
Large-time behavior of bounded radial
solutions of parabolic equations on RN :

Part II—convergence for initial data with a
linearly stable limit at infinity

Peter Poláčik*
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Abstract

We consider the Cauchy problem

ut = ∆u+ f(u), x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN ,

where N ≥ 2, f is a C1 function satisfying minor nondegeneracy
conditions, and u0 is a radially symmetric function having a finite
limit ζ as |x| → ∞. We have previously proved that if ζ is a stable
equilibrium of the equation ξ̇ = f(ξ) and the solution u is bounded,
then u is quasiconvergent: its ω-limit set with respect to the topology
of L∞

loc(RN ) consists of steady states. In the present paper, we consider
the case when ζ is linearly stable: f(ζ) = 0 and f ′(ζ) < 0. Under this
condition, we show that if the solution of the above Cauchy problem is
bounded, then it converges, locally uniformly with respect to x ∈ RN ,
to a single steady state.
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1 Introduction and the main theorem

This paper is a sequel to our previous work, [19], concerning bounded radial
solutions of the semilinear heat equation

ut = ∆u+ f(u), x ∈ RN , t > 0. (1.1)

Here, ∆ in the Laplace operator in the spatial variable x = (x1, . . . , xN) and
f is a C1 function on R. Complementing (1.1) with the initial condition

u(x, 0) = u0(x), x ∈ RN , (1.2)

where u0 ∈ L∞(RN), we denote by u(·, t, u0)—or simply u(·, t) if u0 is given
and fixed—the unique classical solution of (1.1), (1.2), and by T (u0) ∈
(0,+∞] its maximal existence time. We include the condition that u(·, t)
is bounded for all t ∈ (0, T (u0)) in the definition of a classical solution (so
there are issues with nonuniqueness in larger classes of solutions). It will be
one of our standing assumptions that u0 is a radially symmetric (radial, for
short), which implies that the corresponding solution u is radial in x.

If u is bounded on RN × [0, T (u0)), then necessarily T (u0) = ∞, that is,
the solution is global. We then define its ω-limit set by

ω(u) :=
{
φ ∈ C(RN) : u(·, tn) → φ for some sequence tn → ∞

}
, (1.3)

where the convergence is in the topology of L∞
loc(RN), that is, the locally

uniform convergence. We recall the following well-known facts: the bound-
edness of u and parabolic regularity estimates imply that ω(u) is a nonempty
compact connected set in L∞

loc(RN). If ω(u) consists of a single element φ,
then φ is a steady state of (1.1) and u(·, t) → φ in L∞

loc(RN). In this case, we
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say that u is convergent. We say that the solution u is quasiconvergent if all
elements φ ∈ ω(u) are steady states of (1.1).

Many convergence and quasiconvergence results have been proved for
(1.1), (1.2) under various conditions on f and u0. On the other hand, it
has also been proved that for a “robust” class of nonlinearities f , equation
(1.1) possesses some bounded non-quasiconvergent solutions. We refer the
reader to the introduction of [19] for a discussion of these results and some
references. Here, we just recall contributions of [19] which are most relevant
in the considerations below.

Assume that N ≥ 2 and u0 satisfies the following condition:

(IC) u0 is a continuous radial function on RN with ζ := limr→∞ u0(r) ∈ R.

In (IC), we view the radial function u0 as functions of the real variable
r = |x|. This slight abuse of notation is repeated at several other places
below.

As above, f is a C1 function on R. We further assume the following
nondegeneracy conditions:

(ND) For each η ∈ f−1{0} there is ϵ > 0 such that the function f is
monotone (not necessarily strictly) in each of the intervals (η − ϵ, η],
[η, η + ϵ).

(ND2) For N = 2 only: f−1{0} does not contain any (nonempty) open
interval.

Essentially, (ND) just requires that f ′ not be oscillating in the one-sided
neighborhoods of η. Obviously, (ND) and (ND2) are satisfied if all zeros of f
are nondegenerate: f ′(η) ̸= 0 for each η ∈ f−1{0}; but they are much weaker
than the latter condition.

In the case when the limit ζ in (IC) is not a zero of f , the following
convergence theorem is proved in [19]:

Theorem 1.1. Assume (IC), (ND), (ND2). If f(ζ) ̸= 0 and the solution u
of (1.1), (1.2) is bounded, then it is convergent: as t → ∞, u(·, t) → φ in
L∞
loc(RN), where φ is a (radial) steady state of (1.1).

The following quasiconvergence theorem of [19] concerns the case when
f(ζ) = 0 and f ′ ≤ 0 on a neighborhood of ζ. Note that the latter condition
is equivalent to the stability of ζ as an equilibrium of the equation ξ̇ = f(ξ)
when (ND) is in effect.
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Theorem 1.2. Assume (IC), (ND), (ND2). Further assume that f(ζ) = 0
and there is δ > 0 such that f ′ ≤ 0 on (ζ − δ, ζ + δ). If the solution u of
(1.1), (1.2) is bounded, then it is quasiconvergent: ω(u) consists of (radial)
steady states of (1.1).

