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1. Introduction

A. REGULATION OF ENZYME SYNTHESIS

Bacteria are able to use any of a variety of substances as their sole
source of carbon because they can synthesize the enzymes needed to
catabolize these substances. Usually these enzymes are produced only
in the presence of their substrate or one of its analogues, and for this
reason they are said to be inducible. In contrast, the enzymes in the
biosynthetic pathways leading to essential metabolites such as amino
and nucleic acids are synthesized in the cell when there is no external
source of the metabolite. When the metabolite is available in the
external growth medium, synthesis of these anabolic enzymes is re-
pressed. '

The operon model of Jacob and Monod (1961) provides the most
commonly used framework for the analysis of enzyme induction and
repression. In this model, each structural gene that codes for an enzyme
or protein is linked with an operator gene that serves to regulate
initiation of transcription. When a repressor molecule is bound to the
operator gene, transcription is blocked. The binding of a repressor
molecule to the operator is in turn modulated by a so-called effector
molecule. In the case of inducible enzymes, the repressor is bound to
the operator in the absence of effector, and transcription is blocked.
When the substrate for such an enzyme is present, an effector molecule
(usually the substrate, an analogue of it, or a product of it) can bind with
repressor and thereby preclude binding of the latter to the operator. This
permits transcription of the structural gene. The function of the effector
is to provide an alternate kinetic pathway for repressor; this process can
be modeled as a pair of competing reactions (Yagil and Yagil, 1971):

R+pS=RS,, K,=RS,/RS"
R+0=OR, K,=OR/RO

Here R = repressor, O = operator, and S = effector. Here and hereafter
we shall use the same symbol for a chemical species and its concentra-
tion.

We assume that these reactions occur quickly and are therefore
always in equilibrium. Furthermore, we assume that the binding of -
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effector to repressor is all-or-none; that is, we neglect the concentrations
of the intermediate complexes RS, RS,, ..., RS,_,. Finally, we as-
sume that the number of operator regions is small compared with the
total number of repressor molecules. Under these assumptions the total
repressor concentration is

R, =R+ RS, = R(1 + K, §?)
and the total operator concentration is
0,= 0+ OR = 0(1 + K,R)
The fraction of operator regions free of repressor is then

_0 _1+K,58%
f(S)_o, K+ K, S° M

where K = 1 + K,R, > 1. Notice that f(S) is a monotone increasing
function of S (Fig. 1a).

For repressible enzymes, the effector molecule permits or enhances
the binding of repressor to the operator. This process can be described
by the reactions

K,
R+ pS=RS,
K.
RS, + 0=t ORS,
In this case

1t K S
O =13 s @

which is monotone decreasing (Fig. 1b).

#S 8¢S

f(S)

(a) (b)

~ Fi1G. 1. The fraction f(S) of operator regions that is free of repressor as a function of
effector concentration S for (a) an inducible enzyme and (b) a repressible enzyme.
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If one assumes that the rate of mRNA synthesis is directly propor-
tional to the fraction of operator regions that are not blocked, the
parameters p, K, , and K, R, can be determined from rate measurements.
Yagil and Yagil (1971) have reviewed data on a number of regulatory
gene systems; some of their results are collected in Table 1.

B. REGULATION OF ENZYME ACTIVITY

Repression of enzyme synthesis by metabolite provides gross control
over the pathway leading to this metabolite. When the metabolite is
plentiful, the whole pathway shuts down on a time scale comparable to
the half-life of the most labile enzyme in the sequence. Much finer and
faster control is achieved by modulation of enzyme activity. For
example, Umbarger (1956) found that, if isoleucine is added to the
growth medium of bacterial cells, the biosynthesis of isoleucine is
immediately and fully quenched. The first enzyme in the sequence
unique to the synthesis of isoleucine, threonine dehydrogenase, is very
sensitive to inhibition by the end product (see Fig. 2a). Often such
feedback loops are coupled together (Fig. 2b). Indeed, the control of
interconnected anabolic and catabolic pathways can be very complicated
and may differ widely from one organism to another. Stadtman (1970)
has provided an excellent review of a variety of mechanisms of enzyme
regulation. Here we limit ourselves to the simplest feedback loops, with
the expectation that experience gained in analyzing simple systems can
be used to advantage in the analysis of more complicated control

TABLE 1
QUANTITATIVE CHARACTERIZATION OF SOME GENE CONTROL SYSTEMS®
Enzyme Effector p K, K,R,
Inducible
B-Galactosidase Isopropylthio- 1.91 2.5x 10°M~% 2.5 x 10®
galactoside
Histidine-NHj-lyase Imadizole 204 1.7 x10°M"? 26
propionate
Urocanase Histidine 23 43 x102M™? 10?
Mannitol Ribitol 3.13 — —
dehydrogenase
Repressible
IMP dehydrogenase Guanine .0.91 —
XMP aminase Guanine 0.68 —
Alkaline PO,3" 0.93 2 x103M! 5x10®
phosphotase

¢ From Yagil and Yagil (1971).
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Fi1G. 2. Feedback inhibition in amino acid biosynthesis. (a) Single negative feedback
loop. (b) Coupled negative feedback loops.

systems. Table II contains a short list of biosynthetic pathways con-
trolled by feedback inhibition.

Feedback activation in metabolic pathways is not so common. One
example is ADP activation of phosphofructokinase in the glycolytic
pathway (Mansour, 1963; Atkinson, 1965), but this falls outside the
scope of models we discuss because ADP is common to so many
pathways. An example more amenable to analysis occurs in the dark
reactions of photosynthesis (Buchanan and Schiirmann, 1972): ribulose
1,5-diphosphate carboxylase, which catalyzes the initial CO, incorpora-
tion reaction, is activated by fructose 6-phosphate, one of the intermedi-
ates on the way to glucose (Fig. 3).

Enzymes whose activity is subject to modulation contain binding sites
for substrates, activators, and inhibitors. Several models have been
suggested for the operation of such ‘‘allosteric’’ enzymes (Monod et al.,
1965; Koshland, 1970). For a fixed concentration of activator or inhibi-
tor, the rate of a reaction involving such an enzyme is usually related to
the substrate concentration S by a Hill function:

Vmax SnH

V(S) = —max=
) = g ©)

All three parameters (Vpax, Ko5, and ny) will depend on the concentra-
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TABLE 1I
FEEDBACK INHIBITION IN BIOSYNTHETIC PATHWAYS®?

S. E, n Mode
Valine Acetolactate synthase 4 K
Leucine a-Isopropylmalate synthase 4
Isoleucine (+) Threonine dehydratase 5 K
Arginine Amino acid acetyltransferase 8
Histidine ATP phosphoribosyl transferase 9 Vv
Proline Glutamate kinase and dehydrogenase 3
Threonine Aspartate kinase 5 K
Cytidine Aspartate transcarbamoylase 8 K

triphosphate (+)
Lysine (+) Aspartate kinase 9 \%4
Thymidine Deoxycytidilate deaminase 4 K
triphosphate ‘

¢ Information compiled from Lehninger (1975) and Monod et al. (1965).
® We tabulate S, = end product, E; = regulatory enzyme, n = length of feedback loop:
SO‘E,—)S‘__E-? Z—E;_) e ._E"—)S"——_)
T .

Under Mode we indicate, when known, whether the inhibitor decreases Vimax (= maximum
reaction rate) or increases Ko (= substrate concentration at half-maximum velocity). The
(+) next to S, entries indicates, when known, that the inhibitory effect is cooperative—
that is, that p in Eq. (4) can be larger than unity.

Co, +
Ribulose 1,5~diphosphate

activate
'"!'_ib.",.____.- Ru DP carboxylose = ——~—

two 3-Phosphoglycerate

| s |

Lo—- Fructose 1,6 ~diphosphate

L

‘ Fructose 6-phosphate — —— —— —

|

Glucose

FiG. 3. Feedback activation and inhibition in the dark reactions of photosynthesis.
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_ tion A of activator and on the concentration I of inhibitor. Indeed, these
variations can be used to determine certain molecular properties of the
enzyme such as number of subunits, binding constants, and conforma-
tional equilibria (see, for example, Johannes and Hess, 1973). As
illustrated in Table 1I, most regulatory enzymes involved in feedback -
control of biosynthesis are ‘K systems’’; that is, Vma is relatively
independent of I, but K, increases dramatically. At fixed substrate
concentration, S§ = S,, we write

_ V(5,0
. 1+ /L)Y
where ‘V(S,, 0) is just the reaction velocity at S = S, and I = 0, and

V(So, I,) = V(S,, 0)/2. The parameters I, and p can be determined from
the slope and intercept of the double logarithmic graph:

V(SO ) 0) .
! [v.(s0 )

Values of p and I, for two of the enzymes from Table II are reported in
Table I11.

V(S,, 1) ©)

1] =plogl - plog I, &)

I1. Kinetic Equations

In the limiting cases to be elaborated shortly, the dynamic behavior of
a sequence of reactions under allosteric control can be deduced from
results derived for systems controlled at the enzyme synthesis level.
Therefore, kinetic equations will be derived for only the latter case. A
schematic of the steps in the single feedback control loop is shown in
Fig. 4.

Messenger RNA that codes for the unstable enzyme is produced by
transcription of the structural gene SG, possibly followed by intranu-

- TABLE III
OBSERVED VALUES OF THE SEMIEMPIRICAL RATE PARAMETERS p AND ], OF EQ. (4)
Inhibitor Enzyme Substrate (Conc.) D I,
Isoleucine Threonine Threonine (2.5 X 10°M) 1.5 7.6 x 107*M
dehydratase® (1072 M) 19 25%x10°M
dTTP dCMP deaminase® dCMP 2 x 1072 M) 34 26x107*M

(5 X 107 M) 27 S5.1x10*M

@ Computed from Fig. 2 of Changeaux (1961).
® Computed from Fig. 2B of Scarano et al. (1963).
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Nuclear membrane of area Ay
Nuclear volume = V.

Cytoplasmic volume = Vc

Rate of mRNA synthesis = R(S,,, )

Processing

Effector(S,,) mRNA(§)/——

nel

kvu-l
Tﬁ( sn 'S\Ol

—~— ¥ End product(Ss) mRNA(S,) X Precursor (S,)
a Enzyme (S
-~ kl -
kn-l . k4
2" Intermediate (S,_) Intermediate (S, ) ————=—
Koz ke
' k
Intermediate (S, ,) ———— ------ > Intermediate (S,)
kn-! kb

FiG. 4. Scheme for control of repressible enzyme; nuclear mRNA (S;), cytoplasmic
mRNA (S,), and enzyme (S;) are assumed to be labile. The precursor is assumed to be
present at constant concentration. Each of the enzyme-catalyzed transformations of
intermediates is assumed to be well below saturation.

clear processing such as cleavage. Some mRNA may be degraded
enzymatically within the nucleus, and the remainder is transported into
the cytoplasm, either by passive diffusion, by facilitated transport, or by
active transport. In the cytoplasm, mRNA is both translated into the
unstable enzyme at ribosomes and enzymatically degraded. The kinetics
of mRNA degradation are assumed to be first order, both in the nucleus
and in the cytoplasm.

The enzyme produced at the ribosome catalyzes the first step in a
sequence of reactions that converts a substrate S, into an end product
that acts as the effector of transcription control. Although each reaction
in the sequence is enzyme-catalyzed, the concentrations of intermediate
species are presumed to be small, and the enzyme concentrations are
held fixed; as a result, the intermediate steps are treated as first-order
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and irreversible. As is indicated in the figure, we allow for the possibility
that each intermediate is also converted to something other than its
successor in the control loop. The end product of the sequence either
diffuses or is transported into the nucleus where it combines with the
repressor R.

Regardless of whether the enzyme is repressible or inducible,* the
Kkinetic equations that govern the transient behavior of the control circuit
can be written

ds A .
"d—tl‘ =g£(sn+1) - "% T,(Sy, S2) — ki Sy
ds. A
—:z'_tz = "7% T:(Sl, S;) — ks S,
das “
‘Es‘ = ].Czsz — ks Ss3
d .
—d§;‘ = k3Sg - k4S4
: (6)
as; . .
7;—=k,_1s,-_1—kjsj, j=5,...,n—1
ds A
""1—11‘ =ky18n-1 — knSn — 4 T (Sn, Sn+1)
t c
ds A
= ;% To(Sn» Snt1) = knt1Snes

where k; = k; + k;ford<j=n— 1.

As written, the reaction rates all depend on the current concentration
of the appropriate species. In view of the time delay involved in DNA
transcription and mRNA translation, it would be reasonable to replace
the rate of mRNA production by %[S,+,(t — 7,)] and the rate of enzyme
production by &,S,(t — 7,), where 7, and 7, measure the delay. One
effect of time delay is illustrated in Section IV,B.

