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School of Mathematics, University of Minnesota

Minneapolis, MN 55455

Dedicated to Yihong Du

on the occasion of his 60th birthday

Abstract

We consider the Cauchy problem for the nonlinear heat equation

ut = ∆u+ f(u), x ∈ RN , t > 0,

where N ≥ 2 and f is a C1 function satisfying minor nondegeneracy
conditions. Our goal is to describe the large-time behavior of bounded
solutions whose initial data are radially symmetric and have a finite
limit ζ as |x| → ∞. In the present paper, we examine the following
two cases: f(ζ) ̸= 0, or f(ζ) = 0 and ζ is a stable equilibrium of the
equation ξ̇ = f(ξ). We prove that bounded solutions with such initial
data are quasiconvergent: as t → ∞, they approach a set of steady
states in the topology of L∞

loc(RN ).
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1 Introduction and statement of the main re-

sults

We consider the Cauchy problem

ut = ∆u+ f(u), x ∈ RN , t > 0, (1.1)

u(x, 0) = u0(x), x ∈ RN , (1.2)

where ∆ in the Laplace operator in the spatial variable x = (x1, . . . , xN), f
is a C1 function on R, and u0 ∈ L∞(RN). We will mainly focus on solutions
which are radially symmetric in x (radial solutions, for short), so at some
point below we make the assumption that u0 is radial.

We denote by u(·, t, u0), or simply u(·, t) if there is no danger of confu-
sion, the unique classical solution of (1.1), (1.2) and by T (u0) ∈ (0,+∞] its
maximal existence time. (To avoid ambiguities, we include the requirement
that u(·, t) is bounded for all t ∈ (0, T (u0)) in the definition of a classical so-
lution.) If u is bounded on RN × [0, T (u0)), then necessarily T (u0) = ∞, that
is, the solution is global. In this paper, we only deal with bounded global
solutions and our main concern is the behavior of such solutions as t → ∞.
More specifically, we examine the limit profiles with respect to the locally
uniform convergence of bounded solutions as t → ∞. For that purpose, we
define the ω-limit sets of a bounded solution u as follows:

ω(u) :=
{
φ ∈ C(RN) : u(·, tn) → φ for some sequence tn → ∞

}
. (1.3)

Here, the convergence is in the topology of L∞
loc(RN), that is, the locally

uniform convergence. Due to this relatively weak convergence requirement,

2



ω(u) is nonempty for any bounded solution u (see Section 2.3 for a summary
of well-known properties of ω(u)). If the ω−limit set reduces to a single
element φ, then u is convergent: u(·, t) → φ in L∞

loc(RN) as t → ∞. Neces-
sarily, φ is a steady state of (1.1) in this case. We say that the solution u is
quasiconvergent if all elements φ ∈ ω(u) are steady states of (1.1).

If equation (1.1) is considered on a bounded domain, instead of RN ,
and coupled with some common boundary condition, then standard energy
estimates imply that all bounded solutions are quasiconvergent (and one
can take the uniform convergence in the definition of the ω-limit set). If
N = 1, they are even convergent [32, 53, 54]. For equation (1.1) on RN ,
there are many interesting convergence and quasiconvergence results (see
[3, 9, 13, 14, 17, 27, 28, 34, 35, 42, 38, 47, 55] and references therein for results
withN = 1 and [2, 6, 7, 8, 11, 15, 16, 21, 22, 18, 44, 45] for results withN ≥ 1;
a 2017 overview was given in [41]). However, bounded solutions of (1.1) are
not quasiconvergent in general. Examples of non-quasiconvergent bounded
solutions can be found in [39, 40, 46]; earlier, the existence of such solution
was indicated by the analysis of [12]. Moreover, as shown in [40], bounded
non-quasiconvergent solutions of (1.1) exist rather frequently; namely, they
exist whenever f is bistable in some interval. We also mention a result of [19]
which shows that if N ≤ 2, the ω-limit set of any bounded solution contains
at least one steady state (see also [20]). Whether the same is true or not in
any dimension is an open problem.