We remark that the quasiconvergence conclusion is not valid if ζ as an
unstable equilibrium of the equation ξ̇ = f(ξ). A counterexample with N ≥
3, ζ = 0, and f(u) = up with p > (N + 2)/(N − 2) can be found in [20].

The investigation leading to Theorems 1.1, 1.2 was motivated by earlier
quasiconvergence results for bounded solutions with convergent initial data
in the case N = 1, that is, for equations (1.1) on the real line (see [16, 17, 18,
23]). Results similar to Theorems 1.1, 1.2 were independently proved in [22]
in a more general setting of gradient systems of reaction-diffusion equations.
The conclusions in [22] are stronger, stating the convergence rather than the
quasiconvergence, but under the assumptions of [22], requiring in particular
that the set of steady states with a given stable limit at infinity be discrete,
the convergence and quasiconvergence are equivalent (see the next paragraph
for more on this).

Under the assumptions of Theorem 1.2, the following additional informa-
tion on the steady states in ω(u) is given in [19]. If ω(u) does not consist
of a single steady state, then it contains a continuum of radial steady states
which have the limit ζ, same as u0, as |x| → ∞. Since ζ is assumed to
be a stable equilibrium of the equation ξ̇ = f(ξ), it is a nontrivial question
whether any such continuum may exist for some nonlinearities f . For generic
nonlinearities it does not exist. This is a consequence of recent results of [21]
concerning generic gradient systems of reaction diffusion equations. Thus,
for generic nonlinearities, Theorem 1.2 yields the convergence of the solution
u. We note that “generic nonlinearities” refers here to functions f forming
a residual set (a countable union of open dense sets) in suitable functional
spaces; it is not a set described by simple explicit conditions on f .

The previous remarks raise the following interesting question. Regard-
less of the existence of continua of steady states mentioned in the previous
paragraph, is the convergence to single steady state guaranteed by some ex-
plicit nondegeneracy condition? A simple condition that comes to mind is
the linear stability of the limit ζ (viewed as an equilibrium for the equation
ξ̇ = f(ξ)): f ′(ζ) < 0. The main theorem of the present paper states that
this condition is indeed sufficient for the convergence:
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Theorem 1.3. Assume (IC), (ND), (ND2). If f(ζ) = 0 > f ′(ζ) and the
solution u of (1.1), (1.2) is bounded, then it is convergent: as t → ∞,
u(·, t) → φ in L∞

loc(RN), where φ is a (radial) steady state of (1.1).

We make some comments on the proof of this results and outline its key
ideas.

There are several standard ways of proving convergence of solutions of
parabolic equations when their quasiconvergence is known. We can exclude
techniques using Lojasiewicz inequality, which usually require the nonlinear-
ities to be analytic. Zero number techniques, which are applicable in the
radial setting (cp. Section 2), are useful in some steps of our proof, but do
not lead to the convergence conclusion in any simple or familiar way. The
fact that radial solutions of linear equations on unbounded domains may
have infinite zero number at all times is a major detriment to zero number
techniques. Instead, our proof relies on another common tool: an abstract
convergence result based on normal hyperbolicity of a manifold of steady
states. Two crucial ingredients are usually needed for successfully using this
method for proving that a solution u converges to a steady state φ. The
first one requires the set of all steady states near φ to form a manifold of
some finite dimension m. The second one is the local normal hyperbolicity of
this manifold, which mandates that the linearization of the right-hand side of
equation at φ has 0 as an eigenvalue of multiplicity m, same as the dimension
of the manifold, and it has no other eigenvalues on the imaginary axis.

In our setting, the manifold structure of steady states is easy to establish.
The radial steady states of (1.1) are uniquely determined by their value at the
origin, which gives a simple one-dimensional parametrization of continua of
steady states, should they exist. With the condition f ′(ζ) < 0, it is also rather
easy to understand the spectrum of the linearization of the right-hand side
of (1.1) at any radial steady state φ with φ(∞) = ζ. Namely, ∆ + f ′(φ(r))
is a Schrödinger operator with a radial potential whose essential spectrum
is contained in [−f ′(ζ),∞) and whose eigenvalues below −f ′(ζ) are all real
and simple in the radial setting.

The problem with this approach is that we are considering the ω-limit
set of the solution, as well as its convergence, in L∞

loc(RN), which is a metriz-
able locally convex space, whereas convergence results based on normal hy-
perbolicity require a Banach space setup (so concepts such as submanifold,
spectrum, and normal hyperbolicity have a standard meaning). To reconcile
these stipulations, we prove that if ω(u) is not a single equilibrium, then
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there is φ ∈ ω(u) with the following properties:

(i) For some sequence tn → ∞ one has u(·, tn) → φ in L∞(RN) (not just
in L∞

loc(RN)).

(ii) There is a one-dimensional Lipschitz submanifold of L∞(RN) contain-
ing φ and consisting of steady states.

It is perhaps worth emphasizing at this point that statement (i) is shown
to hold assuming that ω(u) is not a singleton, which is an assumption which
we want to rule out in the end. And when we do rule it out, (i) never applies,
so our theorem only gives the convergence of the solution in L∞

loc(RN). We
derive (i) from this assumption using zero number techniques.

