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Abstract. Swimming by shape changes at low Reynolds number is widely

used in biology and understanding how the performance of movement depends

on the geometric pattern of shape changes is important to understand swim-
ming of microorganisms and in designing low Reynolds number swimming mod-

els. The simplest models of shape changes are those that comprise a series of
linked spheres that can change their separation and/or their size. Herein we

compare the performance of three models in which these modes are used in

different ways.

1. Introduction. Single-cell organisms use a variety of strategies for translocation,
including crawling, swimming, drifting with the surrounding flow, and others. Some,
such as bacteria, use flagella, and others, such as paramecia, use cilia to swim, and
both types use only one mode. However other cells can be more flexible in that
they either crawl by transient attachments to their surroundings – often called the
mesenchymal mode, or by shape changes – called the amoeboid mode [13]. The
former may involve strong adhesion to the substrate or the extracellular matrix
(ECM) via integrin-mediated adhesion complexes, while the latter depends less on
force transmission to the ECM, and instead involves shape changes to exploit fluid-
filled spaces in the ECM to move through it (cf. Fig. 1). The latter mode can be far
more effective and can lead to speeds up to forty times faster than those resulting
from mesenchymal motion [35]. Cells such as leukocytes, which normally use the
mesenchymal mode in the ECM, can migrate in vivo in the absence of integrins,
using a ‘flowing and squeezing’ mechanism [24]. While crawling and swimming are
mechanistically distinct strategies, cells can sense their environment and use the
most efficient strategy in a given context.

The spatio-temporal scale of motion of small organisms in viscous fluids fre-
quently leads to low Reynolds number (LRN) flows. Swimmers that use a single
long, thin flagellum led to the development and application of slender-body theory
[26, 19, 21, 16, 11, 22, 20], while microorganisms that swim using a thin layer of
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Figure 1: A sequence of shape changes observed in a Dictyostelium discoideum cell swimming in a fluid
[9].

cilia were first studied by Lighthill for squirming motion of nearly spherical de-
formable bodies [27]. A general review of previous work on swimming appears in
[25], and here we only analyze models that comprise a number of linked subunits
and have only a finite number of degrees of freedom. We call these discrete models
of swimmers.

Much of the current interest in locomotion at LRN was stimulated by Purcell’s
description of life at low Reynolds number [33]. In particular, the observation
that certain classes of shape changes produce no net motion in a viscous fluid
led to studies on various types of discrete models of swimmers, with the goals of
understanding how microorganisms swim and facilitating the design of mini-robots
that swim at LRN. The first discrete LRN model is Purcell’s two-hinge swimmer,
also referred to as Purcell’s three-link swimmer [34] (Fig. 2 (a)). Purcell’s model
swimmer comprises three connected, rigid segments that are constrained to move in
a plane and can execute restricted rotations around joints linking the segments. The
shape is specified by two parameters, the angles between adjacent segments, and
Purcell showed that one can impose sequences of changes in the angles that produce
net translation of the swimmer. Despite its geometric simplicity, the relationships
between geometric parameters, speed and efficiency of swimming are not simple
[12, 7], but approximations of optimal strokes are known [37]. Various simpler
linked-sphere models for which both analytical and computational results can be
obtained have appeared since. The first of these is the Najafi-Golestanian three-
sphere accordion model (NG) [29, 18, 1] (Fig. 2 (b)), which comprises three rigid
spheres connected by two slender connecting arms aligned along the x-direction
that can stretch and contract in a prescribed form to produce motion. Since the
forces that expand or contract the arms are directed along them it can only result
in translation – it never rotates. Another linked-sphere model is the pushmepullyou
swimmer (PMPY) [6] (Fig. 2 (c)), in which two spheres that can expand or contract
radially are connected by an extensible arm. Analytical and numerical studies of
the NG and PMPY models have been done heretofore, and their efficiency and
the optimality of various strokes have been investigated [2, 3, 4]. Recently we
have analyzed a three-sphere volume-exchange or breather model (VE) in which
the spheres are linked by rigid connectors but exchange volume [40] (Fig. 2 (d)),
the details of which will be discussed in Section 3.

A central problem in the analysis of both biological LRN swimmers and mini-
robots is whether a cyclic sequence of deformations results in significant movement,
and if such a swimming mode is efficient by some measure. This has been studied for
Purcell’s swimmer [37], the PMPY swimmer [5] and cilia-based swimming [28, 30].
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Figure 2: Low Reynolds number swimming models: (a) Purcell’s 3-link swimmer [34]; (b) Najafi-
Golestanian’s 3-sphere model (NG)[29]; (c) Pushmepullyou (PMPY) [6]; (d) The 3-sphere volume-
exchange model (VE) [40].

Lighthill’s definition [27] provides one metric of efficiency and several others have
been used, but we will introduce a new criterion to measure the performance of
LRN swimmers.