In view of the existence of non-quasiconvergent solutions, one naturally
wonders whether quasiconvergence can be guaranteed by requiring the ini-
tial data to belong to a more specific, but still reasonably general, class of
functions. Several such classes have been identified in some of the references
mentioned above. For example, when f(0) = 0, these include nonnegative
functions u0 with compact support, and in this case one even gets the con-
vergence of the corresponding bounded solutions; see [9] for the proof for
N = 1, and [11] for the proof for any N under a nondegeneracy condition on
f . A related quasiconvergence theorem for bounded solutions with compactly
supported initial data was proved in [27] in a general setting of quasilinear
equations on bounded or unbounded intervals, possibly depending on time.
For equations (1.1) with N = 1 and f(0) = 0, the quasiconvergence was
also proved for bounded solutions with initial data satisfying u0 ≥ 0 and
u0(x) → 0 as |x| → ∞, see [34]. Interestingly, this quasiconvergence result is
not valid if N ≥ 3, even when u0 is radial, see [46].

In a recent project, joint with A. Pauthier, we examined equations on R
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with general convergent initial data. Specifically, we took any u0 ∈ C(R)
such that the limits u0(−∞) and u0(∞) both exist and are finite. We proved
that the corresponding solution of (1.1), (1.2) is quasiconvergent, if bounded,
in the following two cases:

(C1) u0(−∞) ̸= u0(∞) (see [36]).

(C2) u0(−∞) = u0(∞) =: ζ and either f(ζ) ̸= 0 or f(ζ) = 0 and ζ is a
stable equilibrium of the equation ξ̇ = f(ξ) (see [37]).

In the case (C2), we assumed that all zeros of f are nondegenerate: f ′(η) ̸= 0
whenever f(η) = 0. This case, with an analogous global nondegeneracy
condition, was independently treated in [47] in a more general setting of
gradient systems. In the remaining case,

(C3) u0(−∞) = u0(∞) =: ζ and ζ is an unstable equilibrium of the equation
ξ̇ = f(ξ),

under the same nondegeneracy condition on f , the quasiconvergence conclu-
sion is not valid in general (see [40]). In this case, we proved the quasicon-
vergence of the corresponding bounded solutions under additional conditions
(see [38]). For example, it is sufficient that u0 is of class C1 and has only
finitely many critical points, or, more generally, that u0 is continuous and
there is a positive number a such that u0 is nonconstant and monotone in
each of the intervals (−∞,−a), (a,∞).

The results concerning bounded solutions of one-dimensional equations
with convergent initial data motivated the research documented in this pa-
per. Our goal is to address the question whether similar quasiconvergence
theorems can be proved for radial solutions in higher dimensions. Obviously,
for radial functions u0 there is just one limit at infinity to deal with, so case
(C1) has no analog in the radial setting. Presently, we consider the analog
of case (C2). It turns out that similar quasiconvergence theorems as in [37]
can indeed be proved, even under weaker nondegeneracy conditions on f (see
conditions (ND), (ND2) below), and the proofs are much simpler.

We now give precise formulation of our main theorems; first stating their
hypotheses. From now on, we assume that N ≥ 2 and u0 satisfies the follow-
ing condition:

(IC) u0 is a continuous radial function on RN with ζ := limr→∞ u0(r) ∈ R.
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In (IC) and at many other places below, we often abuse the notation slightly
and view radial functions on RN as functions of the real variable r = |x|.

Since equation (1.1) is invariant under rotations, assumption (IC) implies
that the solution u(·, t, u0) is radial. Viewed as a function of t and r, it
satisfies the following equation and boundary condition at r = 0:

ut = urr +
N − 1

r
ur + f(u), r > 0, t > 0, (1.4)

ur(0, t) = 0, t > 0. (1.5)

As above, the function f is assumed to be of class C1. In our main
theorems, we also assume the following nondegeneracy conditions:

(ND) For each η ∈ f−1{0} there is ϵ > 0 such that the function f is
monotone (not necessarily strictly) in each of the intervals (η − ϵ, η],
[η, η + ϵ).

(ND2) For N = 2 only: f−1{0} does not contain any (nonempty) open
interval.

Obviously, conditions (ND), (ND2) are satisfied if all zeros of f are non-
degenerate: f ′(η) ̸= 0 for each η ∈ f−1{0}; but they are much weaker than
the latter condition. Essentially, (ND) just requires that f ′ not be oscillating
in the one-sided neighborhoods of η. We make some comments on the role of
the nondegeneracy conditions in our analysis at the end of the introduction.