Once (i), (ii) are derived, we are able to apply an abstract convergence
result of [2] in a Banach space setting. This leads to the conclusion that
u(·, t) → φ in L∞(RN) as t → ∞. Consequently, the ω-limit set of u (with
respect to the topology of L∞(RN), hence also with respect to the topology
of L∞

loc(RN)) consists of the single element φ. This way we reach a desired
contradiction to the assumption that ω(u) is not a singleton.

We add a few remarks concerning the nondegeneracy conditions (ND),
(ND2). As shown in [19, Lemma 2.2], under conditions (ND), (ND2), results
of [9] yield the convergence property of steady states: if ψ is a bounded steady
state of (1.1), then ψ(r) has a (finite) limit as r → ∞ (see also [11, 14] for
such convergence results). This convergence property is not guaranteed in
general (see [13] for counterexamples with N = 2), but when it does hold for
a specific equation, the above theorems, including the new Theorem 1.3, are
valid for such an equation with hypotheses (ND), (ND2) removed.

In the rest of the paper, we assume as our standing hypotheses that
N ≥ 2, u0 satisfies condition (IC) above, and f satisfies the following condi-
tion

(F) f : R → R is a C1 function with bounded derivative.

We make the extra assumption that the derivative of f is bounded just
for convenience and with no loss generality. Indeed, given any bounded
solution, we can modify f outside a large interval (−R,R), with no effect on
the solution, so as to achieve the boundedness of f ′. In addition, we can make
the modification in such a way that the new function f is strictly monotone
in each of the intervals (−∞, R) ∪ (R,∞). This monotonicity ensures that
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conditions (ND), (ND2) continue to be satisfied if they were satisfied by the
original nonlinearity.

The remainder of the paper is organized as follows. The proof of Theorem
1.3 is given in Section 3. Section 2 contains preliminary results concerning
limits, as r → ∞, of radial solutions of (1.1) and nodal properties of radial
solutions of linear parabolic equations.

2 Preliminaries

This section contains preliminary results concerning spatial limits of radial
solutions of (1.1) and the zero number of radial solutions of linear parabolic
equations.

Recall that assumption (IC) implies that the solution u(·, t, u0) is radial.
Viewed as a function of t and r, it satisfies the following equation and bound-
ary condition at r = 0:

ut = urr +
N − 1

r
ur + f(u), r > 0, t > 0, (2.1)

ur(0, t) = 0, t > 0. (2.2)

2.1 Limits at spatial infinity

The following result is proved in [19, Propoposition 3.2].

Proposition 2.1. Let u be the radial solution of (1.1), (1.2) (with u0 sat-
isfying the standing hypotheses (IC).) Then for any t ∈ [0, T (u0)) the limit
ξ(t) := limr→∞ u(r, t) exists, and the function ξ(t) is the solution of the dif-
ferential equation ξ̇ = f(ξ) with ξ(0) = ζ.

In particular, when f(ζ) = 0, as in Theorem 1.3, we have limr→∞ u(r, t) =
ζ for all t ∈ [0, T (u0)).

Radial steady states of (1.1) are solutions of the equation

ψrr +
N − 1

r
ψr + f(ψ) = 0, r > 0, (2.3)

and they also satisfy the condition ψr(0) = 0. We recall the following well-
known properties.
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Since (2.3) is a nonsingular ordinary differential equation on (0,∞), our
standing assumption (F) implies that for any (a, b) ∈ R2 and r0 > 0 the
solution of (2.3) satisfying the initial conditions

ψ(r0) = a, ψr(r0) = b, (2.4)

is defined globally on (0,∞). Also, if r0 = 0 and b = 0, the initial value prob-
lem (2.3), (2.4) is well posed: it has a unique solution ψ(·, a) ∈ C1[0,∞) ∩
C2(0,∞), and for any R > 0 the C1[0, R]-valued map a 7→ ψ(·, a) is contin-
uously differentiable.

For the proof, based on [9], of the following convergence property of so-
lutions of (2.3) we refer the reader to [19, Sect. 2.1].

Lemma 2.2. Assume (ND), (ND2). If ψ is a solution of (2.3) which is
bounded in [1,∞), then

lim
r→∞

(ψ(r), ψ′(r)) = (η, 0), where η ∈ f−1{0}. (2.5)

2.2 Zero number and nodal curves

For two radial solutions u, ũ of (1.1) on an open time interval J , the function
v := u− ũ solves the linear equation

vt = ∆v + c(x, t)v, x ∈ RN , t ∈ J, (2.6)

where c is a continuous bounded radial function given by

c(x, t) =

∫ 1

0

f ′(ũ(x, t) + s(u(x, t)− ũ(x, t)) ds. (2.7)

In the variables t and r = |x|, the equation for v = v(r, t) takes the form

vt = vrr +
N − 1

r
vr + c(r, t)v, r > 0, t ∈ J, (2.8)

and we also have vr(0, t) = 0 for t ∈ J . The above in particular applies if ũ
is a radial steady state of (1.1), which will be the case in the next section.