Of course in reality the various shape changes that have been analyzed require
internal forces that generate the shape changes needed for propulsion of the or-
ganism. In biological organisms this interior problem involves the biochemical and
biophysical changes in the cytoskeleton needed to produce the necessary intracellu-
lar forces and shape changes, but here we simply prescribe the shape changes and
treat the exterior problem. An integrated model that includes sensing the environ-
ment and controlling the shape changes so as to move is still beyond reach for even
a single-cell organism.

2. Movement by shape changes – the exterior problem. The Navier-Stokes
equations for an incompressible fluid of density ρ, viscosity µ, and velocity u are

ρ
∂u

∂t
+ ρ(u · ∇)u = ∇ · σ + fext = −∇p+ µ∆u+ fext, (1)

∇ · u = 0 (2)

where σ = −pδ+µ(∇u+(∇u)T ) is the Cauchy stress tensor and fext is the external
force field. Herein we assume that the swimmer is self-propelled and does not rely
on any exterior force, and therefore we require that fext = 0. The Reynolds number
based on a characteristic length scale L and speed scale U is Re = ρLU/µ, and
when converted to dimensionless form and the symbols re-defined, the equations
read

ReSl
∂u

∂t
+Re(u · ∇)u = −∇p+ ∆u,

(3)

∇ · u = 0.

Here Sl = ωL/U is the Strouhal number and ω is a characteristic frequency of
the shape changes. When Re� 1 the convective momentum term in (3) can be
neglected, but the time variation requires that ReSl ≡ ωL2/ν � 1. When both
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terms are neglected, which we assume throughout, the flow is governed by the Stokes
equations

µ∆u−∇p = 0, ∇ · u = 0. (4)

We also only consider the propulsion problem in an infinite domain and impose the
condition u|x→∞ = 0 on the velocity.

In the LRN regime time does not appear explicitly, momentum is assumed to
equilibrate instantaneously, and bodies move by exploiting the viscous resistance
of the fluid. As a result, time-reversible deformations produce no motion, which is
the content of the ‘scallop theorem’ [33]. In the absence of external forces due to
boundaries or other fields there is no net force or torque on a self-propelled swimmer
in the Stokes regime, and therefore movement is a purely geometric process: the net
displacement of a swimmer during a stroke is independent of the rate at which the
stroke is executed, as long as the Reynolds number remains small enough. Amoebae
of the slime mold Dictyostelium discoideum have a typical length L ∼ 25µm and can
swim at U ∼ 3µm/min [38]. Assuming the medium is water (ρ ∼ 103kg m−3, µ ∼
10−3 Pa · s), and the deformation frequency ω ∼ 1/s, Re ∼ O(10−6) and Sl ∼
O(10−4). In fact the experiments are done in oil that is significantly more viscous
[9], and for similar cells one can neglect both inertial terms.

Suppose that a swimmer occupies the closed compact domain Ω(t) ⊂ Rn (n =
2, 3), at time t, and let ∂Ω(t) denote its prescribed time-dependent boundary. A
swimming stroke Γ is specified by a time-dependent sequence of the boundary ∂Ω(t),
and it is cyclic if the initial and final shapes are identical, i.e., ∂Ω(0) = ∂Ω(T )
where T is the period [36]. The swimmer’s boundary velocity V relative to fixed
coordinates can be written as a part v that defines the intrinsic shape deformations,
and a rigid motion U . If u denotes the velocity field in the fluid exterior to Ω, then a
standard LRN self-propulsion problem is : given a cyclic shape deformation specified
by v, solve the Stokes equations subject to∫
∂Ω(t)

σ · n = 0,

∫
∂Ω(t)

r ∧ (σ · n) = 0, u|∂Ω(t) = V = v +U , u|x→∞ = 0 (5)

where n is the exterior normal, and the integrals are the force- and torque-free
conditions.

In order to treat general shape changes of a cell defined by Ω(t) ∈ R3 with
boundary ∂Ω(t), one must solve the exterior Stokes equations (4) for u, with a
prescribed velocity v(t) on ∂Ω(t) and subject to the decay conditions u ∼ 1/r and
p ∼ 1/r2 for r →∞. It is known that the solution has the representation

u(x) = − 1

8πµ

∫
∂Ω(t)

G(x,y) · f(y)dS(y) +
1

8π

∫
∂Ω(t)

v(y) · T (y,x) · n dS(y) (6)

where G is the free-space Green’s function, T is the associated third-rank stress
tensor, and f = σ · n is the force on the boundary [32]. The constraints that the
total force and the total torque vanish determine the center-of-mass translational
and angular velocities. When x ∈ ∂Ω(t) this is an integral equation for the force
distribution on the boundary, the solution of which determines the forces needed
to produce the prescribed shape changes. The approach is similar in spirit to what
has been done for cells crawling on a deformable substrate, where the substrate
deformations are given and the forces exerted by the cell are the solution of a
Fredholm integral equation [8, 14].