Our first theorem concerns the case f(ζ) ̸= 0.

Theorem 1.1. Assume (IC), (ND), (ND2). If f(ζ) ̸= 0 and the solution u
of (1.1) is bounded, then it is convergent: as t→ ∞, u(·, t) → φ in L∞

loc(RN),
where φ is a (radial) steady state of (1.1).

Next we state a quasiconvergence theorem assuming that f(ζ) = 0 and
f ′ ≤ 0 on a neighborhood of ζ. Note that the latter condition is equivalent to
the stability of ζ as an equilibrium of the equation ξ̇ = f(ξ) when condition
(ND) is in effect.

Theorem 1.2. Assume (IC), (ND), (ND2). Further assume that f(ζ) = 0
and there is δ > 0 such that f ′(u) ≤ 0 for all u ∈ (ζ−δ, ζ+δ). If the solution
u of (1.1) is bounded, then it is quasiconvergent: ω(u) consists of (radial)
steady states of (1.1).
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Additional information on the steady states in ω(u) is given in Proposition
3.5 below. We show there that if ω(u) does not consist of a single steady
state, then it contains a continuum of radial steady states which have the
limit ζ, same as u0, as |x| → ∞ (note that we are not claiming that all steady
states in ω(u) have the same limit at infinity). Thus, if the existence of such
continuum can be ruled out for a given equation (1.1) and a given limit ζ, then
Theorem 1.2 yields the convergence of the solution u. We emphasize that ζ
is supposed to be a stable equilibrium of the equation ξ̇ = f(ξ). Whether
a continuum of steady states of (1.1) sharing the limit ζ may exist or not
is therefore a nontrivial question. We suspect that for some nonlinearities it
does exist, but for generic nonlinearities, in suitable Ck topologies, it does
not.1 It is also an interesting question whether, regardless of the existence
of such continua, the convergence to single steady state can be proved under
some explicit additional nondegeneracy conditions on f . Such questions will
be addressed elsewhere.

The proofs of the above theorems are given in Section 3. The main tech-
nical tools in these proofs are the zero number and intersection comparison
principles, along with some asymptotic properties of radial steady states of
(1.1) (see the preliminary Section 2).

We now make some remarks on the role of the nondegeneracy conditions
(ND), (ND2) in our proofs. Doing so, we also explain a key difference between
one-dimensional problems and radial problems in higher dimensions which
makes the proofs of Theorems 1.1, 1.2 much simpler compared to the proofs
of similar results for N = 1, as given in [37].

The only purpose of the nondegeneracy conditions (ND), (ND2) is to
guarantee that each bounded radial steady state ψ of (1.1) is convergent:
ψ(r) has a limit as r → ∞. This is not true in general (see [30] for coun-
terexamples with N = 2). If it is true for some specific equation, the above
theorems are valid for such an equation with hypotheses (ND), (ND2) re-
moved. The fact that conditions (ND), (ND2) imply the convergence fol-
lows, as we demonstrate in Lemma 2.2 below, from a result of [24] (see also
[26, 31]). Weaker, but more complicated, conditions for the convergence than
(ND), (ND2) can be found in or derived from [24, 26]; if desired, any such
conditions can safely be used in place (ND), (ND2) in all our results.

1The fact that no such continua exist for generic nonlinearities has already been proven.
It is a consequence of recent results of [49] concerning generic gradient systems of reaction
diffusion equations.
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The convergence property of the steady states makes them very useful for
various intersection-comparison arguments involving radial solutions of (1.1)
with convergent initial data. In contrast, steady states of the one-dimensional
equation (1.1) correspond to solutions of a planar Hamiltonian system and
convergent solutions of that system are rather exceptional (typical solutions
are periodic), regardless of any nondegeneracy conditions on f . This is the
main reason why some relatively simple arguments that we use in this paper
do not apply in the one-dimensional case.

To conclude the introduction, we mention recent papers [10, 48] which
also examine the large-time behavior of bounded radial solutions of (1.1),
but from a different perspective. The main focus of these papers is on the
structure of the solutions for large r, which is in a sense complementary to
our results on convergence and quasiconvergence in L∞

loc(RN).2 In the main
results of [10, 48], the asymptotic shape (for large t and large r = |x|) of a
class of solutions of (1.1) is described in term of propagating terraces of one-
dimensional equations ut = urr + f(u) (in [10], a class of nonradial solutions
of (1.1) is considered as well, and the setting in [48] is more general with the
scalar equation replaced by a gradient system).