In the remainder of this subsection, we assume that c is an arbitrary
continuous bounded radial function on RN × J . We recall some standard
zero number properties of radial solutions of (2.6) and then add a result on
global nodal curves of such solutions.
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If g : [0,∞) → R is a continuous function, we denote by z(g) the number
(possibly infinite) of zeros of g.

The following lemma is proved in [5] (it is a radial version of results proved
in [1, 4] for equations in one space dimension).

Lemma 2.3. Let v(r, t) be a nontrivial bounded radial solution of (2.6).
Then the following statements are valid:

(i) For each t ∈ J , the zeros of v(·, t) in [0,∞) are isolated.

(ii) The function t 7→ z(v(·, t)) is monotone nonincreasing.

(iii) If for some t0 ∈ J the function v(·, t0) has a multiple zero ρ0 in [0,∞)
(that is, v(ρ0, t0) = vρ(ρ0, t0) = 0) and z(v(·, t0)) < ∞, then for any
t1, t2 ∈ J with t1 < t0 < t2, one has z(v(·, t1)) > z(v(·, t2)).

The existence of a global nodal curve, as stated in the following lemma,
will play an important role in the proof of Theorem 1.3. We note that similar
statements were proved in [1, 6] for equations on the real line.

Let v be as in Lemma 2.3. The nodal set of v refers to the set v−1(0); a
nodal curve of v is a continuous curve contained in v−1(0). We will consider
nodal curves of the form {(ξ(t), t) : t ∈ J0}, where J0 ⊂ J is an interval
and ξ is a continuous function on J0. We say that a function ϕ(r) changes
sign at r̄ if there are sequences r−n < r̄ < r+n , both approaching r̄, such that
ϕ(r−n )ϕ(r

+
n ) < 0.

Lemma 2.4. Let v be as in Lemma 2.3. The following statements are valid.

(i) For any (ρ1, t1) ∈ v−1(0) and any t0 ∈ J with t0 < t1 there is a nodal
curve {(ξ(t), t) : t ∈ [t0, t1]} of v such that ξ(t1) = ρ1 and ξ(t) > 0 for
all t ∈ [t0, t1).

(ii) Let {(ξj(t), t) : t ∈ [t1, t2]}, j = 1, 2, be two nodal curves of v. If
ξ1(t2) < ξ2(t2), then ξ1(t) < ξ2(t) for all t ∈ [t1, t2].

(iii) Let {(ξ(t), t) : t ∈ [t1, t2]} be a nodal curve of v with ξ(t2) > 0. Then
ξ(t) > 0 for all t ∈ [t1, t2).

Proof. To prove statements (ii), (iii), we apply the maximum principle to
(2.6). If (ii) is not valid, there is τ ∈ (t1, t2], such that ξ1(t) < ξ2(t) for all
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t ∈ (τ, t2] and ξ1(τ) = ξ2(τ). Then the solution v vanishes on the parabolic
boundary of the domain

Q := {(x, t) ∈ RN × (τ, t2) : ξ1(t) < |x| < ξ2(t)},

hence, by the maximum principle, it vanishes identically on Q. This is a
contradiction to Lemma 2.3(i). If statement (iii) is not valid, then there is
τ ∈ (t1, t2] such that ξ(t) > 0 for all t ∈ (τ, t2] and ξ(τ) = 0. Using the
maximum principle on the domain

Q := {(x, t) ∈ RN × (τ, t2) : |x| < ξ(t)},

we obtain v ≡ 0 on Q, which again is a contradiction to Lemma 2.3(i).
We now prove statement (i). Remember, that v, viewed as a function of

r and t, satisfies equation (2.8) and the boundary condition

vr(0, t) = 0, t ∈ J. (2.9)

Let (ρ1, t1) ∈ v−1(0) and t0 ∈ J with t0 < t1 be given. To start with, we
claim that the following two statements are valid:

(s1) There exist δ > 0 and a nodal curve Γ = {(ξ(t), t) : t ∈ [t1 − δ, t1]}
of v such that ξ(t1) = ρ1, ξ(t) > 0 for all t ∈ [t1 − δ, t1), and ξ(t) is a
simple zero of v(·, t) for t ∈ [t1 − δ, t1).

(s2) If ρ1 > 0, then there is δ > 0 such that the nodal set of v in [ρ1−δ, ρ1+
δ] × [t1, t1 + δ] consists of the single point (ρ1, t1) or else it is equal to
a nodal curve Γ̂ = {(ξ̂(t), t) : t ∈ [t1, t1 + δ]} with ξ(t1) = ρ1.

If vr(ρ1, t1) ̸= 0 (which in particular means that ρ1 > 0, cp. (2.9)), the
validity of both statements, for a suitable δ > 0, follows from the implicit
function theorem. If ρ1 is a multiple zero of v(·, t1) and ρ1 > 0, both state-
ments follow from the local description of the nodal set of v given in [4].
Finally, if ρ1 = 0 (so ρ1 is automatically a multiple zero of v(·, t1)), the ex-
istence of a nodal curve as in (s1) follows from the local description of the
nodal set given in [5].