Little is known about the mechanism for transfer of mRNA into the
cytoplasm, and so for simplicity we shall assume that 7,(S,, S,) = P, S,,

* We consider enzymes induced by end product rather than substrate. For instance, 8-
galactoside permease, which transports lactose into bacterial cells, is induced by its end
product, intracellular lactose. (That the normal effector is an isomer of lactose does not
affect our argument.) Of course, Eq. (1) does not apply to the lac operon because B-
galactosidase, which catalyzes the hydrolysis of end product (S, = S, = intracellular
lactose), belongs to the same operon as the permease. The kinetics of the parallel induction
of the hydrolase would have to be included as well.
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which is appropriate as an approximation to facilitated or active trans-
port. Transport of the end product into the nucleus is assumed to occur
by passive diffusion only, and consequently T,(S,, Sy+;1) = Po(S, —
Sn+1)- If P, is large (in appropriate dimensionless variables) and the rate
of degradation of S, small, then S, ~ S,,,, and as a first approximation
we set them equal and ignore S,,,. A more careful analysis of reaction
and interphase transport shows that other limiting cases may occur when
transport is rapid, but more precise knowledge concerning the relative
rates of the processes is needed to decide when these cases are
applicable (Othmer, 1975).
With these simplifications the equations reduce to

ds, /dt = R(S,) — k, S,

ds, /dt = k.S, — kS,
dSy/dt = k,S, — k3 Sy, dS,/dt = k;S, — kS, 0
ds;/dt=k_,S,_, — kS;,, j=5,...,n

We write (S, ) as
R(S,) = kyCF(S,) ®)

where C is the effective concentration of intranuclear ribonucleotide
triphosphates,* and k, is the rate of incorporation of monomers into the
growing RNA chains (a property of RNA synthetase). For an inducible
system, f(S,) is given by Eq. (1). For a repressible system we shall use a
slight modification of the function f(S,) given by Eq. (2). Whenever the
fraction of repressor activated by effector is small (that is, whenever
RS, ® < R, or equivalently R, = R), then to a good approximation £(S,)
= (1 + K,K,R,S,”)™*. We adopt this form hereafter:

1+ KS,”

K+KS>

f(S,) = ©)
1

17 KKRS? repressible case
152284 Y0

inducible case

The kinetic equations at (7) can be simplified by introducing dimen-
sionless variables. This can be done in various ways, and different
choices for the dimensionless groups will emphasize different aspects of

* We introduce this concentration parameter so that all rate constants symbolized by a
lower-case k have dimensions sec™*.
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the dynamics. Here we define

x; = a;8;, T = bt, K; = k; /b

{Kl e inducible case
(K, K,R,)'  repressible case

i

ay

ki, (10)

b = (kok, . .. ky_,a,C)V"
The kinetic equations now read

dx, Jdr = f(x,) — K.x,

dx; /dr = x;_, — K;X;, 2=j=n (1)
where
1+ x7? . .
ran xn; inducible case
fl,) = (12)
1 ibl
15 %7 repressible case

Our formulation of Eq. (7) is sufficiently general to encompass most of
the analyses of feedback systems reported heretofore, and our choice of .
dimensionless variables is easily translated into those used by others.

One can easily show (Griffith, 1968a,b) that any solution of Eq. (11)
that begins with all x; = 0 remains bounded and is therefore well-defined
for all 7 > 0. Indeed, the rectangular solid with vertices at (0, 0, . . . , 0)
and (A/Kk,, A/KiKe, ..., A/Ky ... Ky,), for any A > 1, is invariant
under the flow of (11) for all 7 > 0.

For later purposes it is convenient to rewrite Eq. (11) in one of several
equivalent vector forms, namely:

x' = Lx = bf(x,) =f(x) 13)

and ‘ ‘
&' = L& + bF(E) (14a)
= Z¢ + bglc'¢) (14b)

Here x" = (%, ..., %), € =x — x*, b7 = (+1,0,...,0), ¢’ =
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©,...,1,
-k 0 O 0
1 ""Kz 0 0
L= 0
0 1 Ky
-k 0 f'O6*)
F=Lxflprper=| L T 0 0 (15)

0 1 —Kp

g(ch) =F(én) = =[f0* + &) - lel*]
and

g(c’é) = g&) =F (&) F f'(0*)én

The upper sign pertains to the inducible case, and the lower sign to the
repressible case.

The constant vector x* is a steady-state solution of Eq. (11), and its
components satisfy the equations

X ¥ = KpXp* = KoKgXg* = o0 T Ky . .. KpXy* (16)
and

f*) = éx,* (17)
The scalar ¢ is given by

o= =TI (k") b (18)
= [Tk = MYy, e
=1 e K/ ko CKMP
for the case of induction. For repressible systems, simply replace K,'”
by (K, K,R,)'. Notice that ¢ depends on all the rate constants ki, k;, 1
=< i=n - 1, provided that k; # k;, and on the ratio k, /K,'?, where k,
measures the lability of end product and K, measures the tightness of -
the binding of end product to repressor. As can be seen in Fig. 1, Eq.
(17) can have one, two, or three roots for an inducible system but only
one root for a repressible system.
Asymptotic stability or instability of a steady state is governed by the
eigenvalues of &£, the matrix of the linearized version of Eq. (14b).
These eigenvalues are solutions of the characteristic equation

n

0=PN =det\l —&) = [[ A\ + ;) = F(%*) (19)

i=1
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In the special case k; = k, = *** = Kk, = k, the roots of P(\) are simply
o [f'(x*)]mpy inducible case
b= ooed {["f "(x.*)]""p_?  repressible case (20)
forj=1,..., n, where (p)" = 1 and (p_/)* = —1. In the general case

there is no simple expression for the eigenvalues.

The following two sections are devoted to the study of the existence
and stability of steady-state solutions of Eq. (11) for arbitrary n. The
special cases n = 2, 3 have been widely studied; see, for, example,
Goodwin (1965), Griffith (1968 a and b), Lavenda (1972), and Tyson
(1975). The special case leading to Eq. (20) was studied by Hunding
(1974), and numerous numerical results for n > 3 have been reported (C.
Walter, 1970). General analytical results for n > 3 are given in Othmer
(1976a), where a different nondimensionalization of the equations is
used.

III. Inducible Systems

A. MULTIPLICITY AND STABILITY OF STEADY STATES

In an inducible system there may be up to three solutions x,* of Eq.
(17), written here as

h(g) = éx, — f(x,) =0

These solutions depend only on the parameters p, ¢, and K. On the
locus in (p, ¢, K)-space that divides regions of one solution from regions
of three solutions, both A(x,) = 0 and A’(x,) = 0. Written out, these
simultaneous equations are

1+ x,?
o =27 Y @n
and
_ (K — Dx,”!
U =

These can be combined to give
L?=[K(p=1D)=(p+Dx>+K=0 (23)

In order that this equation have a positive real solution x, for K > 1 and
p = 1, it is necessary and sufficient that

K> Kun =(p+1/p — 1) (24)
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TABLE 1V v
THE MINIMUM K NEEDED FOR MULTIPLE STEADY STATES AT
INTEGRAL p VALUES

) 1 2 3 4 5 6 el ®

Kiin © 9 4 278 225 196 ... 1

The minimum K that suffices is shown as a function of p in Table IV.
Evidently the steady state is always unique when p = 1.

If K > K , then there exist two positive real roots x,* = x,*(K, p) of
Eq. (23). When these are used in Eq. (21), the following relation is
obtained for the surface ¢ = ¢..(K, p) in parameter space that divides
regions of one steady state from those of three:

1+ [x*(K,pF
K + [x*(K, p)P

From Table I we observe that p = 2 is the most common value for
inducible enzymes and that K = 1 + K, R, > Kpin(2) = 9. Indeed, K >

Kmin , and this can be exploited to simplify Eq. (25) considerably. For p
= 2 and K large, we have '

¢ =¢:(K,p) = [ *(K, p)I™* (25)

- . _JK+0(Q1)
and so
$-(K,2) = {;ﬁ(‘/’_‘ (26)

The loci defined by these relations are shown in Fig. 5. We shall return
- to this figure in the discussion of hysteresis effects in Section V,A.

The next step in the analysis is to consider asymptotic stability of the
steady states. This is governed by the roots of the characteristic
equation (19). When three steady states exist, f'(x,*) > ¢ at the
intermediate one (cf. Fig. 1a), and therefore P(0) < 0. Since P'(A) > 0
for A = 0, it follows that P(A) has exactly one positive real root.
Consequently the intermediate steady state is always unstable.

At any other steady state (the unique one or the upper and lower of
three), f'(x,*) < ¢, and P(A) has no nonnegative real roots. Further-
more:

Theorem 1. When the steady state of an inducible system is unique, it
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log K —=

F1G. 5. An approximation to the region of multiple steady states in positive feedback
loops for large K. Between the curves ¢, (K, 2) and ¢_ (K, 2), given by Eq. (26), there are
three positive steady states, and elsewhere the steady state is unique.

is asymptotically stable. When three steady states exist, the upper and
lower are asymptotically stable and the intermediate one is unstable.

ProOF. We must show that, if f'(x,*) < ¢, then Re A\, <0, 1 <k < n,
where the \;’s are the eigenvalues of the matrix £. To this end we
introduce the matrix

B =%+ Kpaxl

where kpayx is the largest of the decay constants «,, . . . , k,. Denote the
eigenvalues of B by 7, 1 < k < n. B is a nonnegative matrix; that is, B;
= 0 for all i, j, and a weak version of the Perron-Frobenius theorem
(Gantmacher, 1960; Minc and Marcus, 1964) implies that it always has a
nonnegative eigenvalue r; such that

nl=n, 2<js<n
1

Since B obviously has some nonzero eigenvalues, r, > 0. The eigenval-
ues of & are simply Ay = 1 — Kmax, 1 = k < n, so the theorem is
established if we can show that r, — kmax < 0. But if that were not so,
then & would have an eigenvalue A\, = 1, — Kpaxy = 0, which we have
already shown to be impossible.

This theorem does not preclude the possibility that the domain of
attraction of an asymptotically stable steady state is vanishingly small.
The following shows that this cannot happen under certain conditions.

Theorem 2. Suppose that the differential equation for an inducible
system is written in the form (14b), and suppose that K, p, and ¢ are
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such that
0<f'xp*) < p—€

for € > 0. Then if |£0)| < €,/8N2%, where €, 8, and N are positive
constants, ||&(7)|| — 0 exponentially as T — . ‘
PrOOF. Write the solution of Eq. (14b) as

£ = eTEO) + [ 20 ge) dr,

Then, in the Euclidean norm || ||,

IE@] < lle 2O + f le 2= blllg@) drn @D

Because f'(x,*) is bounded away from ¢, there is an €; > 0 such that the
largest real eigenvalue of & is strictly less than —e;, and all other
eigenvalues of £ have real part less than —¢; . It follows that there exists
an N > 0 such that

e # < Newer

for > 0. Furthermore, g(0) = g'(0) = 0, and there exists a 8 > 0 such
that, for sufficiently small &,,

|g(n)| = 8% = 3|i€|P
We define n(7) = e4"||¢(7)|| and then write Eq. (27) as
n(r) = Nn(0) + 8N f T e~smn*(ry) dry
0

The solution of this inequality is dominated by the solution of the
equality

i(r) = Ni©) + 6N [ emerittr,) dr
0

which is (W. Walter, 1970)

() = & N9(0)
€ — 8N21‘;(0)(1 - e—Elf)
It follows that
lg@ll = & Ne~<||£(0) |

€, — SN2||£(0)]|(1 — e™<r)
and so if |£(0)|| < €, /8N?2, then ||&(7)|| — 0 exponentially.
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The theorem shows that an asymptotically stable steady state is stable
with respect to finite amplitude disturbances if f'(x,*) is bounded away
from ¢. This precludes small-amplitude periodic solutions that lie near a
stable steady state, but not large-amplitude periodic solutions. The
following analysis shows that these, too, can be ruled out in certain
cases.

B. GLOBAL STABILITY RESULTS

When the steady state is unique, it can happen that all trajectories
tend to it as ¢t — . The following definition introduces some terminol-
ogy for this case.

Definition. A steady state x* of the autonomous system x’ = f(x) is
globally asymptotically stable if it is asymptotically stable and

lim x(x,, 7) = x*
for all initial points x, in the positive orthant of concentration space.
This leads to the following result.

Theorem 3 (Othmer, 1976a). When the steady state in an inducible
system is unique, it is globally asymptotically stable.

The proof of this requires some preliminary results.