CELL SWIMMING 1307

The free space Green’s function or Stokeslet has the form

G(x,x0) =
1

r

[
I +

rr

r2

]
(7)

where I is the unit second-rank tensor, r = x − x0, and r = |x − x0|. Thus the
velocity field generated by a point force f at the origin is

u(x) =
G(x,0)

8πµ
· f (8)

G(x,0)/(8πµ) is called the Oseen tensor. Three other basic solutions that are
needed are those for a rigid sphere pulled through a quiescent fluid, for a radially
expanding or contracting sphere, and for the interaction between two spheres.

When a sphere of radius a is pulled through a quiescent fluid with a steady force
F under no-slip conditions at the surface, the resulting flow field is given by

u(r) = F · (1 +
a2

6
∇2)

G(x,xs)

8πµ
=

F

8πµr
·
[
I +

rr

r2
+

a2

3r2

[
I − 3

rr

r2

]]
(9)

where xs is position of the center of the sphere and r = x − xs. The second
term represents the degenerate quadrupole needed to satisfy the no-slip boundary
condition at r = a, but it is small when a/r � 1. The resulting velocity of the
sphere is given by Stoke’s law [23]

F = 6πµaU . (10)

This can be obtained directly from (6) by setting v = 0 in the second integral,
expanding the Green’s function, and defining the total force on the sphere as

F =

∫
∂Ω

f(y)dS(y). (11)

A second basic solution is the velocity field u produced by a radially expanding
sphere, which can be generated by a point source at the center xs of the sphere [32].
The corresponding velocity is

u = α
r

r3
(12)

where r = x − xs and α is a constant to be determined. The no-slip boundary
condition at the surface r = a requires that

u(r)
∣∣∣
|r|=a

=
da

dt

r

a
(13)

and therefore α = ȧa2, and

u = ȧ
(a
r

)2 r

r
=

v̇

4πr2
r̂, (14)

where v = 4πa3/3 is the volume of the sphere and r̂ = r/r. By combining equa-
tions (9, 13) we obtain the velocity field for the combination of the pulled and
expanding sphere, namely [6]

u
(
r; a,F, v̇

)
=

1

24πµr

[(
3 +

a2

r2

)
F + 3

(
1− a2

r2

)(
F · r̂

)
r̂
]

+
v̇

4πr2
r̂. (15)

The last basic solution needed involves the interaction between two spheres1.
Suppose that the ith (i = 1, 2) sphere has radius ai(t), is centered at xi(t) and is
subjected to a drag force Fi(t) due to its motion. The translational velocity of the

1For simplicity we assume that the interactions in a general configuration of spheres are pairwise
additive.
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ith sphere consists of two parts: Ui,0 = (6πµai)
−1Fi that results from the drag

force Fi exerted on i, and the other a perturbation part δUi that is due to the flow
generated by the other sphere. In particular, since the other sphere is translating
and expanding, δUi can be further decomposed into two parts: δUt

i due to the
translation of the other sphere, and δUe

i that results from its radial expansion.
Hence we have the following decomposition of the translational velocity of the ith
sphere.

Ui =
Fi

6πµai
+ δUt

i + δUe
i (16)

Here δUt
i arises from a flow given by equation (9) and is given by

δUt
i =

(
1 +

a2
i

6
∇2
)
u(r)

∣∣∣
r=xi−xj

=
1

8πµl

[(
1 +

a2
i + a2

j

3l2

)
I +

(
1−

a2
i + a2

j

l2

) ll
l2

]
Fj (17)

where l = xi − xj and l = |xi − xj | [10]. The velocity δUe
i is resulted from a flow

given by equation (13):

δUe
i =

(
1 +

a2
i

6
∇2
)
u(r)

∣∣∣
r=xi−xj

= u(xi − xj) =
a2
j ȧj

l3
l (18)

Altogether, δUt
i and δU3

i induce a higher-order perturbation in U , but as we shall
see, these terms are neglected in the existing analyses of linked-spheres.

Next we use these solutions in the analysis of various models, and we begin with
the pure volume-exchange (VE) model.

3. The 3-sphere volume-exchange model. Some cells produce membrane pro-
trusions called blebs that emerge when the membrane detaches from the cortex
locally and the excess internal pressure forces fluid into the bleb [17, 31]. When this
occurs repeatedly over a cell surface, as in Fig. 3(a), it may result in an oscillatory
motion of the cell. In Fig. 3(a) the cell blebs blebs profusely with little net transla-
tion, whereas Fig. 3(b) shows a motile, blebbing Dictyostelium discoideum cell. If
bleb formation is restricted to the leading edge as in (b), forward motion is driven
by contraction of the cortical network at the rear of the cell. In either case one
can understand the dynamics in terms of mass or volume exchange between differ-
ent parts of the cell. The protrusions are usually approximately hemispherical and
thus a linked-sphere model may be a good choice for a study of blebbing. However
most existing linked-spheres models require significant changes in the length of the
connecting links, which is not realistic in blebbing cells. This led us to develop a
model that better describes blebbing dynamics [40].