Next we show that the nodal curve Γ given by statement (s1) can be
continued globally, which yields a nodal curve as in statement (i).

Since ξ(t) is a simple zero of v(·, t) for t ∈ [t1 − δ, t1), the function v(·, t)
changes sign at ξ(t). Therefore, there are points 0 < ξ−1 < ξ(t1 − δ) and
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ξ+1 > ξ(t1 − δ) such that v(ξ−1 , t1 − δ) v(ξ+1 , t1 − δ) < 0. Let D−, D+ denote
the connected components of the set {(r, t) ∈ [0,∞)× [t0, t1−δ] : v(r, t) ̸= 0}
containing the points (ξ−1 , t1 − δ), (ξ+1 , t1 − δ)), respectively.

Using the maximum principle (similarly as in [1, 5, 15]), we show that
D± has to intersect the set (0,∞) × {t0}. Indeed, otherwise v(x, t), viewed
as a function of x ∈ RN and t, would vanish on the parabolic boundary of
the set

D̃± := {(x, t) ∈ RN × [t0, t1 − δ] : (|x|, t) ∈ D±}.

The maximum principle would then imply that v vanishes on D±, which is
a contradiction. As a consequence, there is a (continuous) path C± ⊂ D±

connecting (ξ±1 , t1 − δ) with a point (ξ±0 , t0). Along each of the paths C−,
C+, the function v is of one sign, and its signs on C−, C+ are opposite.
In particular, C−, C+ are disjoint. It follows that if τ ∈ [t0, t1 − δ] and
Γ̃ := {(η(t), t) : t ∈ [τ, t1−δ]} is a nodal curve of v with η(t1−δ) = ξ(t1−δ),
then Γ̃ is contained in the region bounded by the paths C−, C+ and the
segments [ξ−1 , ξ

+
1 ]×{t1−δ}, [ξ−0 , ξ+0 ]×{t0}. Moreover, Γ̃ is of positive distance

to the paths C−, C+.
Let now τ0 be the infimum of the values τ ∈ [t0, t1 − δ] such that there is

a nodal curve {(ξ(t), t) : t ∈ [τ, t1]} containing Γ. Then there is a sequence
Γn = {(ξn(t), t) : t ∈ [τn, t1]} of such nodal curves with τn > τ0 and τn → τ0.
By the above remarks, the sequence {ξn(τn)} is bounded and of positive
distance to 0. Passing to a subsequence, we may assume that (ξn(τn), τn) →
(ρ0, τ0) for some ρ0 ∈ (0,∞).

Since ρ0 > 0, the above statements (s1), (s2) both hold, for some δ > 0,
with (ρ1, t1) replaced by (ρ0, τ0). Moreover, since (ξn(τn), τn) → (ρ0, τ0),
the second alternative is statement (s2) must hold and if n is large enough
the point (ξn(τn), τn) lies on the nodal curve through the point (ρ0, τ0), as
in statement (s2). Using this and statement (s1), we can now extend the
function ξn(t) to the interval [τ0 − δ, t1] in such a way that Γ̃n := {(ξn(t), t) :
t ∈ [τ0 − δ, t1]} is a nodal curve containing Γ. Then, by the definition of τ0,
τ0 = t0, and we get a nodal curve as in statement (i) of Lemma 2.4 (even a
slightly extended one).

3 Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. We assume that the
hypotheses of the theorem are satisfied and the solution u of (1.1), (1.2)
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is bounded. Without loss of generality, we also assume that ζ = 0. By
Proposition 2.1, we have u(∞, t) := limr→∞ u(r, t) = 0 for all t ≥ 0.

We already know by Theorem 1.2 that u is quasiconvergent: ω(u) consists
of radial steady states. In other words,

ω(u) = {ψ(·, a) : a ∈ T }, (3.1)

where ψ(r, a) denotes the solution of (2.3), (2.4) with r0 = 0 and b = 0, and

T := {ψ(0) : ψ ∈ ω(u)}.

Since ω(u) is connected and compact in L∞
loc(RN), T is a compact interval

or a set consisting of a single point a ∈ R. The latter gives the desired
convergence conclusion: ω(u) = {ψ(·, a)}; so our goal is to rule out the
former. This will be achieved by means of a contradiction argument, which
we facilitate by the following three lemmas scrutinizing the possibility that
T is an interval.

Lemma 3.1. If a ∈ int T , then the following relations are valid

z(u(·, t)− ψ(·, a)) = ∞ (t > 0), (3.2)

ψ(∞, a) := lim
r→∞

ψ(r, a) = 0. (3.3)

For the proof of this lemma we refer the reader to [19, Proposition 3.5].

Lemma 3.2. If a ∈ int T , then there is a sequence tn → ∞, such that
u(·, tn) → ψ(·, a) in L∞[0,∞).

