent reactions that must be
present. Additional terms are added individually and/or in com-
bination to test various mechanistic hypotheses. Simulations are
validated against wild-type and mutant quantitative imaging data
to determine the best performing set of mechanisms and poten-
tially suggest experiments for further validation.

An example of such an approach may be found in a study
investigating Drosophila dorsal–ventral axis patterning by het-
erodimeric ligands formed by the vertebrate BMP homologues
Decapentaplegic (Dpp) and Screw (Scw) (Umulis et al., 2010).
This study made many predictions, and the focus here will be
on the analysis of how collagen binding influences signal gra-
dient formation by facilitating diffusive complex formation. The
authors made use of the experimental results (Wang et al., 2008)
to model the effects of collagen binding. Further experiments
were later conducted to confirm the mechanism (Sawala et al.,
2012). This serves as an illustrative example of the iterative
paradigm by which experiments and computational models com-
plement each other and enable the generation of insights neither
can produce on their own.

In this system, illustrated in Figure 5, signalling (i.e.
ligand-receptor binding) is blocked when Dpp–Scw ligands
bind with the diffusive inhibitors Short gastrulation (Sog,
secreted laterally) and Twisted gastrulation (Tsg, secreted dor-
sally), forming a Dpp–Scw/Sog/Tsg complex. The formation
and transport of this inhibited complex was postulated to act
as a ‘shuttling’ mechanism, extending the range of Dpp–Scw

diffusion. An additional modulator is the metalloprotease Tolloid
(Tld, secreted dorsally), which degrades Sog when it is bound
to Dpp–Scw. Signalling is activated by free Dpp–Scw binding
to its receptor complexes. These dynamics are described by the
following system of equations:

𝜕B

𝜕t
= DB∇2B + 𝜙B(x) − k3I • B + k−3IB

+𝜆Tld•IB − k5B • R + k−5BR (16)

𝜕S
𝜕t

= DS∇
2S + 𝜙S(x) − k2S • T + k−2I (17)

𝜕T
𝜕t

= DT∇
2T + 𝜙T (x) − k2S • T + k−2I + 𝜆Tld • IB − 𝛿T T (18)

𝜕I
𝜕t

= DI∇
2I + k2S • T − k−2I − k3I • B + k−3IB (19)

𝜕IB
𝜕t

= DIB∇
2IB + k3I • B − k−3IB − 𝜆Tld • IB (20)

dBR
dt

= k5B • R − k−5BR − 𝛿EBR (21)

Rtot = R + BR (22)

Here, B (for BMP) is the Dpp–Scw ligand heterodimer concen-
tration, T is the Tsg concentration, I is the inhibitor (Sog–Tsg
heterodimer) concentration, IB is the bound ligand-inhibitor con-
centration, BR is the bound ligand-receptor concentration, R is

Dpp
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Collagen
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(b)

+ +

+ +

+ +

–k– 3I·B

+k–3k IB

+λTld·IB

+k–5k BR

–k– 5k B·R

D
o
rs

a
l

L
a
te

ra
l

Figure 5 Bmp signalling in Drosophila. (a) Dpp molecules secreted from a source represented by the green nucleus are prohibited from diffusion through
binding with collagen. Upon shuttling complex formation with Dpp–Scw/Sog/Tsg, it can diffuse, creating a concentration gradient along the syncytium.
The inhibitory complex is broken by Tld, enabling the Dpp–Scw heterodimer to bind its receptors and initiate downstream signalling. Fading blue nuclei
represent decreasing downstream Bmp target gene transcription. (b) Reactions controlling Bmp signalling in Drosophila with terms from equation (8). In
the dashed box, the order of reactions for the Dpp shuttling complex is distinguished. Either diffusive Sog and Tsg bind before complexing with Dpp–Scw,
or Tsg binds collagen, then Dpp and then Sog completes the complex formation.
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the unbound receptor concentration, Rtot is the total receptor con-
centration, Di is the diffusion coefficient for species i, x is the
Cartesian position vector, kj and k− j are the forward and reverse
reaction rates for reaction j, 𝛿T is the Tsg degradation rate, 𝛿E is
Dpp–Scw degradation rate by endocytosis and 𝜆Tld is the Tld
process rate. With boundary and initial conditions, this system
may be solved numerically by the finite-difference approxima-
tion. For a given biochemical reaction, experimental binding rates
may be unknown and must be approximated, though data may
exist for similar reactions in other model systems to aid in approx-
imations. It is assumed that the BR profile correlates with the
downstream signalling state of the system, which is inferred from
phosphorylated Mad (pMad) immunostaining data.

From the core equations, additional terms or equations were
added depending on hypothesised mechanisms of signal profile
formation (such as the influence of collagen), and further analysis
was performed on the effect of embryo geometry and mecha-
nisms that may produce scale invariance. Model performance was
evaluated based on faithful representation of quantitative pMad
imaging data of mutant and wild-type embryos.