In the rest of the paper, we assume as our standing hypotheses that
N ≥ 2, u0 satisfies condition (IC) above, and f satisfies the following condi-
tion

(F) f : R → R is a C1 function with bounded derivative.

The boundedness of f ′, or the global Lipschitz continuity of f , which is
assumed in (F) in addition to the previously assumed condition f ∈ C1, is a
convenience assumption made at no cost to generality. Since our main theo-
rems concern individual bounded solutions, we can always modify f outside
a large interval (−R,R) containing the range of the solution in question so as
to achieve the global Lipschitz continuity. We may clearly choose the mod-
ification such that the new function f is monotone in each of the intervals
(−∞, R)∪ (R,∞). This ensures that conditions (ND), (ND2) continue to be
satisfied if they were satisfied by the original nonlinearity.

2A recent update to the preprint [48] does include a result describing the large-time
behavior of solutions in bounded spatial intervals. It shows that for generic nonlinearities,
radial bounded solutions converge to a steady state in L∞

loc(RN ) (see also [50] for a related
result for nonradial solutions). The author is thankful to Emmanuel Risler for bringing
these new results to his attention.
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2 Preliminaries

This section contains preliminary results concerning radial steady states of
equation (1.1), zero number of solutions of linear parabolic equations, and
entire solutions of (1.1) in ω-limit sets.

2.1 Steady states

Radial steady states of (1.1) are solutions of the equation

ψrr +
N − 1

r
ψr + f(ψ) = 0, r > 0, (2.1)

and they also satisfy the condition ψr(0) = 0. In our analysis, we also use
solutions of (2.1) which are not necessarily steady states of equation (1.1);
they may well be unbounded as r ↘ 0.

Note that (2.1) is a regular ordinary differential equation on (0,∞), and
our standing assumption (F) implies that for any (a, b) ∈ R2 and r0 > 0 the
solution of (2.1) satisfying the initial conditions

ψ(r0) = a, ψr(r0) = b, (2.2)

is defined globally on (0,∞). It is also well known that for r0 = 0, b = 0
the initial value problem (2.1), (2.2) is well posed: it has a unique solution
ψ(·, a) ∈ C1[0,∞) ∩ C2(0,∞), and for any R > 0 the C1[0, R]-valued map
a 7→ ψ(·, a) is continuously differentiable.

The proof of the following simple lemma can be found in [43].

Lemma 2.1. Let ψ be a solution of (2.1). Then either ψ(r) is unbounded as
r → 0+ or else the limit a := limr→0+ ψ(r) exists and, after setting ψ(0) = a,
ψ is the solution of (2.1), (2.2) with r0 = 0 and b = 0.

We next state the convergence property of solutions of (2.1).

Lemma 2.2. Assume (ND), (ND2). If ψ is a solution of (2.1) which is
bounded in [1,∞), then

lim
r→∞

(ψ(r), ψ′(r)) = (η, 0), where η ∈ f−1{0}. (2.3)
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Proof. Assume ψ be a solution of (2.1) which is bounded in [1,∞). By
standard estimates, the convergence of ψ′(r) to zero follows from (2.1) once
the convergence of ψ(r) to η ∈ f−1{0} is proved. The proof of the latter is
given in [24], although the result is not stated there in exactly the same way.
We give some explanations.

First we note that, although it is assumed in [24] that ψ satisfies (2.1),
(2.2) with r0 = 0, b = 0 (and some a ∈ R), the arguments in [24] work the
same way for solutions satisfying (2.1), (2.2) with b = 0 and some r0 > 0—
and if ψ′(r) ̸= 0 for all r > 0 the convergence is trivial. Now, as proved
in [24] (see the Main Theorem and formulas (3.5), (3.6) in [24]), if ψ is not
convergent as r → ∞, then there exist c1 < c2 with the following properties:

(i) f(c1) ≤ 0 ≤ f(c2) and one of the values f(c1), f(c2) is zero,

(ii) there exist sequences {mk}k of local minimum points of ψ and {Mk}k
of local maximum points of ψ such that mk → ∞, Mk → ∞, and