The point of this statement is that the convergence is in L∞[0,∞), not
just in L∞

loc(RN) as in the definition of ω(u). We emphasize that we only
prove this for interior points T , the existence of which we eventually want
to rule out. It is worth mentioning that in the proof of this lemma, we do
not employ the strict inequality f ′(0) < 0; we only use the fact that there is
δ > 0 such that

f ′(s) ≤ 0 (s ∈ [−δ, δ]). (3.4)

Proof of Lemma 3.2. Fix any a ∈ int T . To simplify the notation, we set
ψ := ψ(·, a), and further let v := u − ψ. Clearly, v is a nontrivial radial
solution of a linear equation (2.6) with c given by (2.7).

By the definition of T , from a ∈ int T it follows that there is an increasing
sequence t̄n in (0,∞) such that t̄n → ∞ and u(0, t̄n) = a, that is, v(0, t̄n) = 0,
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for n = 1, 2, . . . . Pick any t0 ∈ (0, t̄1). By Lemma 2.4(i), there are nodal
curves

{(ξn(t), t) : t ∈ [t0, t̄n]}, n = 1, 2, . . . ,

of v such that ξn(t̄n) = 0 and ξn(t) > 0 for all t ∈ [t0, tn). In particular, for
each n, ξn(t̄n) = 0 < ξn+1(t̄n), and therefore, by Lemma 2.4(ii),

ξn(t) < ξn+1(t) (t ∈ [t0, t̄n]). (3.5)

These relations and the fact that the zeros of v(·, t0) are isolated (see Lemma
2.3) imply that

ξn(t0) ↗ ∞ n→ ∞. (3.6)

By Lemma 3.1, ψ(∞) = 0 = u(∞, t). Let now δ > 0 be as in (3.4) and pick
ρ > 0 such that

|ψ(r)| < δ (r ≥ ρ). (3.7)

By (3.6), if n0 large enough, then for all n ≥ n0 we have ξn(t0) > ρ, which
implies that there is tn ∈ (t0, t̄n) such that

ξn(t) > ρ (t ∈ [t0, tn)) and ξn(tn) = ρ. (3.8)

Making n0 larger if necessary, we also have |u(r, t0)| < δ for all r ≥ ξn(t0)
with n ≥ n0.

We claim that for all n ≥ n0,

|u(r, t)| ≤ δ (r ≥ ξn(t), t ∈ [t0, tn]). (3.9)

To prove this, first observe that the relations f(0) = 0 and f ′ ≤ 0 in [−δ, δ]
yield f(δ) ≤ 0 ≤ f(−δ). Thus, the constants δ, −δ are, respectively, a super-
solution and a subsolution of equation (1.1). We now apply the comparison
principle on the domain

Qn := {(r, t) ∈ R2 : r > ξn(t), t ∈ (t0, tn))}.

By the choice of n0, we have |u(r, t0)| < δ for all r ≥ ξn(t0). The “side” part
of parabolic boundary of Q is a nodal curve of v = u− ψ on which

|u(ξn(t), t)| = |ψ(ξn(t))| < δ (t ∈ (t0, tn)),

due to (3.7), (3.8). Therefore, the comparison principle does apply and (3.9)
follows.
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Consider now the function v = u − ψ. Relations (3.7), (3.9) imply that
the coefficient c(r, t) in the linear equation (2.6) satisfied by v is nonpositive
on the domain Qn. As already mentioned above, the “side” part of the
parabolic boundary of Qn is a nodal line of v, and we also have v(∞, t) = 0.
Therefore, applying the maximum and minimum principles on the domain
Qn, we obtain

max
r≥ρ

|v(r, tn)| ≤ max
r≥ξn(t0)

|v(r, t0)|. (3.10)

Since v(∞, t0) = 0, (3.10) and (3.6) give

max
r≥ρ

|u(r, tn)− ψ(r)| ≤ max
r≥ξn(t0)

|v(r, t0)| → 0 as n→ ∞. (3.11)

This in particular implies that tn → ∞, as u(·, t) − ψ cannot vanish on
an interval for any t > 0. Replacing the sequence {tn} by a subsequence if
necessary, we have u(·, tn) → ψ̃ in L∞

loc[0,∞) for some ψ̃ ∈ ω(u). By Theorem
1.2, ψ̃ is a radial steady state, and, by (3.11), necessarily ψ̃ = ψ. Thus, in
addition to (3.11), we also have

max
r≤ρ

|u(r, tn)− ψ(r)| → 0,

which yields the desired conclusion that u(·, tn) → ψ in L∞[0,∞).

The next lemma, when applied to J = int T , shows that if int T is
nonempty, then for some subinterval I ⊂ int T the steady states ψ(·, a),
a ∈ I, form a Lipschitz manifold in L∞(0,∞).

Lemma 3.3. Assume J ⊂ R is an open interval such that ψ(∞, a) = 0 for
all a ∈ J . Then there is an open subinterval I ⊂ J such that the map

a 7→ ψ(·, a) : I → L∞(0,∞) (3.12)

is Lipschitz continuous.