Feedback control problems of the form of Eq. (14a) have been widely
studied, and a variety of techniques are available for their analysis
(Narendra and Taylor, 1973). A proof of global stability usually proceeds
by constructing a Lyapunov function that is defined throughout the state
space and has the appropriate sign-definiteness. A useful choice of the
Lyapunov function for Eq. (14a) consists of a quadratic form plus an
integral of the nonlinearity

én
VE) = £™ME +y f F() de, @)

where H is positive definite and 7y is a real scalar (Aizerman and
Gantmacher, 1964). If H and vy can be chosen to fulfill the conditions on
a Lyapunov function, the origin will be globally stable for Eq. (14a). It
turns out that this can be done for a whole class of nonlinear functions
F(&,). Before stating the general result we need the concept of absolute
stability (Aizerman and Gantmacher, 1964).

Definition. Suppose that  is single-valued, that #(0) = 0, and that

0 = £&F(6n) = OQ&,° (29)

For fixed (1 > 0, the system (14a) is absolutely stable in the sector [0, Q]
provided the origin is globally asymptotically stable for any %(&,) that
satisfies Eq. (29).
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Given that F(¢,) satisfies Eq. (29), conditions on the linear part of
(14a) that are sufficient to guarantee absolute stability can be derived
directly from Eq. (28). However, in general it is easier to work with the
frequency response of the linear portion. The following theorem gives
sufficient conditions for absolute stability in terms of the frequency -
response.

Theorem 4 [Popov’s Theorem). Suppose that L has only eigenvalues
with negative real parts and that the numerator and demoninator of

G\ =" - L)

have no roots in common. Then a sufficient condition that &' = L¢ +
bF(c'€) be absolutely stable in the sector [0, Q] is that there exist a real
v such that the complex function

TO) = & = (1 + MG

satisfies
Re T(iw) >0 (30)

for all real o = 0.

A proof of this theorem and generalizations of it can be found in
Aizerman and Gantmacher (1964).

The proof of Theorem 3 is now easy. One first must verify the
conditions on G(A). A short computation gives

n
GO\ = [N = L)1y = [] (65 + 1) (31
j=1
which .obviously satisfies the stated conditions. Now

Gliw) = [n[ (k;2 + 0?)~2-exp (—i i 9;) (32)

j=1 i=1

where
O; =tan"! (w/k;) 33)

Furthermore,
1
Re T(iw) = o Re G(iw) + yo Im G(iw)

Since |G| is monotone decreasing, the maximum of Re G(iw) occurs at
= 0, and so, if  is such that 7(0) > 0, Eq. (30) will be satisfied with the
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choice y = 0. Since

1 1 1
T(0)~Q Re G(O)-Q ) |
T(0) > 0, provided that Q < ¢. By definition, () is the boundary of the
sector in which #(¢,) lies, and it is always true that ) < ¢ when there is
only one steady state.

This result gives a complete picture of the dynamics of an inducible
system when the steady state is unique. The analogous result for the
case of three steady states would be:

Conjecture. The two stable steady states are globally attracting in the
sense that all trajectories, except those starting on a particular (n — 1)
dimensional manifold, tend to one of the stable steady states as t — o,

The exceptional manifold separates the positive orthant of R" into
domains of attraction of the two -stable steady states. Within this
manifold periodic solutions may appear. For instance, for n = 5 the
linearization around the intermediate steady state can have a pair of
complex conjugate eigenvalues with a positive real part. This is most -
readily seen in the special case k; = k, = -+ = k, = «k, for then the
eigenvalues are simply

M= =kt PPN () =

For n = 5 and sufficiently large p, at least one pair of \’s has a positive
real part. The Hopf theorem (see Section IV,C) implies that a periodic
solution bifurcates when a pair of A’s crosses the imaginary axis. Such
periodic solutions are necessarily unstable when their amplitude is small,
because the steady state always has a one-dimensional unstable manifold
corresponding to a real eigenvalue. Whether there can be other large-
amplitude stable periodic solutions is still an open question.

1V. Repressible Systems

A. LocAL STABILITY RESULTS

In this section we consider repressible systems, and now f'(x,) < 0
for x,€[0, «). In this case Eq. (17) has a unique solution (cf. Fig. 1b). The
stability of the steady state is governed by the location in the complex
plane of the roots of the characteristic equation (19):

P(\) =det M - &) = [nl A+ 1) = f(a*) (34

i=1
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When written in terms of L, this reads

P(\) =det [M — L + f'(x,*)beT]
=det A\l — L) det [| + f"(x,*)(Nl — L) *be]

[Recall that b” = (-1, 0, . . ., 0) for repressible systems.] The steady
state will be asymptotically stable provided that ’

P(\) #0 for ReA =0 (35)
Because k; > 0,j =1, ..., n, L is a stability matrix, and the criterion

(35) for stability becomes

0 # det [I + f'(x,*)(N — L) 'be”]

=1+f(5*)GN) for ReA=0 (6)

where

n

GV =cWN -Lb=- [+ k)

i=1
It is easy to see that 1 + f'(x,*)G(0) > 0 and that |IRe G| is monotone
decreasing in Re A along any locus Im G = 0 in the complex A plane.
Therefore the stability criterion reduces to

1+ f'(x,*)Re G(iw) >0
whenever Im G(iw) = 0 for @ = 0. Consequently, the locus of marginal
stability in parameter space is given by

—f'(a*) =&, 37

where

Q.7 = max Re G(iw)

.wel0,%)
ImG=0
This maximum occurs at the smallest ® for which arg G(iw) = 0; that
is, at ® = w,, where

> tan™ (99) =>0=x (38)
i=1 K i=1
Thus
Q, = [T (k2 + 0 ="¢ [[ (sec 0)) (39)
j=1 j=1

and this depends on all «;’s separately. By contrast, f'(x%,*) depends on
n, p, and the product ¢ = k, . . . k,. This suggests that we fix n, p, and
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¢and minimize Qc as the parameters Ky, ..., Kyvary, subject to
)
n

¢= n K; = constant
1

[
]

M=

0,=m

L]
-

j
Clearly all «;’s enter symmetrically in Eq. (39), and therefore the

minimum occurs when k, = k, = =+ = k, = ¢!, In this case O; = = /n,
and ‘

Qemin = b sec” (m/n)
It is easy to see that
| =f'(6*) = pp(1 = éx,*)
and therefore the steady state is asymptotically stable provided that
pd(l = dx,*) < dsec” (m/n) (40)

This proves the following result.
Theorem 5. The steady state in a repressible system is asymptotically

stable for all parameter values {k,, . . . , k,} that satisfy H K; = ¢, if
j=1
&x,*(p, ¥) > (P — Po)/p (41)
where ’
Po = Po(n) = sec™ (r/n) (42)
If p < py(n), then Eq. (41) is satisfied for all ¢, and the steady state is
asymptotically stable for all «,, ..., k,. On the other hand, if p >
Do(n), then Eq. (41) is violated at sufficiently small ¢ because
1 1
. I S S
il_l’)l“l) ox, il_l”r(l) 1+ x,*» xnlilllw 1 + x,*?
Since (), is smallest when k; = - = k, = k, the critical value of k = ¢/*
is
_ (P = p\'"
Ko(n, p) = (pxn* )
For any parameters {k,, . . . , k,} such that IIk; > «,", the steady state

is asymptotically stable, whereas for Ilk; < k," there exists some set
{Kyy ..., K} close to {k, ..., «}, k = (IIk;)', for which the steady
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TABLE V
CRITICAL VALUES OF THE FEEDBACK PARAMETER p AND
DECAY CONSTANT k AS FUNCTIONS OF n, THE NUMBER OF
ELEMENTS IN THE CONTROL LoopP*

.n Po(n) Ko(2, n) p+(n) py(n)

3 8.0 — 5.37 -

4 4.0 — 2.76 —_

6 2.37 — 1.86 —

8 1.88 0.671 1.61 2174.0
10 ‘ 1.65 0.827 1.48 203.0
16 1.36 0.928 1.31 19.2
24 1.23 0.960 1.21 6.69
32 1.17 0.973 1.16 4.09

2For p > p,(n) there exists an x,(p, n) such that the
steady-state solution is unstable for all 0 < k < k,(p, n). See
Eqgs. (42) and (43). For p. > p.(n) we have u, < 0, and
small-amplitude periodic solutions exist for —1 < u, = « —
Ky < 0. See Eq. (59). For p > p,(n) there exist values of «
small enough such that a second family of small-amplitude
periodic solutions bifurcates from the steady state.

state is unstable.* At the critical k value,

1 _P~p
1+ x,*° )4

ox, * =

and it follows that
(P — po )(JH- /p
)7) po 1/p

Values of p,(n) and «,(p, n) for some integer values of n are provided in
Table V. Some results on the region of instability in the K, — k, plane in
the special case k; = k, = -+ = k,_, are given in Othmer (1976a).

&, n) = [K(p, N)I" = (43)

* The minimum value of p for which the steady state can exhibit instability is larger
than p, if the parameter set {x,, ..., x,} is not close to some set {x, . .. , k}. For
instance, for n = 3 one can show that at the point of marginal stability

Pdx* = p — puin

where

P =_Qg.=8+('(l_K2)2+(K2~K3)2+(K3"K1)2
me T Ky Ky Ka K3 K3 Ky

(44)

Obviously, ., = 8¢ at k; = k, = k;. Furthermore, p,,, increases dramatically as the
decay constants become unequal; for example, for &, = Kk, = 10Ks, pin = 24.
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In conclusion, we remark that Theorem 2 applies equally well to
repressible systems with minor modifications in the hypotheses to bound
the eigenvalues of £ away from the imaginary axis.

B. GLOBAL STABILITY RESULTS

Asymptotic stability is governed by the slope f(x,*) of the nonlinear-
ity in the feedback loop and the critical gain €, of the linear system.
According to Popov’s theorem (Theorem 4), the equilibrium is globally
asymptotically stable provided that we can find a real y such that

Re T(iw) = ;(1“— Re G(iw) + oy Im G(iw) > 0 45)

for @ = 0. The constant x defines the upper boundary of the sector in
which & lies:

0 = £,%(&,) = xé®
It is geometrically obvious that x is the maximum chord slope:
fOa*) = fOu* + En)]
€n
and so if x < Q., Eq. (45) will be satisfied if we choose

_ (d/dw)[w Im G(iw)]
(d/dw)[Re G(iw)]

X = max [

Epel—,% )

(46)

-1

(Fig. 6). Here o, is the first nonzero solution of Im G(iw) = 0; that is, @,

wImG(iw)

\ Re G(lw)
-¢-| w' \\%;I

FiG. 6. The locus of the point [Re G(iw), w Im G(iw)] for a negafive feedback system as
" o varies between 0 and . The straight line is the Popov line with slope y~1.
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is the solution of Eq. (38). Consequently, to find conditions for global
stability we have to find conditions under which x < ..
The simplest case is p = 1, for which

x =1/ +x*) <1 (47)

Theorem 6. For p = 1 and fixed n > 1, the steady state in a
repressible system is globally asymptotically stable for all k;, j =
1, ..., n, that satisfy

cos®® (r/n)
1 + cos™ (mw/n)

[I K; > d’min = (48)
j=1
ProoF. We know that, for any ¢ > 0,

Q¢ min = b sec™ (7/n)

and therefore, from Eq. (47), global asymptotic stability follows when-
ever

1/(1 + x,*) < psec™ (w/n)

Forp =1,
ox,* = 1/(1 + x,*)
SO
—1)1/2
1+xn*___1+(1+24¢ )

and (48) follows directly.

When ¢ < ¢, Eq. (48) is violated and Popov’s theorem no longer
guarantees global stability. However, a more refined analysis (Allwright,
1977) establishes global stability of the steady state for p = 1 and for all
¢ >0.

Now suppose that p > 1. We write the condition for global stability
as*

* Equations (44) and (49) imply that for n = 3 the steady state is globally asymptotically
stable if

<8+

X(Pd; é) (K, =15 + (kp — K3)? + (kg — Ky )?

KiKy KoK3 K3k,

This inequality was first derived by Ingwerson (1961) and by Bergen and Williams (1962).
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Xx@, ¢) _ Qlky, . . ., Ky)
4 < 3 (49)
Since
tim X2 i L
o0 ¢ o—0 G, *
and

Q./¢ > sec™ (m/n) forall ¢

inequality (49) is violated for sufficiently small values of ¢. To obtain an
upper bound for ¢, we observe that, at fixed p, X(?, ®) = Xmax(®)s
where Xmax(?) is the slope of f(x) at its inflection point:

pz -1 (P 1) 1/p
«(p) =max [—f ' (*)] = —_—
Xmax(P) e [—f " (*)] prl P
Insisting that Xmax (@) < Qec,min($), We obtain:
Theorem 7. For fixed n and p > 1 the steady state of a repressible
system is globally asymptotically stable for all parameter sets
{ky, . .., Ky} that satisfy

n
[1 & = &> cos™ (/) Xmas(D) (50)
i=1
It is not difficult to calculate ¢, numerically. In Fig. 7 we plot the
left-hand side of Eq. (49) as a function of ¢ for p = 2, 3, 4, 5. The
minimum value of the right-hand side, sec™ (/n), is also indicated. The
intersection points define ¢y, (n, p); that is,

X(P, Omin )/ Pmin = sec” (w/n) (1)

In Table VI we compare @i, with ¢,. Notice that ¢, = by, for p = 3, n
= o* In this case only can we say that the steady state is globally
asymptotically stable for all «x; = 0 if and only if it is (locally)
asymptotically stable for all «; = 0.