In a minimal VE model there are three spheres linked by two rigid, mass-less arms
of fixed length l (Fig. 2(d)). A sphere can only expand or contract in the radial
direction (i.e., ai = ai(t)), and can only exchange mass with its neighbor(s), i.e., 1
with 2 and 2 with 3 but not 1 with 3. There is little evidence that swimming cells
exchange significant material with the surrounding fluid, and thus we impose mass
conservation on the ensemble. We are primarily concerned with the fluid-structure
interaction and for simplicity we assume that the density in all three spheres is
the same constant, in which case the mass conservation is equivalent to volume
conservation. We also ignore dissipation within cells, and with these constraints, it
is easily seen from the “scallop theorem” [33] that a cyclic two-sphere model cannot



CELL SWIMMING 1309

Figure 3: (a) Blebbing on a melanoma cell: myosin (green) localizes under the blebbing membrane
(red) (from[15]) (b) The actin cortex of a blebbing Dd cell migrating to the lower right. Arrowheads
indicate the successive blebs and arcs of the actin cortex (from[41]).

swim, since it has only one degree of freedom. Therefore a minimal model must
comprise at least three spheres.

The velocity field is given by equation (15), and to obtain asymptotic solutions,
we assume that the distance l between either pair of neighboring spheres is larger
than the radii ai (i = 1, 2, 3), i.e., ai/l � 1, which simplifies the computation yet
captures basic aspects of the movement of blebbing cells. The VE model is linear,
thus the velocity Ui of the ith sphere and the force Fi exerted on the ith sphere
are all along the x-direction.

Ui = Uiex, Fi = Fiex

Because the Stokes problem is linear, the velocity Ui of each sphere is given by
equations (16, 17, 18), wherein we only retain the leading order terms in the per-
turbations δUt

i and δUe
i . The asymptotic solution for the Ui is given by

U1 ∼ F1

6πµa1
+
( F2

4πµl
− v̇2

4πl2

)
+
( F3

8πµl
− v̇2

16πl2

)
(19)

U2 ∼ F2

6πµa2
+
( F1

4πµl
+

v̇1

4πl2

)
+
( F3

4πµl
− v̇3

4πl2

)
(20)

U3 ∼ F3

6πµa3
+
( F1

8πµl
+

v̇1

16πl2

)
+
( F2

4πµl
+

v̇2

4πl2

)
(21)

where vi = 4πa3
i /3. Since the connecting arms have fixed length l, U1 = U2 = U3,

which defines the translational velocity U of the swimmer. Since the swimmer is
linear it is necessarily torque-free, and the force-free constraint is

F1 + F2 + F3 = 0. (22)

The volume conservation constraint reads

v̇1 + v̇2 + v̇3 = 0 (23)

and (19 − 23) lead to the following asymptotic solution for the swimming velocity
of the model [40].

U =
(a1 + a2 − 3

4a3)v̇1 − (a3 + a2 − 3
4a1)v̇3

4πl2(a1 + a2 + a3)
(24)
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Next, we consider the power P ≡
∫ T

0
f(t)U(t)dt required to propel the swimmer.

The stress on the surface of the expanding sphere is σ = µv̇/(πa3) [6], and therefore
the power required to expand one sphere is

4πa2σȧ = σv̇ =
4µ

3v
v̇2 (25)

Therefore the total instantaneous power expended by the swimmer in transferring
volumes between the spheres is

P =
4µ

3

[ v̇2
1

v1
+
v̇2

2

v2
+
v̇2

3

v3

]
=
µ

π

[( 1

a3
1

+
1

a3
2

)
v̇2

1 +
2

a3
2

v̇1v̇3 +
( 1

a3
2

+
1

a3
3

)
v̇2

3

]
. (26)

Finally we define the performance of a stroke Γ as the ratio of the translation
per cycle to the energy expended in a cycle.

e =
|
∫ T

0
U(t)dt|∫ T

0
P (t)dt

(27)

This has unit of 1/force.
When the volume changes are small several conclusions can be reached analyt-

ically [40, 39]. Since a swimming stroke is a closed path in the v1 − v3 plane or
equivalently, a closed path in the a1 − a3 plane, we find the following relation be-
tween the differential displacement d̄x and the differential controls (da1, da3) from
(24).

d̄X =
π

l2

[
a2

1

(
1− 7

4

a3

a1 + a2 + a3

)
da1 − a2

3

(
1− 7

4

a1

a1 + a2 + a3

)
da3

]
(28)

Here d̄X > 0 represents an infinitesimal displacement to the right in Fig. 2(d). The
bar in d̄X indicates that the differential displacement is not an exact differential.