Umulis et al. (2010) ascertained that using in vitro data for
BMP-inhibitor binding in zebrafish (Rentzsch, 2006) causes the
models to perform quite poorly and created a model whereby
collagen enhances shuttling by improving inhibitor binding,
as suggested by experimental data. Indeed, models incorporat-
ing this postulated mechanism match imaging data much more
closely. Furthermore, the binding order among Dpp–Scw, Sog,
Tsg and collagen was investigated. In binding order 1, Sog
binds Tsg before binding to collagen-bound Dpp–Scw, thereby
mobilising the shuttling complex. In binding order 2, Sog binds
collagen-bound Dpp–Scw before being released by binding with
Tsg. Slightly better alignments with data are produced for bind-
ing order 1 simulations compared to binding order 2. Follow-up
experiments were conducted by the same group generating the
original Dpp and Sog collagen-binding data to show that collagen
does indeed act as an intermediate component enhancing shut-
tle complex assembly (Sawala et al., 2012), although their data
suggests that the binding order showing slightly worse model per-
formance is the actual biochemical process – that is, experimental
data suggests that Dpp–Scw and Sog independently bind collagen
IV, where they then bind to each other and are released when Tsg
binds Sog (poorer model performance) rather than Sog binding
Tsg before Sog binds to Dpp–Scw (better model performance).
This indicates that the computational models, while accurate in
their prediction of collagen’s role in the process, require slightly
more biochemical detail or perhaps slightly varied parameters to
correct for the binding-order mismatch. Again, these three studies
illustrate the interdependence and feedback between experiments
and computational models that drive knowledge in developmental
biology forward.

Surprisingly, two independent groups have recently published
complementary evidence showing that this facilitated diffusion or
shuttling mechanism in Drosophila is not conserved in zebrafish,
and that the blastula-stage dorsal–ventral Bmp gradient in the
zebrafish is better explained by a source–sink mechanism (Pom-
reinke et al., 2017; Zinski et al., 2017). These studies make use
of light-sheet and confocal microscopy, respectively, to monitor
the dynamics of fluorescently tagged Bmp2b protein dynamics

as a benchmark to test mechanistic RD models against. They
show that the Bmp antagonist Chordin acts as a somewhat
distributed dorsal sink to the ventrally secreted and diffusive
Bmp2b, where it was previously widely thought to serve as
a shuttling mechanism similar to the Sog–Tsg heterodimer in
the Drosophila system. This exemplifies the ability of experi-
mentally informed computational modelling to rectify inaccurate
long-held assumptions.

Considerations for Model
Implementation

When implementing a model, it is important to consider its distri-
bution, interpretation, reproducibility and extensibility. The com-
ponents and context of a model should be annotated to avoid
ambiguity, and the syntax should be easily acquired by those
wishing to replicate results. To these ends, a community stan-
dard has been established called the systems biology markup
language (SBML; original publication: Hucka et al., 2003) to
facilitate the creation, sharing, reproduction and extension of bio-
logical models. A growing repository of models following this
standard are available through The BioModels Database (orig-
inal publication: Le Novere, 2006; website: https://www.ebi.ac
.uk/biomodels-main). These items should be considered when
developing a custom model using a scripting language such as
MATLAB, Mathematica or Python and when using third-party
software packages.

A well-maintained and evolving platform of note for integrat-
ing SBML models into systems involving spatial considerations
is CompuCell3D (CC3D; original publication: Swat et al.,
2012; http://www.compucell3d.org). Other relevant simu-
lation frameworks include Chaste (http://www.cs.ox.ac.uk/
chaste), CellSys, (http://msysbio.com), EPISM (http://tigacenter
.bioquant.uni-heidelberg.de/episim.html), VirtualLeaf (https://
code.google.com/p/virtualleaf), Biocellion (http://biocellion
.com), Morpheus (http://imc.zih.tu-dresden.de/wiki/morpheus),
OpenCMISS (http://physiomeproject.org/software/opencmiss)
and LBIBCell (https://bitbucket.org/tanakas/lbibcell), all of
which are discussed in greater detail elsewhere (Tanaka, 2015).
In addition, the sensitivities and optimisation of biochemical
kinetic and biophysical parameters may constitute a major
portion of the analysis workload in such models, though this
discussion is outside the scope of this article.

Summary

Performance objectives in developmental pattern formation
such as robustness to perturbation, reproducibility and scale
invariance are crucial aspects of developmental biology. The
nuanced nature of how various morphogen networks have been
shown to achieve these objectives attests to the need for precise,
quantitative interpretation of experimental data, which may
be managed by iteratively integrating data and RD models. A
generalised workflow for a modelling project is described in
Figure 6. Table 1 provides a diverse set of examples where
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Are mechanistic
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topological skeleton

for the model

No Yes

Assume a
functional form

for reactions

Gather data on or
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literature relevant
components

Set mechanistic or
phenomenological

interactions

Run simulations to
compute output

dynamics

Perform residual analysis (or
other) between data (if

available) and simulations

Report conclusions, suggest
further experiments to

refuel this cycle

Form the system(s)
of RD equations

Experimentation

Figure 6 Generalised workflow for modelling morphogen systems using RD equations. The starting step involves asking and answering questions such as:
‘What objective function(s) is/are observed in the system?’’ “What mechanisms are known, assumed, postulated or missing?’ “What data exist or need to be
acquired to proceed?’ ‘Is treating transport as pure diffusion appropriate?’ The choice to pursue a top-down or bottom-up approach depends on the level
of theoretical abstraction appropriate for the system. Once the system’s dynamics have been compared to data of these dynamics, the cycle may continue.

RD equations have been used to probe developmental systems,
illustrating the broad reach and relevance of RD models for
furthering scientific investigation in developmental biology.
Spatial and temporal aspects of embryonic development are
meaningful and cannot be neglected if a deeper understanding
of developmental systems is to be attained. In the absence of

prioritised training in more advanced mathematics and physics
in university biology curricula, it is to the advantage of students
and researchers to develop these skills independently to gain a
more complete understanding of the systems they are passionate
about. Incorporating computational analysis using RD meth-
ods into the developmental biology lab will make possible the
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conception and testing of hypotheses that would otherwise have
been inaccessible, enabling new mechanisms to be discovered,
and improving progress in the field (Erban and Othmer, 2005).
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