Regions of global asymptotic stability in the k, — K; plane are
available in propositions 3, 4, and 5 of Othmer (1976a). The use of
Popov’s theorem for the analysis of negative feedback systems was
apparently first suggested by Viniegra-Gonzalez (1973). By a different
method an der Heiden (1976b) has obtained similar global stability
results.

* This follows from (a) x(3, ¢) = ¢ = ¢o(3, ®) = 2433 and (b) x(p, $)/¢ is a monotone
decreasing function of ¢ for ¢ = é.
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2345+p

075 10 \
¢ —_—

FiG. 7. Popov’s theorem implies that the steady state is globally stable if x(», ¢)/¢ <
sec™ (w/n).

C. SMALL-AMPLITUDE PERIODIC SOLUTIONS

In Section IV,A it was shown that the steady state of a repressible
system can be made unstable if (a) p > p,(n), (b) k = (k)" < Kkyo(p, 1),
and (c) the parameter set {k,, ..., k,} is sufficiently close, in an
appropriate norm, to {k, . . ., k}. Under these conditions the following
result holds.
~ Theorem 8. Fix n and p > po(n). There exist parameter values
{Ky, . .., Ko} sufficiently close to {k\(p, n), ..., Ky(p, n)}, for which
system (11) with £(x,) = (1 + x,° ! admits periodic solutions. These
periodic solutions all belong to a unique, one-parameter family of
periodic solutions, and the amplitudes of these periodic.solutions are, in
an appropriate sense, small.

This theorem follows directly from

Theorem 9 (Hopf’s Theorem)

(i) Conditions. Let x' = f(x, u) be a real analytic autonomous
system of differential equations with x, f(x, u)eR", and weR. Suppose
that £(0, w) = 0 for all we[—c, c] for some ¢ > 0. Let &, be the
linearization of f(x, u) around (0, p)..Suppose that £, has exactly two
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TABLE VI
GLOBAL STABILITY RESULTS FOR REPRESSIBLE
SYSTEMS®
n = 3 4 5 8 16 0

0.00 0.00 0.00 0.00 0.00 0.00
0.02 0.05 0.09 0.19 0.31 0.50
0.00 0.00 0.00 0.01 0.21 0.50

p =

2 004 011 017 029 044 062
5 000 000 001 031 058 084
0.07 0.18 027 042 0.62 0.384
4 000 000 022 054 078 099
0.11 025 035 0.57 079 1.04
s 000 015 040 0.69° 0.88 1.05
0.14 036 046 0.69* 0.92 120
. 100 1.00 1.00 1.00 1.00 1.00

1.13 125 135 153 174 2.00

2 For given n and p we tabulate ¢, and ¢, as
defined by Eqs. (43) and (51). Notice that ¢ < épin,
except for p = 3, n = ®, when ¢, = . For ¢ < ¢,
the steady state is unstable if k, = ** = k,, or nearly
so. For ¢ > ¢, Popov’s theorem assures global
stability of the steady state. For ¢, < ¢ < ¢y, the
steady state is locally stable, but we make no claim
about global stability.

purely imaginary eigenvalues, N0) = —\(0) = iw, whose continuous
extensions Nu), M) satisfy the transversality condition

Re (89) g
du /,_,

(ii) Existence. Under these conditions there exists an €, > 0 and a
Sfunctional relation u = u(€) such that for each € € (—¢,, €,) there exists
a periodic solution %(t, €) with period T(e) of x' = f(x, u). At € = 0 we
have w(0) = 0, x(t, 0) = 0, and T(0) = 2m/w,, and x(t, € # 0 for all
sufficiently small € #+ 0.* Moreover u(e€), X(t, €), and T(€) are analytic at
€ = 0. These periodic solutions exist only for p. > 0, or only for u < 0, or
only for u = 0.

(iii) Uniqueness. Furthermore, for each L. > T(0) there exist a > 0, b
> 0 such that if |u| < b then, except for the bifurcating periodic

* The frequency o, is the solution of Eq. (38) if all other eigenvalues have negative real
parts.
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solutions X(t, €) with € > 0, there is no nonconstant periodic solution
with period less than L that lies entirely in {x: ||x| < a}.

ProoF. See Hopf (1942) or Ruelle and Takens (1971).

ProoF oF THEOREM 8. That the conditions of Hopf’s theorem hold
for repressible systems is the content of Proposition 1 in Othmer (1976a).

We may paraphrase Hopf’s theorem and conclusions that can be
drawn from it as follows:

(@) At u = 0 the constant solution x = 0 of the system x = f(x, u)
loses stability by a single pair of complex conjugate eigenvalues X\, A
crossing the imaginary axis.

(i}) Whenever this happens we can be sure that there exists a one-
parameter family of small-amplitude periodic solutions for u sufficiently
close to zero: only for u = 0 (which is unusual), or only for u > 0 (called
supercritical bifurcation), or only for u < 0 (called subcritical bifurca-
tion). If all the other eigenvalues of £, have negative real parts, then
bifurcating periodic solutions that exist only for Re A > 0 are orbitally
asymptotically stable, and bifurcating periodic solutions that exist only
for Re A < 0 are unstable.

(i) Within a small neighborhood of the origin these bifurcating
periodic solutions are unique.

In the remainder of this subsection we shall restrict our attention to

the special case k; = Kk, = *** = k, = k = $'", Just as in the analogous
case for an inducible system, the eigenvalues can be found explicitly:
N = —k+ pL[=f (e )], l=j=n (52)

where —f'(x,*) = pd(1 — ¢x,*). Let n and p be fixed, let « vary, and let
L = K — Ky, where at k = k,(p, n) a pair of complex conjugate
eigenvalues crosses the imaginary axis. Then a one-parameter family of
periodic solutions exist only for ¥ < k,(p, n), or only for k > k,(p, n), or
only for k = ky(p, n). Momentarily we shall determine which of these
alternatives applies.

For n sufficiently large, more pairs of complex conjugate eigenvalues
may cross the imaginary axis and generate more families of periodic
solutions. For instance, we see from Eq. (52) that for n = 7 a second
bifurcation occurs at k = «;(p, n) where k,(p, n) is defined by the
relation

K",* =(p —p,)/p, p, =p,n) =sec"” (3m/n)

What happens at these higher bifurcations is of considerable mathemati-
cal interest but of little importance in the biological context because
p:(n) is exceedingly large for reasonable values of n (see Table V).
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Having established the existence of a Hopf bifurcation for our system

=L tegéw (53)

we now proceed to calculate the direction of bifurcation—that is,
whether the periodic solutions exist for u = 0, or for u < 0, or for u >
0.* Consider the expansion of u(e) about u(0) = 0:

ple) = py€ + poe? + - (54)

Hopf proved that u, = u; = :-- = 0 (hence follows the last statement in
part ii of the theorem). If u, # 0, then for e sufficiently small the
direction of bifurcation (1 < 0 or u > 0) is determined by the sign of u.,.
Poore (1976) has shown that

8 Re [N'(0)]n2 = Re {—u flv,0;0 + 2u 50, Lo ™ er f1ay
+ ulfjlkl-’j[(go - Ziwol)—llcrf;qvpvq} (55)
where:

(@) N (0) = [d\(w)/dpl.ws.

(b) u and v are left and right eigenvectors of £, corresponding to the
purely imaginary eigenvalue iw,, normalized so that u'v = 1. ¥ is the
complex conjugate of v.

(c) f'is the Ith component of f(x), and

]
LA
Uk o, 0x; o
- azfl

* 9x; 0%,

(d) | is the nxn identity matrix.
(e) Repeated indices imply sums.

MacDonald (1977) first noticed that Eq. (55) is particularly simple
when applied to Eq. (11) because only two of the partial derivatives are
nonzero—namely, f}, and f%,,.T Equation (55) reduces to three terms:

* The perceptive reader might think that we have already eliminated the possibility of
small-amplitude periodic solutions for u > 0, since the generalization of Theorem 2 to
cover repressible systems implies that, when the steady state is asymptotically stable (u =
Kk = Ko > 0), then it is attracting in a domain ||¢[| < €, /8N2. However, as k — k,*, € — 0
as K - Ko. Thus the domain of attraction shrinks linearly with u. On the other hand, the
amplitude of bifurcating periodic solutions generally approach zero as u'?, and thus they
would lie outside the domain of attraction for u sufficiently small. Therefore, one cannot
rule out the existence of unstable small-amplitude periodic solutions on the basis of
Theorem 2.

T One of the authors (J.T.) has determined the sign of u, using a formula derived by
Hsii and Kazarinoff (1976). Though the same results are obtained, the calculations are
considerably more complicated, so here we follow Ma¢Donald’s work.
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8 Re [N(0)]ps = Re (430, *Tp{~ S + 2(f2n)*(E0 ™ s

+ (fan PI&o — 2iwg)™ ] ) (56)
In the special case k;, = *** = k, = K, the necessary factors are easily
evaluated:
p P’
ann = _“3'1"—““_5[172 = (6p, + 3)p + 2(3py* + 3p, + 1)]
- Po) .
fin = k2L (p —2p, — 1)
P — Do
“1 —_ Un - n—1l2K—(n-1)/2(1 + itan z)—(n—l)lZ
&Eo Dy = —k™(1 + py)?

(& — 2iex)) ], = —«7"[p, + (1 + 2itan z)*]*

where tan z = o, /k, and we use the abbreviation z = 7/n. Equation (56)
becomes

{~8 Re [N (0)]n*k="*Ppop~*(p — po)* cOS Z}us

= Re {(1 + itan z) [p2 — (6py + 3)p + 2B3pe? + 3py + 1)

_ 2py Do _ _
(1 + po + Do + (1 + 2itan z)") P = 2po 1)2]} (57)

Since the quantity in braces on the left-hand side of Eq. (57) is positive
definite for all positive p # p, , the sign of u. is determined by the sign of

Q =p?— (6py + 3)p + 2(3ps® + 3py + 1) (58)
- __2£‘L.~ ) _ 1)
(FR-+R) 0 -2~
where
R= 1 + (1 + 3 sin? z)**cos né + tan z sin né)
"1+ (1+ 3sin?z) + 2(1 + 3sin? z)"2 cos né
and

0 = tan"! (2 tan z)
Rearranging Eq. (58) we find that

Q=ap®>+bp+c (59)
where

pp—1_
D +1

N(Po — 3
b= (2p, + (__~.«+ )
(Po 1) Po + 1 2R
c=2(1+3p, +2py® — p,*)1 + py)' = (2p, + 1)°R
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For all integers n = 3 we find that a <0, b < 0, ¢ > 0, and thus Q <0
for all p > p.(n), where p4(n) is the unique positive root of Q(p) = 0.
The functions p. (n) and p,(n) are compared in Table V and Fig. 8. We
see that w, < 0 whenever p > p,(n), at least for n < 32. This implies that
the bifurcating periodic solutions appear for k < ko (P, n)—that is, when
the steady state is unstable. The periodic solutions are orbitally asymp-
totically stable.

That p, < 0 for n sufficiently large and for all p > Dpo(n) can be
established by expanding p, and R in powers of z = 7/n. We find that

po=1+1mz+latt+ Latd + L + 0@ (60)

R=1-3m+ La’s® + % wz® +0(*) (61)

1
2 128

Substituting these expansions into Eq. (58) and determining the positive
root, we find that

po— Py = Lwdz + w2 + O(z) (62)

That is, p. (1) < py(n) for n sufficiently large, and thus u, < 0 for all p >
po(n)- :

If we remove the restriction k, = k, = ** = K,, analysis becomes
difficult, since we cannot even find the eigenvalues A;, ..., A, in
general. However, for the simplest case n = 3 the analysis can be
carried through to the point of Eq. (59), where a, b, and c¢ are
complicated functions of k;, k,, and ks. At this point one must rely

o]
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FIG. 8. Critical values of the feedback parameter p as a function of n, the number of
elements in the loop. For p > p, the steady state becomes unstable for sufficiently small
values of «; see Eq. (43). For p > p, the quadratic function in Eq. (59) is negative, and the
bifurcating periodic solutions are orbitally asymptotically stable. Since p, > p. for n = 32
at least, we find no instances of periodic solutions when the steady state is stable.
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again on the digital computer: choosing values of k,, k,, and k; and
calculating the sign of u,. For all the combinations tried, the bifurcating
periodic solutions appear only when the steady state is unstable.
Moreover, the periodic solutions are least stable (that is, the characteris-
tic exponent is least negative) when k; = Kk, = Kj.
We summarize with:

* Observation 1. In every case for which the direction of bifurcation
has been determined, the small-amplitude periodic solutions exist only
when the steady state is unstable. At the first bifurcation point, k =
Ko(p, n), the periodic solutions are orbitally asymptotically stable.