To determine the direction of swimming, note that from equation (28) we may
assume, without loss of generality, that da3 = 0 and da1 > 0, which means that
sphere 3 does not change, and sphere 1 is expanding while sphere 2 is contracting.
For a2 large enough so that 1−7a3/(a1+a2+a3) > 0 always holds, we have d̄X > 0,
which means that the swimming direction is from sphere 1 to sphere 2. Hence we
have the following conclusion, which also applies to the PMPY swimmer.

Conclusion 1. When only one pair of adjacent spheres is involved in volume ex-
change, and when the central sphere is large enough, the direction of swimming is
always from the expanding sphere to the contracting one.

Next, using Stokes’ theorem, the translation δX corresponding to an infinitesimal
closed loop is

δX =
7π

4l2

[
a2

1∂a3
a3

a1 + a2 + a3
+ a2

3∂a1
a1

a1 + a2 + a3

]
da1 ∧ da3 (29)

where da1 ∧ da3 denotes the signed area enclosed by the loop. From this one can
show the following.

Conclusion 2. For strokes such that Γ is homotopic to the unit circle, increasing
the stroke amplitude will increase the net translation of the stroke, while increasing
the initial radius a20 of the central sphere (with a10 and a30 unchanged) will decrease
the net translation. Moreover, we have the approximation

|X(Γ)| ∼ ε

l
Area(Ω)

where ε ∼ ai/l and Ω is the region enclosed by Γ and Area(Ω) is its signed area.
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The proof of this is given in [39].

3.1. Numerical computations. Next we prescribe cycles of shape changes in the
controls (ȧ1, ȧ3) and compute the displacement and performance measure numeri-
cally. In particular, we investigate how the following characteristics of the system

affect the net translation X =
∫ T

0
U(t)dt and the performance e of the swimmer

after a full cycle (T = 1).

1. L, which measures the distance between a pair of neighboring sphere;
2. r1, r2, which measure the amplitude of shape deformations;
3. s, which measures the size of the central sphere.

We use the following protocol in varying these parameters.

Arm length (fixed) : l1 = l2 = L

Controls: a1(t) = R0 + r1 cos 2πt, a3(t) = R0 + r3 sin 2πt,

Radius of the central sphere: a2(0) = s, a2(t) =
( 3

4π
Vtot − a1(t)3 − a3(t)3

) 1
3

We consider three cases.

I First, we set r1 = r3 = 1, R0 = 2 and s = 3, and test different values of L, i.e.,
arm length (Fig. 4(a,b)). Fig. 4(c) gives the initial profile of the swimmers with
L = 10 and L = 50, respectively. Fig. 4(a,b) show that both the translation X
and the performance e decrease as the arm length increases. That is to say, with a
fixed amount of body mass, a too long body is not a good strategy for swimming.
The effect on the translation X can be seen from equation (24) and Conclusion 2,
with a fixed stroke rending the same Area(Ω), the translation X scales in the order
of εl−1 = al−2. Hence as the arm length L increases, X decreases quickly. As for
performance e (equation (27)), it is the ratio of translation to energy over a cycle,
with power P given by equation (26), from which we clearly see that the arm length
L does not enter into the expression of P . Hence e decays similarly to X, namely, in
the order of l−2.

II Next, we set L = 50, s = 10, R0 = 10, and test different values of r1 and r3
(Fig. 4(d,e)), i.e., the stroke amplitude. Fig. 4(f) gives the initial profile of the
swimmers with r3 = 1 always, but r1 = 1 or r1 = 9, respectively. From Fig. 4(d)
we see that the translation increases as either ri increases, but if one of ri is small,
the increase of translation due to the other rj is small. This can be explained by
Conclusion 2, in general a large r1 or/and r3 indicate a large stroke, i.e., a large
Area(Ω), which clearly induces a large translation X — except that when one of ri is
small, then no matter how large the other ri is, we have Area(Ω) ∼ 0, which results
in a X ∼ 0. As for performance, it is difficult to obtain a general analysis between
e and Area(Ω), yet Fig. 4(e) indicates that e has the similar behavior as X (though
maybe not to the same order), i.e., e increases as either ri increases, if the other ri
is not too small.