Proof. We introduce the notation

β+ := inf{η > 0 : f(η) = 0}, β− := sup{η < 0 : f(η) = 0}, (3.13)

with the convention that inf ∅ = ∞, sup ∅ = −∞. Note that the assumption
f ′(0) < 0 implies that β− < 0 < β+ and

f(η) < 0 (η ∈ (0, β+)), f(η) > 0 (η ∈ (β−, 0)). (3.14)
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Moreover, if β = β− or β = β+ and β finite, then β is a zero of f , hence
a solution of (2.3). Therefore, for any a ∈ J , the assumption ψ(∞, a) = 0
implies that ψ(·, a)− β has only finitely many zeros, all of them simple. If β
is infinite, then, trivially, z(ψ(·, a)− β)) = 0. Thus,

J =
∞⋃
k=0

Mk, Mk := {a ∈ J : z(ψ(·, a)− β+) ≤ k}.

Recall that for each (finite) R > 0 the map

a 7→ ψ(·, a) : J → C1[0, R] (3.15)

is continuously differentiable. Therefore, the simple zeros of ψ(·, a) − β+,
if there are any, persist and change continuously as a is perturbed slightly.
This implies that for each k the set J \ Mk is open, hence Mk is closed.
Using the Baire category theorem, we obtain that for some k the set Mk

has nonempty interior. Therefore, replacing J by an open subinterval if
necessary, we may assume that z(ψ(·, a)−β+) ≤ k for all a ∈ J . If a0 ∈ J is
such that z(ψ(·, a)−β+) is maximal possible; then due to the maximality and
persistence of simple zeros, z(ψ(·, a)− β+) = z(ψ(·, a0)− β+) for all a ≈ a0.
Thus, we can again make the interval J smaller so that z(ψ(·, a) − β+) is
independent of a ∈ J . Arguing similarly, we replace J by a yet smaller
subinterval so that both z(ψ(·, a)− β+) and z(ψ(·, a)− β−) are independent
of a ∈ J .

Pick now any a0 ∈ J , and let δ > 0 be such that f ′ < 0 in [−δ, δ]. Clearly,
β− < −δ, δ < β+. Fix a large enough ρ > 0 so that |ψ(r, a0)| < δ for all
r ≥ ρ. In particular, all zeros of ψ(·, a0) − β± are contained in (0, ρ). We
now show that if I ⊂ J is a small enough open interval containing a0, then
the following two conditions are satisfied:

(a) |ψ(ρ, a)| < δ (a ∈ I),

(b) ψ(r, a) ∈ (β−, β+) (r ≥ ρ, a ∈ I).

The fact that (a) holds for a ≈ a0 follows immediately from the continuity
of the map (3.15) with R = ρ. For a ≈ a0, we also have z(ψ(·, a) − β±) =
z(ψ(·, a0)− β±) and the zeros of ψ(·, a)− β± are small perturbations of the
zeros of ψ(·, a0)− β±. In particular, all zeros of ψ(·, a)− β± are contained in
(0, ρ), which, in conjunction with (a), gives (b).
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We next prove that conditions (a) and (b) imply that if a ∈ I then

|ψ(r, a)| < δ (r ≥ ρ). (3.16)

Indeed, if not, then, due to the relations (a) and ψ(∞, a) = 0, there is r > ρ
such that ψ(r, a) is a positive local maximum or a negative local minimum
of ψ(·, a). In either case, we get a contradiction using equation (2.3) and the
relations in (b) and (3.14).

Take now any a, ã ∈ I. The difference v := ψ(·, a) − ψ(·, ã) satisfies a
linear equation

vrr +
N − 1

r
vr + c(r)v = 0, r > 0,

where

c(r) =

∫ 1

0

f ′(sψ(r, a) + (1− s)ψ(r, ã)) ds.

Due to (3.16), we have c(r) ≤ 0 for all r > ρ. Since v(∞) = ψ(∞, a) −
ψ(∞, ã) = 0, the maximum principle gives

|ψ(r, a)− ψ(r, ã)| ≤ |ψ(ρ, a)− ψ(ρ, ã)| (r ≥ ρ).

Combining this with the differentiability property of the map (3.15), we
obtain that the map (3.12) is indeed Lipschitz continuous on some open
subinterval of J .

We can now complete the proof of Theorem 1.3. We go by contradiction.
Assume that int T ̸= ∅. Applying Lemma 3.3 to J = T , we find an open
interval I ⊂ T such that the map (3.12) is Lipschitz continuous.

Pick some a0 ∈ int I, and set

ψ := ψ(·, a0). (3.17)

We intend to apply an abstract convergence theorem of [2], similarly as in
[3, 7], to conclude that u(·, t) → ψ in L∞(0,∞) as t→ ∞. This obviously is
a contradiction to (3.1).

The setting in [2] is as follows

(H1) X is a Banach and Π is a continuous map on X with a fixed point ψ.
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(H2) Π is of class C1 on a neighborhood of ψ and Π′(ψ) admits a spectral
decomposition:

σ(Π′(ψ)) = σu ∪ σc ∪ σs,

where σu, σc, σs are closed subsets of {λ ∈ C : |λ| > 1}, {λ ∈ C : |λ| =
1}, {λ ∈ C : |λ| < 1}, respectively.