D. PeRrIODIC SOLUTIONS IN THE LLARGE

In the previous subsection we found that, as x decreases below «,(p,
n), the steady state loses stability, and small-amplitude periodic solu-
tions exist for |k — Kk,(p, n)| sufficiently small. The following theorem
establishes the existence of periodic solutions for all x € [0, x,(p, n)]—
indeed, for all parameter sets {k;, . . . , k,} for which the steady state is
unstable.

Theorem 10 (Hastings et al., 1977)

(i) Conditions. Let x' = f(x) be a real autonomous system of differen-
tial equations with x, f(x) € R® and f € C" on the set P = {x; = 0}.
Suppose that x' = f(x) has a unique steady state x* in P = interior of P.
Suppose that the Jacobian matrix, £(x) = of/9x, has the form

5 00 e —d,
d2 — K 0 o 0

ZL(x) = 0 d3s —k3 - 0 (63)
0 0 0 - dp —kn

and suppose that £(x*) has no repeated eigenvalues. Suppose that the
Sfollowing inequalities hold in P:

of;/ox; <0 and ofj/ox;-, >0, bothfor 2=<j=<n (64)
of; /0%, < 0 (65)

Suppose further that

£,(0, 0) =0, l=<i=n (66)

fi(X,,0 =0  forall x,=0 (67)

fi(Xq4, X,) <0 if Xp>Xp* and x; > X,* (68a)
fi(Xqy, X)) >0 if Xp<Xp* and Xx; <x;* (68b)

of,/0x, is bounded above in P (68¢c)
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(ii) Existence of ‘‘oscillatory’’ solutions. Under these conditions, if
L(x*) has any eigenvalues with positive real part, then there exists a

positively invariant set V.= U V;, where the V|’s are arranged, in an
1=si=n

appropriate sense, in a circuit around the steady state. Any solution of
x' = f(x) that starts in V remains bounded for all T > 0 and progresses
through the Vi’s successively and interminably without approaching x*
as T—> o,

(iii) Existence of periodic solution(s). Moreover, at least one of these
oscillatory solutions is periodic; that is, it closes on itself after one
circuit around x*.

By design the hypotheses on f(x) are sufficiently general to include a
variety of negative feedback models. The form of £, Eq. (63), is typical
of a single feedback loop. Hypotheses (64) and (65) specify a negative
feedback loop without being too specific about the form of £(x;_,, x;). In
particular, f(x;_;, x;) need not be linear; for example, the theorem
covers rate laws of the form

VieiXi-n Vix;
Kjoy + x5 K;jtx

fi‘(xj—l ’ x]) = (69)
(Rate laws of this form appear in metabolic pathways when the substrate
concentration, x;, is comparable to the Michaelis constant, K;, of the
enzyme. See, for example, Morales and McKay, 1967.) The rather
complicated assumptions on f;(x,, x;) are introduced to cover functions
of the form

X1
1+ x°

Sl , %)~

which appear in models of the control of stem cell proliferation (Naza-
renko and Sel’kov, 1978).

The proof of Theorem 10 is long and complicated, but the underlying
ideas are simple. The first step is to construct a region V in n-space that
is positively invariant under the flow of the differential equation;
solutions that begin in this region either tend to x* as 7-— ® or oscillate.
Then one shows that the former alternative does not occur by showing
that solutions may tend to x* as 7 — © only by leaving V. (The proof to
this point is outlined in more detail in Appendix A.) To prove the
existence of at least one closed orbit, one constructs an appropriate
closed subset of V which is homeomorphic to an (n — 1) cell, is mapped
continuously into itself by the flow x’ = f(x), and does not contain the
steady state. Part (iii) then follows from Brouwer’s fixed-point theorem.
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For n = 3 the entire proof is elementary because the geometric aspects
are transparent (Tyson, 1975). Other discussions of this method of proof
are given in Pliss (1966) and Noldus (1969). The latter treats feedback
systems of the kind considered in earlier sections of this paper.

Theorem 10 leaves three important questions unanswered. Is the
periodic solution unique? Is the periodic solution orbitally asymptoti-
cally stable? Are there any attracting, nonperiodic, recurrent solutions?
(For n = 3 there may exist solutions within P which do not tend to a
periodic solution but which, loosely speaking, periodically return close
to where they have been.) At the present time rigorous analysis of these
global questions is out of grasp. In the next subsection we use an
approximation scheme to characterize the periodic solutions further.

In Appendix B we outline a method for calculating periodic solutions
in the large for the special case p — —that is, for a step function
nonlinearity.

E. FOURIER APPROXIMATION OF PERIODIC SOLUTIONS

In 1968 Viniegra-Gonzalez (1973) suggested the appropriateness of
describing function analysis of periodic solutions of negative feedback
cellular control systems, but only recently has a thorough pursuit of this
method for determining existence, uniqueness, and stability of periodic
solutions been undertaken by Rapp (1975a,b, 1976).

Describing function analysis, or ‘‘harmonic balancing,” is an approxi-
mation scheme based on Fourier analysis of the expected periodic
functions. To see how the technique works (Rapp, 1976) we first write
Eq. (11) as a single nth-order differential equation in x,(7):

D+ k)D + K3) ... (D + Kk, )xn(T) [l )] (70)
where D = d/dr, and .
fle,)=1/0 + x,?) (71)

We suppose that Eq. (70) has a perlodlc solution ,(7) of period T = 21:/
o and expand %,(7) as a Fourier series:

%,(r) =Re 2, ze™r (72)
k=0
Since f(*) is single-valued, f[%,(r)] is also periodic of period T = 27/w
and can be expanded:

(%) =Re Y, ae’r : k)

k=0
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The coefficients @, and z, are related by
1 2m
a, = mf f(Re D, z.*%) do
2 Jy

2m
a = 1 f(Re Y, z e 0 do,  j=1
™Yo
Substituting Egs. (72) and (73) in Eq. (70), we obtain

00
Re D, z(iko + K, ) (iko + Kk, )e™* = Re Y g ekt
k=0 : k=0

Equating terms of like frequency ko (k = 0), we generate an infinite set
of ‘‘balance’ equations:

2, = a,, d=kK;...Ky
z,(iw + Ky )+ (iw + k,) = @

2,Qiw + Kk, ) QRiw + k,) = a, (74)

The obvious approximation is to truncate this series, most conveniently
at level £k = 1.

1

27
Zy = i-;d;J; f(zy + z, cos 6) do (75a)

. : [ .

(o + Ky ) (iw + k) = — f(zo + z, cos O)(cos  — isin 6) d0 (75b)
1 Y0

In principle Eq (75a) can be solved for z, = z,(z,), and then Eq. (75b)

takes the form

Gliw) = ~1/F(z,) (76)

where G(iw) is the Nyquist function used in Section IV,A, and

2w
Fia) == | fla) + 7 cos ficos 0~ isin @y do  (77)
1 Y0

is known as the describing function. Truncation at k = 1 constitutes dual
input describing function (DIDF) analysis. The practicality of the
method for this case lies in the fact that the amplitude z, and the
frequency o of the periodic solution are separated in Eq. (76). It is
convenient to solve Eq. (76) graphically; on plotting G(iw) and —1/F;(z,)
in the complex plane, every intersection corresponds to a periodic
solution. Furthermore, the stability of the periodic solution can be
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predicted from the behavior of 1/F,(z,) close to the point of intersection
(Rapp, 1975a). Suffice it to say that, if 1/F,(z,) is a decreasing function
of z; at the point of intersection, then the periodic solution is orbitally
asymptotically stable. If 1/F;(z,) is increasing, then the periodic solution
is an anti-limit cycle (that is, stable as ¢t - —).

Before continuing, a few words are in order to justify truncating the
infinite set of Eqgs. (74) at k = 1, or rather to justify keeping only the
fundamental term in Eq. (72): X,(7) = 2z, + z, cos 7. We must convince
ourselves that z, < z, for k = 2, so write Eq. (74) as

Z, = —G(ikw)ak

First of all, the coefficients a; are expected to decrease in magnitude
with increasing k. Indeed, f(x,) of the form specified in Eq. (71) looks
much like a step function for p = 2, and for a square wave |a;| ~ 1/k.
Furthermore, |G(ikw)| decreases rapidly for increasing k (as we have
seen), which means that the linear part of Eq. (70) tends to filter out
higher harmonics of f(%,). We illustrate these effects in Appendix B.

We have already seen that the complex-valued function G(iw) ‘‘spi-
rals’’ into the origin as  — «; that is, |G(iw)| and arg G(iw) decrease
monotonically as w increases.

More difficult is to determine the properties of F,(z,). First of all, we
establish that F, is a real-valued function of z, (Rapp, 1975a). Defining 7
=z, + z, cos 0, we transform the imaginary part of F,(z,) to

1 2ot 2y
ImFG) = [ fon)dn

1 ot?,

which is identically zero, since f(-) is a single-valued function. Second,
F,(z,;) is a negative function of z, . To show this (Rapp, 1976) write Eq.
(77) as

2 w2
F,(z,) = ;;;f [f(zy + 2z, cos 6) — f(zy — z, cos 6)] cos 6 db
1 Y0 .

Since z, = z; = 0 and cos 6 = 0 on [0, /2] and f(:) is monotonically
decreasing positive function, the integrand [f(z, + 2, cos 6) — f(zy — 2z,
cos 6)] cos 6 <0, and thus F,(z,) is negative.

Notice that we insist that z, = z; = 0 in order that X,(7) = 0 for all 7.
Examining Eq. (75a) we see that at fixed z, the left-hand side is an
increasing function of z,, whereas the right-hand side is a decreasing
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function of z,. Thus a unique root such that z, = z, = 0 exists if and only
if

1 2
Z‘SWL f(z + z, cos 6) do
but this can be true only for 0 = z; = A,,, where the maximum

amplitude A,, satisfies

1

2m
Am=_f m+ m
7 s fA A, cos 6) db

As z; varies over [0, A, ], F,(z,) varies along the negative real axis:
Fimin = Fy (z,) = Fimax < 0. To satisfy Eq. (76) we must have

: -1
= Gliwy) =
Fl,min 1,max

(78)

where o, is the frequency (there may be more than one) at which G(iw)
crosses the positive real axis; that is, Re G(ia,) > 0 and Im G(iwy). = 0.

In his papers Rapp examines further the properties of F;(z,) for f(x,)
= (1 + x,*)*with p =1, 2, 3, 4. For p = 1 he finds that 1/F,(z;) is an
increasing function of z, , which implies that for p = 1 there can be no
stable periodic solutions—granted the accuracy of the approximation.
For p = 1 Allwright (1977) has shown that the steady state is globally
asymptotically stable. Thus DIDF analysis predicts the existence of
unstable periodic solutions when this is clearly impossible. This unex-
pected failure of the method has been discussed by Rapp and Mees
1977).

For p = 2 Rapp finds that 1/F,(z,) is monotone decreasing; that is,

1/F min = 1/F;(0)

The same is true for p = 3, if ¢ < 2.618, and for p = 4, if ¢ < 1.880. In
this case we make:

Observation 2 (Rapp, 1976). If the global minimum of F,(z,) is
obtained as z, — 0, then the dual input describing function method
predicts the existence of a periodic solution X,(7) = zo + z; cos wyT if
and only if the steady state is unstable with respect to infinitesimal
perturbations.

ProOOF. Numerical work indicates that —1/F; ., > G(iw,), so DIDF
analysis predicts a periodic solution if and only if

G(iwo) = __I/F'l,min = —I/FI(O)
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assuming the validity of the condition. We have already seen that the
steady state (x,*) is unstable if and only if G(iw,) = —1/f"(x,*), so we
must establish that F,(0) = f'(x,*). Expand F,(z,) in a Taylor series:

. 1 2w
Fi(z;) = ;;lf [f(zo) + zy(cos 0)f'(zo) -
0
+ %zﬁ(cos2 0)f'(zo) + ] cos 0 df
2 27 1
=0+ f'(z0) + %fo [ﬁ(cos 40)f"(z0) + ] do

Taking the limit as z, — 0, we find that F;(0) = f'(z,), where z, = z,(0) is
determined by Eq. (75a):

d>z——1~f2w o 1
O 2wy 14zP 14z?

which is the same equation satisfied by x,*.