III Finally we set L = 25, r1 = r3 = 1 and R0 = 2, and test different values of s
(Fig. 4(g,h)), i.e., the (relative) size of the central sphere to the side spheres. Here
we would like to point out such a test can be considered a complement to the test of
stroke amplitude. Consider that we may scale the total volume of the whole object
to be the same with respect to different values of s, then a model with a small central
sphere (Fig. 4(i), s = 3) is translated to one with a large stroke, and on the other
hand a large central sphere (Fig. 4(i), s = 15) corresponds to a swimmer with a small
stroke. Hence the results can be predicted from previous discussion and are shown in
Fig. 4(g,h): both the translation and the performance decrease as the initial radius
of the central sphere is increased. Yet we illustrate such behavior in regard to s.
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Figure 4: (a,b) Translation X and performance e as a function of the fixed arm length L. (c) The
initial shape of the swimmer when L = 10 or L = 50 in simulations shown in (a,b). (d,e) Translation X
and performance e as a function of the stroke amplitude (r1, r3). (f) The initial shape of the swimmer
when r1 = 1 or r1 = 9 in simulations shown in (d,e). Notice that although both r1 and r3 determine
the stroke amplitude, the initial shape is only related to r1. (g,h) Translation X and performance e in
relation of the (initial) size of the central sphere s. (i) The initial shape of the swimmer when s = 3

or s = 15 in simulations shown in (g,h). The scales are the same for panels (c,f,i).

Observe equation (29) and we find that with both the stroke amplitude da1 ∧ da3
and the arm length L fixed, X is proportional to the following quantity:

a21∂a3

a3
a1 + a2 + a3

+ a23∂a1

a1
a1 + a2 + a3

(30)

which clearly decreases as the central sphere gets bigger. On the other hand, equa-
tion (26) indicates that a bigger central sphere results in small power P . To evaluate
the effect of the size of the central sphere on the performance e, we conduct an as-
ymptotic analysis with the scenario a1, a3 � a2. In such a case, the quantity given
by equation (30) approximates 0, then equation (29) shows that δX ∼ 0. However
from equation (26) we obtain the following behavior P when a1, a3 � a2:

P ∼ µ

π

[ 1

a31
v̇21 +

1

a33
v̇23

]
which in general does not vanish. Hence as the ratio of average translation to average
power, the performance e vanishes in the scenario a1, a3 � a2.
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In conclusion, in order to reach longer net translation X or better performance
e, the 3-sphere volume-exchange model should be designed so that the connecting
arm is short, more mass are exchanged among the spheres though the cycle, and the
central sphere should not be big comparing to the two side spheres.

4. A comparison of the three linked-sphere swimmers. Here we compare
the performance of the three linked-sphere swimmers: the NG 3-sphere model, the
pushmepullyou (PMPY) and the VE model. A summary of the analysis that leads
to the velocity and power of the NG and PMPY models can be found in Appendix
A and in [29, 18, 6]. To standardize the comparison between them, we stipulate
that the total volume in all spheres are the same for each model, and the stroke
amplitudes are the same. We prescribe strokes for each model as follows.

• NG:

R1 = R2 = R3 = 2rG

l1(t) = L+ cos(2πt), l2(t) = L+ sin(2πt)

• Pushmepullyou:

R1 = 2rP + cos(2πt)

R2(0) = 2rP, R3
1 +R3

2 =
3

4π
Vtot

l(t) = L+ sin(2πt)

• Volume-exchange (VE):

l1 = l2 = L

R1(t) = 2rV + cos(2πt), R3(t) = 2rVE + sin(2πt)

R2(0) = 2rV, R3
1 +R3

2 +R3
3 =

3

4π
Vtot

where scales rG, rP, rV are chosen so that the total volume of all spheres in each
swimmer are the same. Without loss of generality, we may choose rG = 1.

First, the velocity U(t) and the power P (t) within a cycle that result from the
above prescribed strokes are given in Fig. 5(a − d), for L = 6 or 30, respectively.
For translation, comparing Fig. 5(a) and (c) we see that U(t) for PMPY does not
change much, while it almost vanishes for NG and VE when L = 30. On the other
hand, P (t) in Fig. 5(b) and Fig. 5(d) are quite much similar.

Moreover, we find that the PMPY model is clearly superior to the others (Fig.
5(e,f)), in regard to both translation and performance over the entire range of L,
even when L→∞. The reason can be found in the asymptotic solutions of U and
P for the three swimmers. While the leading term of U for PMPY is O(1), it is
O(l−1) and O(l−2) for NG and VE, respectively. The leading order term in the
power P is O(1) (equation (26)) for all three swimmers, hence the arm length L
does not have much influence on the power or the performance e. The leading order
term of e is the same as that of U , i.e., O(1),O(l−1),O(l−2) for PMPY, Golestanian
and VE, respectively.