Condition (H2) implies that we can write X as the direct sum

X = Xu ⊕Xc ⊕Xs,

where X i is the image of the spectral projection of Π′(ψ) associated with the
spectral set σi, i = u, c, s (see [10]).

We denote by ωΠ(u0) the ω-limit set of a point u0 ∈ X relative to the
iterates of the map Π (the convergence is in X):

ωΠ(u0) = {ϕ ∈ X : Πnk(u0) → ϕ for some sequence nk → ∞}.

By Fix(Π) we denote the set of all fixed points of Π.
The following result is contained in [2, Theorem B].

Theorem 3.4. Assume (H1), (H2) and let u0 be a point in X such that
ψ ∈ ωΠ(u0) ⊂ Fix(Π). Assume that either Xu is finite-dimensional or the
orbit {Πn(u0) : n = 0, 1, . . . } is relatively compact in X. Further assume that
the following hypothesis is satisfied

(M) m := dimXc <∞ and there is a submanifold M ⊂ X with dimM = m
such that ψ ∈M ⊂ Fix(F ).

Then ωΠ(u0) = {ψ}.

We apply this theorem to the time-1 map of (1.1). This can be done in
the C0(RN)-setting or L∞(RN)-setting; equation (1.1) is well posed on either
of these Banach spaces due to f(0) = 0. We choose the C0(RN)-setting,
as in [3]. Note that for the solution u considered in this section we have
u(·, t) ∈ C0(RN), although we do not necessarily have the compactness of
the orbit {u(·, t) : t ≥ 1} in C0(RN) (or in L∞(RN), for that matter). This is
a minor difference from [3, 7], and is not a complication as the compactness
is not needed for the application of Theorem 3.4.

Let Y := C0(RN). As in the introduction, u(x, t, u0) denotes the solution
of (1.1), (1.2), where we now take u0 ∈ Y . The solution is defined globally
due to the assumption that f ′ is bounded.
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The subspace X ⊂ Y consisting of all radial functions in Y is closed in
Y and invariant under the semiflow of (1.1). We equip X with the induced
norm (the supremum norm). Consider the time-1 map of (1.1) on X:

Π : u0 7→ u(·, 1;u0).

By the differentiable dependence of solutions on the initial data (see [8, 12]),
Π is a C1-map on X. Obviously, Πn(u0) = u(·, n, u0), n = 0, 1, . . . , and the
steady states of (1.1) contained in X are fixed points of Π. In particular,
due to (3.3), the steady states ψ(·, a), a ∈ T , are fixed points of Π.

Consider the linearization Π′(ψ) at the fixed point ψ (cp. (3.17)). It
satisfies hypothesis (H2) with dimXu < ∞ and dimXc ≤ 1. This can be
verified using spectral properties of the Schrödinger operator ∆+ f ′(ψ(r))—
note that the radial potential in this operator satisfies limr→∞ f ′(ψ(r)) =
f ′(0) < 0—and the spectral mapping theorem which relates the spectrum
of Π′(ψ) to the spectrum of the Schrödinger operator. The details can be
found in [3, Section 2.2]. In our case, the arguments in [3, Section 2.2] can
be simplified a little, as we only consider the operator in the radial space X
and thus do not need to worry about the symmetry of eigenfunctions and
simplicity of the corresponding eigenvalues as in [3, Section 2.2].

Recall that we have chosen a0 ∈ I, where I ⊂ T is an open interval on
which the map (3.12) is Lipschitz continuous. In view of (3.3), this means
that the set

M := {ψ(·, a) : a ∈ I} (3.18)

is a Lipschitz curve of fixed points of Π containing ψ. This implies, by the
implicit function theorem, that the kernel of Π′ is nontrivial. Consequently,
dimXc = 1 and we have also verified hypothesis (M) of Theorem 3.4.

We now show that if u is as in Theorem 1.3 and u0 = u(·, 0), then ψ ∈
ωΠ(u0). By Lemma 3.2, there is a sequence tn → ∞ such that u(·, tn) → ψ
in X. Since ψ is a steady state, we consequently have

u(·, tn + t) → ψ (3.19)

uniformly for t ∈ [−m,m], m = 1, 2, . . . . Therefore, there is a sequence of
positive integers nk → ∞ such that

Πnk(u0) = u(·, nk) → ψ,

as required.
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Also, any element of ωΠ(u0) is clearly an element of ω(u) ∩ X, which
implies, due to Theorem 1.2, that ωΠ(u0) ⊂ Fix(Π).

Theorem 3.4 now implies that Πn(u0) → ψ in X. Using (3.19) with
tn := n, we obtain that u(·, t) → ψ in X as t → ∞. This is a contradiction
to (3.1).

By this contradiction we have ruled out the possibility that T has nonempty
interior. Thus T is a singleton, proving the convergence of u (in L∞

loc(RN)).
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[2] P. Brunovský and P. Poláčik. On the local structure of ω-limit sets of
maps. Z. Angew. Math. Phys., 48:976–986, 1997.

[3] J. Busca, M.-A. Jendoubi, and P. Poláčik. Convergence to equilibrium
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