Combining this with the global stability results in Table VI, we make:

Observation 3. Granted the accuracy of dual input describing func-
tion analysis, for p = 2, 3, 4 there exists a periodic solution if and only if
the steady state is unstable. The periodic solution is stable.

In Appendix B we apply DIDF analysis to Eq. (70) with f(x,) a step
(down) function. ‘ :

V. Discussion

A. HYSTERESIS EFFECTS

Inducible enzymes undoubtedly have adaptive value in that they
provide an organism with the capability of utilizing a variety of food-
stuffs without having to continually maintain a high concentration of the

enzymes needed to catabolize them. That inducible systems exhibit
" multiple steady states in certain regions of parameter space has the
further adaptive value of buffering the system against fluctuations in the
concentration of substrate.

To investigate this phenomenon quantitatively we must determine the
dependence of S;*, the steady-state enzyme concentration, on S,, the
parametrically varied substrate concentration. From the scaling equa-
tions (10) we find that

k4k5 . e kn x,,*

Sg* = o .
8 kaky .. kyy KPP

(79)
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According to Eq. (18),

k1k2 . ,, —1kn

and the substrate concentration enters ¢ via the relation k5 = c; So (see
Fig. 4). The second-order rate constant c, is the product of an equilib-
rium constant for the enzyme-substrate binding, S, + S5 = (S,5;), and
a first-order rate constant for the breakdown of the enzyme-substrate
complex, (SoS;) — S, + S3. Thus ¢ is inversely proportional to S,, and
it is convenient to introduce

koéleliegc";ié.; e én_lKlup
kiky ...k,

In the common case p = 2, K > 1 (cf. Table I), the steady states
satisfy '

¢=

Oy =¢7l =

So (80)

X2 —0ox,2 + Kx, — 0y =0 (81)

For b-o < K this polynomial has one and only one positive real root:
X = 0y /K + 0 (K9)
For o, > K the only real root is
%" =09 + 0 (3,7")
Finally, if
WK <0y <K/2 (82)

then Eq. (81) admits three positive real roots. Using Egs. (79) and (80)
we find that

S3* =

koChifp {K‘l, Cif g <2VEK
kikokg 1, if o> K/2

These conclusions are illustrated in Fig 9.

To see whether the range of o, given by Eq. (82) is significant under
normal physmloglcal conditions, we have to estimate the parameters
that appear in Eq. (79). We can make the following estimates:

i. Volume of cell ~107%%1 = 10~® ul. This is appropriate for bacteria
of linear dimension ~1 um. Notice that a concentration of 1 uM
is equivalent to 10® molecules per cell.

ii. Number of copies of mRNA ~10? (Watson, 1970, p. 439).

iii. Number of enzyme molecules when fully induced ~10° (Watson,
1970, p. 438).
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o~ S,

2/K K/2

FiG. 9. Steady-state enzyme concentration S; as a function of substrate concentration
S, for an inducible enzyme.

iv. k,C ~1 molecule sec™* ~107® uM sec™*. That is, several minutes
are required to synthesize 100 copies of mRNA (Watson, 1970, p.
453). '

v. k, ~k,. Since bacterial cells lack a nuclear membrane, we do not
Qistinguish intranuclear from cytoplasmic mRNA.

vi. k, ~107% sec™!. Assuming 100 molecules of mRNA per cell, this
corresponds to synthesis of 1 protein molecule per second, or
1000 protein molecules in ~10 minutes (Watson, 1970, p. 439).

vii. ¢; ~1 uM™' sec™. Since ¢z ~Vmax /KulE:], this is equivalent to
Vimax ~1073 uM sec™?, Ky ~10® uM, and [E;] ~1 uM.

viii. K,'® ~10"! uM™. This is the value of K, for the lac inducer
IPTG (see Table I).

ix. k, ~1072 sec™!, ks ~1073 sec™?, k, ~107! sec™*. That is, mRNA
has a half-life of ~1 minute, enzyme is ten times as stable, and
inducer is ten times as labile.

With these assumptions, o, ~ S, /1 uM, and

§.* = {K -1 uM, fully repressed
8 1 uM, fully induced
For K = 2500 (see Table I), S;* < 1 molecule/cell when the operon is
fully repressed. The region of multiple steady states,
10 molecules/cell ~10% uM < S, < 10° uM ~10° molecules/cell

buffers the system against dramatic fluctuations in enzyme concentra-
tion between the two extremes, 0 and 1 uM. Notice that the system is
buffered against an order of magnitude fluctuation in S, only if K >
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2500. Might this be why K is observed to be large in many systems? (See
Yagil and Yagil, 1971, Table I, where o, = K*.)

Were positive feedback to play a role in the control of growth (as yet
there seems to be no evidence for this), then multiple steady-state
behavior could model multiple modes of growth, such as passive
maintenance/active proliferation. For example, under certain conditions
the model of growth control diagrammed in Fig. 10 has three modes of
behavior: (i) the tissue can deteriorate (stem cell population — 0); (ii) the
tissue can regulate (stem cell population finite and stable with respect to
small perturbations); (iii) the tissue can grow uncontrollably (stem cell
population — ). Sufficiently large perturbations can shift a regulated
system out of state (ii) into states (i) or (iif). A similar model has been
studied by Sel’kov (1970) in relation to the malignant transformation.

B. APPLICATIONS OF NEGATIVE FEEDBACK

It is widely appreciated that negative feedback control loops readily
give rise to sustained oscillations, and they have been invoked in
numerous models of periodic phenomena. For instance, it is observed in
synchronous cultures of bacteria that the synthesis of many enzymes
occurs only periodically, in specific portions of the cell cycle, and that
the order of enzyme synthesis corresponds closely to the order of
replication of the structural genes (Masters and Pardee, 1965). This
would seem to suggest that the timing of enzyme synthesis is controlled
by the sequential replication of the genes. However, Masters and
Donachie (1966) have shown that periodic enzyme synthesis continues in
the absence of DNA synthesis, and they suggested that the periodicity is

r_osi-... — ——divigion = — — 100,

|
| Stem
cells

i

Activator Mature Inhibitor
cells

| =

N

Stem cell population
(a) (b)

F1G. 10. Positive and negative feedback in control of growth. (a) ‘‘Wiring”’ diagram. (b)
Schematic illustration of modes of behavior. In the shaded region growth is self-regulating,
close to the origin the tissue degenerates, and far from the origin the tissue grows without
bound.
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a result of end-product repression of mRNA synthesis. That the period
of each separate oscillator should correspond exactly to the cell cycle
time and that the relative phases of the oscillators should correspond
exactly to the order of replication of the structural genes has been
attributed to nonlinear entrainment (Goodwin, 1966).

Recently Rapp and Berridge (1976) have presented evidence that
oscillations in internal Ca?*" and cyclic AMP may be due to a negative
feedback instability in their common control loops. They suggest that
many high-frequency biological rhythms, particularly those associated
with membrane potential changes, may be driven by these second
messenger oscillations.

Danziger and Elmergreen (1954) have suggested that periodic cata-
tonic schizophrenia may be caused by an underlying periodicity in the
endocrine system. Their model is a three-component, piecewise linear,
negative feedback oscillator. Cronin (1973) studied these equations in
some detail and showed that solutions remain bounded for all £ > 0. That
there exists at least one periodic solution whenever the steady state is
unstable is easily demonstrated, as in Tyson (1975). Uniqueness and
global stability should yield to the methods developed by Hastings (1977)
for piecewise linear systems. MacDonald (1976b) has applied the de-
scribing function method to these equations.

Endogenous oscillatory activity is observed in isolated neurons (Chen
et al., 1971; Gainer, 1972). an der Heiden (1976a) recently suggested that
perhaps this activity is the result of negative feedback, since a neuronal
model which incorporates cell fatigue reduces to a single, three-compo-
nent negative feedback loop under certain simplifying assumptions.

Endogenous rhythms of period close to 24 hours are well known.
Mergenhagen and Schweiger (1975) have shown that inhibition of
enzyme synthesis at the translation level blocks the circadian clock in
Acetabularia. Tyson et al. (1976) take this as evidence for a suspicion
that end-product repression of ribosomal activity may be involved in
circadian rhythms. The large period could be accommodated easily by a
sufficiently long chain of intermediates.

Time-keeping is a major necessity during morphogenesis (Robertson
and Cohen, 1972). Goodwin and Cohen (1969) have presented a hypo-
thetical negative feedback model for a developmental clock. When
certain rules for spatial coupling are also assumed, phase differences in
the oscillators can serve as a developmental map as well.

Negative feedback is thought to play an important role in the control
of growth. In its simplest form the idea is that stem cells grow and divide
to produce new stem cells and a certain percentage of nondividing,
differentiating cells. At one or more stages of development feedback
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signals are generated and transmitted to the stem cell population (see
Fig. 11). In this case, however, the susceptibility to oscillation is more of
a nuisance than a benefit. Weiss and Kavanau (1957) analyzed numeri-
cally a number of negative feedback models of chick growth and were
careful to choose their parameters in the nonoscillatory regime. King-
Smith and Morley (1970) eliminated oscillatory behavior from their
negative feedback model of granulopoiesis by introducing a second
feedback loop. In certain pathological conditions oscillations of the
granulocyte population may appear (Wheldon, 1975).
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Fi1G. 11. Two models of control of cell proliferation. (a) Simple model of feedback
inhibition of growth (Weiss and Kavanau, 1957). (b) Model of granulopoiesis (King-Smith
and Morley, 1970).
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We have dealt with only the simplest ‘‘straight-through’’ feedback
loops, and for these there is both numerical (C. Walter, 1970) and
analytical evidence (Section IV) to support the contention that, when the
degree of cooperativity p and the chain length » are related by p < sec”
(m/n), there can be no sustained oscillations. Since it is biologically
unlikely that p > 4, oscillations are possible only for sequences of five or
more elements (MRNA, enzyme, at least two intermediates, end prod-
uct). Since p =~ 2 is more reasonable, the pathway must be longer.
However, this ignores time delays, coupling between control loops, and
spatial localization of one or more enzymes. Any of these may lead to
oscillations at smaller values of p and/or n.

To illustrate this point in more detail, let us consider the effect of a
continuous time delay in the transcription of DNA to RNA. Suppose
that we replace f(x,) in Eq. (11) by f(u+1), Where

Ym+1 = f x,(8)G,,(r — s) ds

and

G, (w) = (w™/m!) exp(—kw), m = integer

That is, the rate of transcription depends on the previous history of end-
product concentration, most heavily on the end-product concentration at
7 — mk~'. Now define (Vogel, as cited in MacDonald, 1976a)

Vie - f x,(8)Gy_, (v — s) ds, l1<sk=m+1

Equation (11) becomes

dxl /dr = fOms1) — Ki Xy

dx; /dr = x;_, — K;X;, 2=<j=n
dyl/dexn - KY;

dy,/dr = y,_, — Ky, 2=sl=m+1

which is just a simple feedback loop of length n + m + 1. Since at fixed
k the effective time lag increases with m, we see that the effect of time
delay of this sort is to increase the length of the feedback loop and thus
make oscillations possible at smaller values of p. Including time delays
for processing heterogeneous nuclear RNA and for translation of cyto-
plasmic messenger RNA could generate quite large effective chain
lengths.
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C. SPATIALLY NONUNIFORM SYSTEMS

The analysis in the preceding sections applies only when spatial
nonuniformities in' concentration decay rapidly on the characteristic time
scale for reaction. This is undoubtedly true at the single-cell level when
the enzymes and intermediates are all soluble and free to diffuse about.
However, when larger distances are involved or when some enzymes
are immobilized, transport may play a significant role in the dynamics of
the control circuit. In such cases, instabilities of the uniform state may
arise from the interaction of reaction and transport, and these instabili-
ties may lead to nonuniform spatial or spatiotemporal concentration
patterns (Turing, 1952; Othmer and Scriven, 1971).

To analyze the role of transport in the dynamics of a control circuit,
we consider the simplest model of an assemblage of cells—namely, a
single-phase continuum model wherein all cellular structure is ignored.
Suppose that all species involved in a feedback loop are free to diffuse
throughout a region V of three-dimensional space and that there is no
flux across the boundary of V. The dynamics of the nonuniform system
are governed by the partial differential equation

ox/oT = PV + Lx = bf(x,) in V
nVx =0 on 94V (83)
X(r, 0) = xo(r)

Here @ is an n X n matrix of dimensionless diffusion constants @;; =
P% /bL?, where 93 is the dimensional constant and L is a characteristic
length. For simplicity we assume that 9 is diagonal. ,

In view of the no-flux boundary condition, Eq. (83) always admits
spatially uniform solutions, either steady states x* or uniform periodic
solutions. One expects that, if diffusion is rapid enough, the system will
ultimately evolve to a uniform state. The following result provides an
estimate of how large the smallest diffusivity must be.