5. Mixed controls result in more net translation and better performance.
All three models have two degrees of freedom, which are of two types – a change in
the arm length l̇, or a change in the sphere radius ȧ. Different combinations of the
controls result in different swimming behaviors, and from the results above we find
that the best choice is the mixed strategy, i.e., (l̇, Ṙ), which is adopted by PMPY.
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Figure 5: A comparison of the three linked-sphere swimmers. (a,b) U(t) and P (t) of the swimmers
within a cycle with L = 6. (c,d) U(t) and P (t) of the swimmers within a cycle with L = 30. (e,f) Net
translation X and performance e of the three swimmers with different values of L.

A combination of the same kind — (l̇1, l̇2) or (Ṙ1, Ṙ2) — is not advantageous, and
they produce comparable net translation and performance (Fig. 5).

The priority of the mixed strategy is based on the following two principles:

1. l̇ results in a velocity with leading order O(1), while the leading order that

results from Ṙ is only O(l−2). Hence to increase the net translation, one
should incorporate a change in arm length.
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2. The leading order terms in the velocity U(t) should not be, or even approxi-
mate, an exact differential, because they then make no or little contribution
to the net translation.

We have discussed the first principle above, which clearly explains why PMPY
is better than the other two swimmers. However this does not explain why the net
translation behaves similar for NG and VE, with leading order terms that scale like
O(l−1) and O(l−2), respectively. In fact, it is only in the case that all three spheres
are of equal size that the velocity scales like O(l−1) for the NG swimmer. When
spheres of different sizes are involved, U(t) will actually scale as O(1), i.e., the same
as U(t) in the PMPY model. However, the net translation X still turns out to be
of order O(l−2), which is the same as for the VE swimmer.

To understand this, we analyze the asymptotic solution of U(t) for an NG swim-
mer which is approximated to the order O(l−1) (equation (A1), [18]). The equation
is complex, but it can be written in the following form.

U =A0 l̇1 +B0 l̇2 +
(A(1)

1

l1
+
A

(2)
1

l2
+

A
(12)
1

l1 + l2

)
l̇1

+
(B(1)

1

l1
+
B

(2)
1

l2
+

B
(12)
1

l1 + l2

)
l̇2 +O(

1

l2
) (31)

where all coefficients A
(α)
i , B

(α)
i are functions of a1, a2, a3 only and do not depend

on l1, l2 or time t.
The leading order term of U , denoted as U(0), is the combination

U(0) = A0 l̇1 +B0 l̇2

and the integral over a whole cycle gives

X(0) =

∫ T

0

U(0) dt =

∫ T

0

(
A0 l̇1 +B0 l̇2

)
dt = A0 l̇1

∣∣t=T
t=0

+B0 l̇2
∣∣t=T
t=0

= 0. (32)

Next, the O(l−1) term of U , which we denote U(1), is given by the following.

U(1) =
(A(1)

1

l1
+
A

(2)
1

l2
+

A
(12)
1

l1 + l2

)
l̇1 +

(B(1)
1

l1
+
B

(2)
1

l2
+

B
(12)
1

l1 + l2

)
l̇2

In general, the integral
∫ T

0
U1 dt does not vanish, but we have the relation

li(t) = L+ δli(t)

where L is the fixed part and δli is the deformation part. When L is sufficiently large,
so as to ensure that the higher-order interactions between spheres are negligible, we
have that δli � L, and thus U(1) can be approximated as

U(1) ∼
(A(1)

1

L
+
A

(2)
1

L
+
A

(12)
1

2L

)
l̇1 +

(B(1)
1

L
+
B

(2)
1

L
+
B

(12)
1

2L

)
l̇2

Thus again,

X(1) ∼
∫ T

0

U(1) dt

=
(A(1)

1

L
+
A

(2)
1

L
+
A

(12)
1

2L

)∫ T

0

l̇1 dt+
(B(1)

1

L
+
B

(2)
1

L
+
B

(12)
1

2L

)∫ T

0

l̇2 dt

= 0 (33)
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From equations (32, 33), we see that although in general the O(1) and O(l−1)
terms do not vanish in U(t), the O(1) term is an exact differential and the O(l−1)
term is approximately an exact differential, and hence the net translation X ∼
O(l−2). This is the same as the leading order that results from varying the radii in
the VE model.

Fig. 6(a,b) give U(t) within one cycle for four NG swimmers, whose radii are given
in Fig. 6(c), with L = 10 or L = 100. Again, to make a fair comparison we require
the total volume of all three spheres in each swimmer are the same. We do not
use equation (A1) in [18] to solve for U(t), instead we numerically solve the whole
system (equations (34 - 36)). From Fig. 6(a,b) we see that for the same swimmer,
the amplitude of U(t) within a cycle is almost of the same scale when L = 10 or
100, yet the net translation is very small with either value of L. However we do
observe that among different choices of the sphere sizes, net translation favors the
equal sized spheres (S0) – i.e., S0 results in the most net translation yet it requires
the least amplitude of U(t) among the four swimmers.