Theorem 11 (Othmer, 1976b). Let

K = max |2 &9

and let w, be the smallest non-zero eigenvalue of the scalar problem:

Vu+ pu=0 in V
nVu=90 on oV

If
mlin @)p, > K (85)
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then all spatial nonuniformities decay exponentially in time.
" The proof will be omitted.

The dimensional version K* of the parameter K provides a measure of
the sensitivity of the reaction rate to concentration changes, and its
reciprocal is one measure of the kinetic relaxation time. Similarly,
[(miin Di¥)u.*]71 is the longest diffusional relaxation time. If, for in-

stance, K* ~107! sec, then in a one-dimensional system of length L, Eq.
(85) will be satisfied if

(min 9;*)/L? > ~0.04 sec™!
1

When L = 10 um (a typical cell diameter), the condition is met for &;* >
~4 X 107® cm?sec, which is well within the range of diffusivities
measured in vitro. Therefore, unless K is much larger than the given
estimate, spatial nonuniformity within a cell can be ignored when
enzymes are soluble.

When the distances are greater, one can no longer be assured that the
system will always evolve to a uniform state. The next best thing is to
determine whether or not uniform states are stable to small nonuniform
disturbances. A partial answer is given by:

Theorem 12. Suppose that a uniform steady state x* of an inducible
or a repressible system is asymptotically stable as a solution of Eq. (13).
Then it is asymptotically stable as a solution of Eq. (83).

Proo¥. To prove this we must simply show that all small-amplitude
disturbances, uniform and nonuniform, decay in time. The linearized
version of Eq. (83), which is analogous to the linearized version of Eq.
(14b), is

ok/oT = DV + LE (86)

with appropriate initial conditions and zero flux boundary conditions.
Solutions of Eq. (86) can be written (Othmer and Scriven, 1969):

&, 7) = 2 471y, 0)u, k) ®7
»
where y,(0) is the amplitude vector for the pth eigenfunction of the
Laplacian. One eigenvalue, w,, is zero, and the remaining w,’s are
strictly positive. Asymptotic stability is governed by the set of eigenval-
ues of & — w, @, p = 0, 1, 2,..., and these eigenvalues are the
solutions of the characteristic equation

det AN — & + u,2) =0 (88)
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By comparison with Eq. (19), it follows that Eq. (88) can be written

n

[T+ 6+ 12 = f(6*) =0 (89)

j=1

A comparison with the proof of Theorems 1 and 5 shows that, if Eq. (89)
has no roots with a positive real part for w, = 0, then it has no roots
with a positive real part for any u, > 0. Therefore, all small-amplitude
disturbances decay exponentially, and the uniform steady state is
asymptotically stable.

This theorem precludes diffusive instabilities, and consequently there
is no possibility for the formation of nonuniform steady states by
bifurcation from a uniform state that has become unstable to nonuniform
disturbances. In an inducible enzyme system that has three steady
states, there is, in addition to the two stable states, always an unstable
intermediate state. Simple examples can be constructed which show that
bifurcations can occur from this unstable state. However, these bifurcat-
ing solutions are necessarily unstable and therefore are of little interest.
The instability of these solutions can be shown in special cases by
making use of results due to Pismen and Kharkats (1968) and Luss and
Ervin (1972), and in general by direct construction of the bifurcating
solutions. Edelstein (1972) has numerically computed the nonuniform
solutions that bifurcate from an unstable state in a two-species system
with an immobilized inducible enzyme, but his results all represent
unstable solutions.

It would be desirable to prove that, when the system of ordinary
differential equations for a repressible enzyme has an asymptotically
stable periodic solution, then it is also asymptotically stable as a solution
of Eq. (83). One can prove this in the special case for which the
diffusivities are all “‘nearly’’ equal, and in the general case one can show
that, if the steady state is stable to nonuniform disturbances, then all
small-amplitude uniform periodic solutions are asymptotically stable
(Othmer, 1976b). In light of these results and the conclusion of Theorem
12, we conjecture that the spatially uniform periodic solutions in a
repressible system are asymptotically stable. This will probably be
difficult to establish, particularly in view of the fact that it is not even
established yet that the large-amplitude solutions are stable as solutions
of the ordinary differential equation (see Section IV,D). Nonetheless, it
is unlikely that the simple single-loop feedback circuits studied in earlier
sections ever lead to any interesting nonuniform spatial patterns when
coupled with diffusive transport. They are therefore uninteresting as
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kinetic models for the control of spatial pattern formation in developing
systems. The next step is to consider more complicated coupled circuits,
the simplest of which involves two enzymes, each of whose products
may activate or inhibit the other enzyme.

Such two enzyme systems have been investigated by several authors.
Glass and Kauffman (1972) studied a linear four-compartment system in
which the enzymes are located only in the end compartments. They
supposed that the product of the enzyme at one end decays by a first-
order reaction and diffuses through the compartments. At the other end
it inhibits the second enzyme whose product in turn activates the first
enzyme. It was found numerically that for appropriate diffusivities and
decay rates the system could exhibit sustained oscillations. This case as
well as those of mutual activation and mutual inhibition in continuous or
compartmentalized systems have also been studied by Shymko and
Glass (1974), Glass and Perez (1975), Thames (1974), Aronson (1975),
and Aronson and Thames (1976).

The latter authors use the following system of equations to describe a
one-dimensional system that has an enzyme localized at each boundary:

e I
v v o,
TR
Ju
5 @0 = ~pa f10(0, 0] (90)
-j—;’-(l, ) = pall — flu(1, O}
u av
-a—c(l,t) =5£(0, )=0

Here f(x) = x2/(1 + x?), and u and v represent dimensionless enzyme
concentrations. They find that when the diffusivity and the decay rate
are large the unique steady state is globally asymptotically stable.
However, there is an intermediate range of parameters in which the
steady state is unstable and stable periodic solutions bifurcate along the
locus of marginal stability. The results are particularly relevant in the
context of gene control because one can interpret one ‘‘enzyme’’ as the
operator for a structural gene, whereas the other could be an enzyme
localized in the cytoplasm. Their conclusions point up the fact that,
when transport is important, very simple schemes in nonuniform sys-
tems can mimic the behavior of far more complicated networks in
homogeneous systems.
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In all the foregoing studies, the spatial localization of the enzymes is
critical for the existence of periodic solutions. One can show that, were
the enzymes free to diffuse about, the uniform steady state would
always be stable. The time lag due to diffusion of products between the
enzymes is necessary for the oscillations. This points up the need for
further analysis of models that attempt to account for intracellular
structure. One such model is given in Othmer (1975).

Appendix A: Existence of Oscillatory Solutions for Negative Feedback
Loops

In this appendix we sketch the proof (Hastings et al., 1977) of part (ii)
of Theorem 10 under slightly more restrictive conditions than those in
part (i). We shall assume that '

fi(x,,00>0 forall x,=0 (67"

3f,/3x, <0 in P (68")

lim fi(c,x) <0 forall ¢ =0, l=si=n (A1)
Xr—>00

Conditions (63)—(66) remain the same, conditions (67'), (68') replace
(67), (68), and condition (A1) is added.

Condition (63) implies that x' = f(x) can be written in component form
as

X = fi0, %)

' . A2

%' = f1. %), 2<j=n (A2)

Conditions (64)-(66) and (67'), (68’), (A1) together imply that system

(A2) has a unique constant solution x* = (x,*, . . . , x,*) in P. Condition

(A1) implies the existence of a point x = {A,, . . . , A, } € P satisfying
£0,A,)<0

fiA;_1, Ay) <0, 2<j=n

These inequalities, along with (66) and (67’), imply that the set S = {x €
R™ 0 = x;, = A;, 1 =i = n}is a positively invariant manifold; that is, if
x(0) € §, then x(7) € S for all 7 > 0. Of necessity, x* €S.

The planes x; = x;*, 1 <i =< n, divide S into 2" subsets Sy, - . . ,Spn_;.
It is convenient to use a binary notation for these subsets. Let
a,(j) . . . a,(j) be the binary expansion of the integer j € [0, 2" — 1].
For example, if n = 5 and j = 13, then the binary expansion is 01101.
Now a point x € S is in §; if

(—1)a9(x; — x*) < 0, l=si=n
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In the example n = 5, j = 13, we define S;; as the set

0=x =x*
R*=x <A,
Xt =Xy = Ag
0=ux, < x,*
x*=x=A,

and S,; = interior of S,;.
Using this notation we state (without proof) an important lemma
which tells how trajectories of system (A2) move from box to box.
Lemma 1. Suppose that j has the binary expansion a,(j) . . . a,(j)
and that x(0) € S;. Then either x(7) € S; for all 7 > 0 and x(7) > x* as 7
—> o, or else x(7) intersects the boundary of S; and immediately enters
one of the subsets S, , k # j, for which:

@& a() = a,k) if a,(j) # a,(j)
@ a()=ak if a()=a.,(), 2sl=n

In other words, k is obtained from j by changing at least one of the
a,(j) according to the rule: a,(j) can change if a,(j) = a,(j), while for 2
= I = n, a(j) can change if 4(j) # a,_,(j). For example, if » = 5 and j
= 13, then either x(7) stays in S¢;;0; for all 7 > 0, or x(#) enters one of the

s€ts Soo101 5 Sor111 > So1100 > Soo111 > So0100 > So1110 > Soo110 -
Consider the set

V= S004_)...00 U S109...00 U S119...00 U Sm...oo_U'”
U Sii1..a1 Y Sorn.ar YU Soor...ir YU Soo...01

where V is the union of 2n subsets S;. If x(0) € V, then the lemma

implies that either

(@) x(7) eventually remains in some S; C V and hence tends to x*, or

(b) x(7) repeatedly circulates through the S; C V in the order indicated
in the definition of V. :

Our next step is to show that alternative (a) is impossible. This is
where the assumptions about the Jacobian matrix £ are used. The union
of all trajectories x(7) that approach x* as 7 — ® is called the stable
manifold &. Close to x* the stable manifold is tangent to the linear space
L spanned by the real and imaginary parts of the eigenvectors of &
associated with eigenvalues with negative real parts. It is the position of
L with respect to V that we now investigate.

From conditions (63)—(65), (68’) we find that the characteristic equa-
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tion for £ is

n
PO=]lA+k)+P=0 (A3)
j=1
where K, >0 (1 <j=<n)and ® = d, ...d, > 0. We recall that any
roots of P(\) with positive real parts must occur in complex conjugate
pairs A and A.
As before, we view the eigenvalues of £, A for 1 = k = n, as
functions of the parameter set k = (ky, . . . , K,) with @ constant. It is
always possible to arrange the eigenvalues such that

ImA () =0 if 15k<%+1

ImA() <0 if %+1sk5n

and
n
Re M (#) ZRe M) if 1=k <k <35+1
Re A, (k) = Re A (k) if g 1<k <k, =n

If % has any eigenvalues with positive real parts, they must include A, (k)
and \,(k). Define

F£=1{,3,...,n—-1}

If the steady state is unstable, then the stable manifold & is tangent to a
linear space L contained in the linear space spanned by Re w, and
Im w,, where w; is the eigenvector of & corresponding to the eigenvalue
M with [ € Z. .

Following Hastings et al., we prove: '

Lemma 2. Suppose that all the eigenvalues of £ are simple. Suppose
that [ € #. If \, and w, are real, then w; points into P—V.If\ and w;
are complex, then Re w; and Im w, point into P — V.

ProoF. Consider u; = Re w;, w; real or complex. We must determine
as closely as possible the signs of the components ;" of u,. These will be
determined by the arguments ;" of the components w,t of w;. From the
equation (£ — \l)w; = 0 and the form of £, it is apparent that

W+ K Wi = dw/, lsj=n-1
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Hence, not restricting ¢, to [0, 27), we can assume that

P =t + M (Ad)
where 6,°*1is the argument of \; + ;4. It can be assumed further that
Im \; = 0, from which 0 < 6’ < 7r. We can also take %' = w;' = —®

and ¥;' = 7.
From (A3) we have

n n
—o=[[ O\ +x)= <ﬂ IN + K |) imouo
i=1

=1

where
. 1 <
0,c) = = >, 0,%(sc)
=1

Obviously, 6,(k) is continuous and integer-valued, and thus 6(x) =

constant. Evaluating 6,(k) at the convenient point k = (1, 1, . . ., 1), we
find
n
> 6Ge) = 2 + D (A9)
j=1
Let a = a, .. . a, be any binary number such that

a, =0 if 4'<0
aq=1 if wi>0
(=0 or 1 if u'=0)
Then by assumption @, = 0. We must show that S, € V. If §, C V, then
either a; = 0 for all i € [1, n], or there exists an m < n such that

a=0 if 1<si=m
a =1 if m<i=sn

If , =0, 1 < i < n, then each ¢/, 1 < i < n, lies in some

3
interval (g— + 2N, —; + 2N7r) . Then by (A4), either

Yo (A6)
i=2
or 0, = 7 for some j, 2 =< j < n. But this implies that A, is real and each
6, = 0 or «. Since ¥,%, . . . , ¥," are necessarily odd multiples of =, 0,2
=...=6,"=0,and (A6) is still valid. However, (A6) contradicts (AS),
since / = 2 and 0 < 6, < m. Thus u; does not point into S,_.
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Ifa, =0for 1 =i=<mand g = 1for m <i = n, then

20i=w (A7)
i=2
and
011 + 2 olj =7 (A8)
j=m+2

Since 0 < §,™*! < 7, (A7) and (A8) give 2, 6, = 37 with equality only
if A, is real. But if \, is real, then 3, 6, = 0, and 2, 6, < 2m. In any
case, (A5) is violated, and S, T V.

For v, = Im w; the proof goes through with little change.

On any solution x(7) tending to x* as 7— %, we can locate a sequence
of points x(7;), 7; — %, which lie on a curve tangent to some u; or vy, 2
< k = n/2. Thus if a solution x(7) which starts in V were to approach x*
as 7— ®, then Lemma 2 implies that x(7) would have to leave V. This is
impossible, because V is a positively invariant set. Having eliminated
p0551b111ty (a), we can conclude that any solution of Eq. (A2) that starts
in V must circulate forever through the 2n boxes making up V without
approaching x* as 7 — o« (provided that x* is unstable). That is to say,
whenever the steady state of a negative feedback loop is unstable, there
exist nondamped, oscillatory solutions.

Appendix B: Periodic Solutions of Negative Feedback Loops with a Step
Function Nonlinearity

The equation

dx, [dr = f(x,) = KX, (B1)
dx;/dr=x;_, — K%;, 2=<j<=n
with
1, if 0<x, <1
f(x,.)={0 ;f 1<§n<°° (B2)

can be solved exactly because in each of the two halves of phase space
(x, < 1and x, > 1) Eq. (B1) is linear and the solution can be expressed
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in terms of the eigenvalues and eigenvectors of the matrix:

-k, 0 00 O
1 -k 00 O
...0

L= 0 1 —ks 0 ' (B3)
0 0 0 -1 =k,
To illustrate the technique we treat the special case n = 3 and k; = k,
= k3 = K. For x; > 1 the general solution of the homogeneous linear
ordinary differential equation is

R NN I
R

which satisfies the initial condition

x,(0) a
%0) | =1 a (BS)
x3(0) a

For x; < 1 the solution of the nonhomogeneous equation is simply

(% b k™
(xz =lx| + (K‘z (B6)
X3 X3/ b K_3

To find a periodic solution we start with the initial condition

x,(0) a
0| =\a|, a>k® a>«k . (B7)
x3(0) 1

The conditions on ¢, and a, assure that x; > 1 for 7 = 0*. Thus Eq. (B4)
holds for 0 < 7 < 7,:

x, (1) = ae™*" :
X%(1) = (g, + a;7)e™ " (B8)
x%(1) = (1 + a,7 + fa,7%)e™ -
where 7, is the time of first return of x;to x; = 1. At 7 = 7,
e =1+ a,r + da,7,2 - (B9)
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which determines 7, = 7,(q,, @, ). Furthermore, at 7 = 7,

x(n) =ae*=b(a,a)<k

%(1) = (@ + a7, )e™™ = by(a, , ay) < k? (B10)

The conditions on b, and b, assure that x; < 1for 7 = 7,*. Thus Eq. (B6)
holds for T <T< T

k(1) =1- (1 — b ke
k2 (1) = 1 — [(1 = byk?) + k(1 — b, K)7]e™*" (B11)
K3%,(1) = 1 — [(1 — k%) + k(1 = by + $*(1 — byK)T2]e™*"

where 7, is the time of next return of x3to x; = 1. At 7= 7,
(1 — k¥e = = (1 — k3) + k(1 — byr®)1, + $x2(1 — b,k)r,2  (B12)
and

x() = k[1 = (1 — byk)e 2] = ci(ay, a;) > K*
%(1) = k721 = [(1 = byk?®) + k(1 — byK)Tle™ 2} = co(ay, a2) > «
(B13)

A periodic solution satisfies the conditions

ala,a)=a
ela, a)=a

Equation (B14) has the trivial solution c¢;(k?, k) = k%, (k% k) = k,
which is just the steady state. It is a simple exercise (Tyson, 1975) to
show that (B14) has at least one nontrivial solution as well. For « = 0.75
the mapping (a,, a;) — (¢, ¢;) is illustrated in Fig. 12.
For a three-component system with a step function nonlinearity,
Hastings (1977) has recently proved that, for all ¢ = k;kyk3 < 1, every
- solution except those on the one-dimensional stable manifold tend to
some nonconstant periodic solution. Furthermore, for ¢ = 4 there is a
unique, globally orbitally asymptotically stable periodic solution. The
same result applies for p sufficiently large and ¢ sufficiently close to $.
Dual input describing function analysis. We seek an approximate
solution of Eq. (B1) of the form x;(7) = z, + z, cos w7; see Section IV,E.
For simplicity we require that z,(z,) = 1 for all z, € [0, 1]. Equation
(75a) implies that

(B14)

1

3m/2
1=——--f do = — =Ky ... Ky B15
)., ¢ = K (B15)

That z, = 1 simplifies considerably the describing function F,(z,), Eq.
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L7772
1.5
b
x
7| Nﬁ\“]\
0.75 T
05625 1.0

x.—-———

1.333....

F1G. 12. Poincaré map for system (B.1) and (B.2) with n = 3 and «;, = k, = k; = 0.75.
The tail of an arrow is (4;, @) and the head is (¢, ¢,). (Our thanks to M. Witten for

carrying out these calculations.)

(77). Indeed

372

F(z) = —L cos 6 db

TZ a2
-1 Lem1
7721 ’ 1 ’
To simplify matters further we assume that «; = .

Eq. (B15) we have

K"=14
and furthermore,
1 - io)

Gliw) = —(k +’iw)‘” = "‘2m

(B16)

.. = K, = K. By

(B17)

(B18)
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where @ = w/k. From Eq. (33) we derive

@, = tan (m/n) (B19)
and
Gliwy) = 2(1 + @y?)~"2 (B20)
For a periodic solution to exist, Eq. (78), we must have
2[1 + tan? (w/n)] ™% < w/2 (B21)

This is satisfied for all n < 20. We choose n = 3. Equation (76) predicts
a periodic solution of amplitude

z, = 47 ~ 0.159 (B22)
Thus
x5(7) = 1 + 0.159 cos w,T, (B23)

where 0, = V3K =~ 1.375.

To check the validity of approximation (B23), we compare it with the
exact solution derived earlier. For k™ = 2—that is, x ~ 0.794—Eq.
(B14) is satisfied for a, = 1.08, a, ~ 1.02. Equation (B9) has the root T
=~ 2.30, for which b, =~ 0.174, b, ~ 0.565, and Eq. (B12) has the root 7,
~ 2.31. The period of the exact solution, 7 = 7, + 7, =~ 4.61, compares
well with the period T = 27/w, =~ 4.57 of Eq. (B23). For that half of the
oscillation for which x;(7) = 1, we have

x,(7) = 1.08¢7*"
%(7) = (1.02 + 1.08r)e™*r (B24)
x3(7) = (1 + 1.027 + 0.547%)e™*", 0=<171=2.30

with k =~ 0.794. For the analogous section of the approximate solution

x,(7) = 0.630 — 0.201 cos w7 — 0.347 sin w,T
x,(1) = 0.794 + 0.126 cos w,7 — 0.219 sin w,7 (B25)
X(1) =1+ 0.159cos w7, —w20y <7< +7/20,

with w, = 1.37. Equations (B24) and (B25) are plotted in Fig. 13. They
differ by no more than 1% for x;(7), they agree fairly well on x,(r), but
the approximation to x,(7) is much poorer.

Finally, to illustrate our remarks in Section IV,E on the neglect of
higher harmonics in the DIDF method, we estimate |z, |, for k = 2. For
f(x,) given by Eq. (B2) and x,(7) given by Eq. (B23) we derive

[l ()] = % + Y (—1)kron f;cos (kwyT) (B26)

k odd
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F1G. 13. Comparison of DIDF solution with exact solution of negative feedback loop
with step function nonlinearity. The solid line (—-) is the DIDF approximation, Eq.
(B.25), and the dashed line (- — -) is the exact solution, Eq. (B.24). Results are given for
only half of an oscillation.

Furthermore, from Eqs. (B23) and (B24),
G(ikwy) = 2(1 + 3k2)~32 (B27)

In Table VII we list |ay |, | G(ikw,)|, and |z, | = | G(ikw, ) |-|a; | as functions
of k. Notice how quickly |z, | drops off. For k large, |z | ~ 4\V/3/97k*.

TABLE VII
JUSTIFICATION OF THE NEGLECT OF HIGHER
HArMONICS IN EQ. (72)¢

k lacl  |Glike,)] ||

0 0.5 2.0 1.0

1 0.637  0.25 0.159

2 0 00427 0

3 0212 0.0135  0.00287
4 0 0.00583 0

5 0.127  0.00302  0.000384
6 0 0.00176 0

7 0.091 0.00111  0.000101

¢ Calculations based on Eqs. (B26) and (B27).
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Notation (in order of appearance)

s O

<

O

t

f(8) = 0/0¢

K

v, Vinax
Kos

ny

I

S15 8,

Ss
* Sn»l

Sy, ..
Srn Sn+l

kik,1=i=n+1
C

ko

R() = kyCf ()

Tl(sl ) Sz )1 Tn(sn ’ Sn+1)

Ay

VNVVC

X =@S,1<isn
b

T = bt

K¢=k,/b,15i5n
fO) = f(S)
x*
¢= H Ki
i=1
E=x—x*
L
&L = fx(x¥)
T
b7 = (+1,0,...,0),
¢T=@0...0,1)
F(én)
8’8

Il

concentration of effector substance

concentration of free repressor molecules

concentration of free operator regions

number of binding sites for effector on a repressor molecule
equilibrium constants for binding of effector to repressor and
of repressor to operator, respectively

total concentration of repressor

total concentration of operator regions (bound and free)
fraction of total operator regions that are free of repressor and
thus permit transcription of structural genes

1+ K,R,

reaction velocity

substrate concentration at half-maximum velocity

Hill exponent

concentration of inhibitor

concentration of mRNA in nucleus and cytoplasm, respec-
tively )
concentration of unstable enzyme

concentration of intermediates in biosynthetic pathway
concentration of end product in cytoplasm and nucleus, re-
spectively )

first-order rate constants

average intranuclear concentration of ribonucleotide triphos-
phates

first-order rate constant for incorporation of mononucleotides
into growing mRNA chain

rate of formation of mRNA

rate of transport of mRNA and of end product, respectively,
between nucleus and cytoplasm

surface area of nucleus

volume of nucleus and cytoplasm, respectively

dimensionless concentration variables

parameter defined at Eq. (10)

dimensionless time variable

dimensionless rate (‘‘decay’’) constants

fraction of free operator regions

dimensionless steady-state concentration

steady-state parameter

deviation from steady state

matrix of the linear part of the feedback loop
Jacobian of f(x) evaluated at x = x*
transpose of a vector

standard vectors

nonlinear function defined by Eq. (15)
strictly nonlinear part of f(x,)
the Euclidean norm
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P(\) =det (\l = L)
|

psdlsj<n

Ae, Wi, 1 <k=n
sector [0, ]

G(\)

Wo

Q.

Po = Po(n)

ko = Kk(p, n)

o = ¢o(p, 1)

»w

u, v

z
Xn(7)
,1=k<ox
G, 1sk<w
F(z) = a/(z)/z
9

V2

characteristic polynomial of £

identity matrix

nth roots of %1

eigenvalues and eigenvectors, respectively, of £
subset of the plane which contains the graph of #(¢,)
Nyquist function characterizing L

smallest value of @ > 0 such that Im G(iw) = 0
critical gain of L

critical value of the feedback parameter

critical value of the decay constant

critical value of the steady-state parameter
bifurcation parameter

left and right eigenvectors of %, corresponding to the purely
imaginary eigenvalue iw,

w/n

last component of periodic solution x(7) of x’ = f(x) -
coefficients in Fourier expansion of X,(7)

coefficients in Fourier expansion of f[x,(7)]
describing function

matrix of diffusion coefficients

Laplacian operator

V  region of three-dimensional space
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