0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

0.6

Time

Tr
an

sl
at

io
n

(a) L = 10

S0
S1
S2
S3

0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

0.6

Time

Tr
an

sl
at

io
n

(b) L = 100

S0
S1
S2
S3

           R1      R2       R3
S0:    3.00   3.00   3.00
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Figure 6: (a) U(t) of four Golestanian swimmers, with L = 10. (b) U(t) of four Golestanian swimmers,
whose spheres have correspondingly the same size as in (a),but with L = 10. (c) The radius of each
sphere in each swimmer of (a,b). (d) Initial shapes of the four swimmer (with L = 15 for better
visualization effects).

On the other hand, for PMPY the leading term in U(t) is

U(0) =
a1 − a2

2(a1 + a2)
l̇ ∼ O(1)
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which is not an exact differential, and as a result, the leading order term in the net
translation gives

X(0) =

∫ T

0

a1 − a2

2(a1 + a2)
l̇ dt ∼ O(1)

in general, which explains the better performance of the PMPY swimmer as com-
pared with the NG or VE swimmer.

6. Discussion. We have compared the three most widely-studied discrete swim-
mers and have shown that the PMPY swimmer performs best under the imposed
conditions. This conclusion is important for the design of mini-robots, but of course
real systems are more complex, and as we indicated earlier, the VE model is a more
realistic model of cellular motion. An analysis of continuum models of swimmers
that more accurately reflect actual shape changes will be reported elsewhere.

Appendix A. A summary of the NG and PMPY models. The NG swimmer
(Fig. 2(b)) consists of three spheres with radii ai (i = 1, 2, 3) and two connecting
arms with length li(t) (i = 1, 2) [29, 18, 1]. While the spheres are rigid, the con-
necting arms can stretch or contract. In the case when ai/l � 1, the velocities of
the spheres (Ui) are related to the forces exerted on the spheres (Fi) via the Oseen
tensor:

U1 =
F1

6πµa1
+

F2

4πµl1
+

F3

4πµ(l1 + l2)
(34)

U2 =
F1

4πµl1
+

F2

6πµa2
+

F3

4πµl2
(35)

U3 =
F1

4πµ(l1 + l2)
+

F2

4πµl2
+

F3

6πµa3
(36)

The velocities are related via the following relations:

U2 − U1 = l̇1, U3 − U2 = l̇2 (37)

The system is force-free

F1 + F2 + F3 = 0 (38)

and equations (34 - 38) are a closed system. The velocity of the whole swimmer is
defined as

U =
1

3
(U1 + U2 + U3) (39)

In the case that the spheres are of equal size, we have the asymptotic solution

U =
a

6

[ l̇2 − l̇1
l1 + l2

+ 2
( l̇1
l2
− l̇2
l1

)]
. (40)

The power consumption of the swimmer comes from dragging the spheres, thus

P = F1U1 + F2U2 + F3U3 (41)

and in the case that the spheres are of equal size the above equation simplifies to

P

4πµa
=

[
1 +

a

l1
− a

2l2
+

a

l1 + l2

]
l̇21 +

[
1− a

2l1
+
a

l2
+

a

l1 + l2

]
l̇22 (42)

+
[
1− a

2l1
− a

2l2
+

5a

2(l1 + l2)

]
l̇1 l̇2. (43)
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The PMPY swimmer (Fig. 2(c)) consists of two spheres with radii ai(t) (i = 1, 2)
and one connecting arms with length l(t). The spheres can expand or contract
in the radial direction, and the connecting arms can stretch or contract. When
ai/l � 1, the velocities of the spheres (Ui) are related to the forces exerted on the
spheres (Fi) via the Oseen tensor

U1 =
F1

6πµa1
+
a2

1

l2
ȧ1 (44)

U2 =
F2

6πµa2
+
a2

2

l2
ȧ2. (45)

The velocities are related via the following relation.

U2 − U1 = l̇ (46)

Again, the system is force-free

F1 + F2 = 0 (47)

and the total volume of the two spheres is conserved

a2
1ȧ1 + a2

2ȧ2 = 0. (48)

Equations (44 - 48) are a closed system and the velocity of the swimmer is

U =
1

2
(U1 + U2) =

a1 − a2

2(a1 + a2)
l̇ +

a2
1

l2
ȧ1. (49)

The power consumption P (t) of the swimmer comprises two parts: Pdrag that results
from the drag force on the spheres, which is given by

Pdrag = F1U1 + F2U2 (50)

and Pexp that results from the radial expansion of the swimmers

Pexp = 16πµ(a1ȧ
2
1 + a2ȧ

2
2). (51)

Hence the power expended is given by

P = 6πµ
( 1

a1
+

1

a2

)−1

l̇2 + 16πµ(a1ȧ
2
1 + a2ȧ

2
2). (52)
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