ψ(mk) ↗ c1, ψ(Mk) ↘ c2, f(ψ(mk)) < 0 < f(ψ(Mk)). (2.4)

If f(c1) = 0, then (2.4) in conjunction with condition (ND) imply that f
is monotone nondecreasing in an interval (c1 − ϵ, c1) with ϵ > 0. Likewise,
if f(c2) = 0, then (2.4) and (ND) imply that f is monotone nondecreasing
in (c2, c2 + ϵ) for some ϵ > 0. In this situation, by [24, Main Theorem],
necessarily N = 2 and f ≡ 0 on [c1, c2]. But this possibility is ruled out by
condition (ND2). Thus ψ must be convergent.

2.2 Zero number

If u, ũ are two radial solutions of (1.1) on an open time interval J , the
function v := u− ũ solves the linear equation

vt = ∆v + c(x, t)v, |x| < r1, t ∈ J, (2.5)

where r1 = ∞, and c is a continuous bounded radial function given by

c(x, t) =

∫ 1

0

f ′(ũ(x, t) + s(u(x, t)− ũ(x, t)) ds. (2.6)

In the variables t and r, the equation for v = v(r, t) takes the form

vt = vrr +
N − 1

r
vr + c(r, t)v, r0 < r < r1, t ∈ J, (2.7)
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with r0 = 0, r1 = ∞, and we also have vr(0, t) = 0 for t ∈ J . For ũ we usually
take a radial steady state of (1.1), but we also consider differences v := u−ψ,
where ψ is just a solution (possibly unbounded as r → 0+) of equation (2.1).
In this case, we take r0 > 0 in (2.7); occasionally, it will also be convenient to
take r1 < ∞. When referring to equation (2.5), we always assume that c is
a continuous bounded radial function on {x ∈ RN : |x| < r1} × J . Similarly,
in equation (2.7), c is always assumed to be a continuous bounded function
on (r0, r1)× J .

Note that for r0 > 0 (2.7) is a nonsingular parabolic equation.
If I ⊂ [0,∞) is an interval and g : I → R is a continuous function, we

denote by zI(g) the number of zeros of g in I. If I = [0,∞), we often omit
the subscript I: z(g) = z[0,∞)g.

Lemma 2.3. Let 0 ≤ r0 < r1 ≤ ∞; and I := [r0, r1] if r1 < ∞, I = [r0,∞)
if r1 = ∞. Assume that either r0 = 0 and v(r, t) is a nontrivial bounded
radial solution of (2.5), or r0 > 0 and v(r, t) is a nontrivial bounded solution
of (2.7) such that v ∈ C(I × J) and v(r0, t) ̸= 0 for all t ∈ J . Finally,
if r1 < ∞ assume also that v(r1, t) ̸= 0 for all t ∈ J . Then the following
statements are valid:

(i) For each t ∈ J , the zeros of v(·, t) in I are isolated. In particular, if
r1 <∞, then zI(v(·, t)) <∞ for all t ∈ J .

(ii) The function t 7→ zI(v(·, t)) is monotone nonincreasing.

(iii) If for some t0 ∈ J the function v(·, t0) has a multiple zero ρ0 in I
(that is, v(ρ0, t0) = vρ(ρ0, t0) = 0) and zI(v(·, t0)) < ∞, then for any
t1, t2 ∈ J with t1 < t0 < t2, one has zI(v(·, t1)) > zI(v(·, t2)).

Proof. For r0 = 0 the lemma is proved in [5]; for r0 > 0, proofs can be found
in [1, 4].

Corollary 2.4. Assuming the hypotheses of Lemma 2.3, consider the set M
of all t ∈ J such that the function v(·, t) has a multiple zero.

(i) If r1 <∞, then the set M is discrete and its only possible accumulation
point is inf J .

(ii) If r1 = ∞, then the set M is at most countable.
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Proof. Assume first that r1 <∞. If some t̄ ∈ J with t̄ > inf J were an accu-
mulation point of M , then, picking t1 ∈ J with t1 < t̄, the finite zero number
zI(v(·, t)) would have to drop infinitely many times in [t1,∞) ∩ J , which is
impossible by the monotonicity. Now let r1 = ∞. To prove statement (ii), it
is sufficient to prove that for n = 1, 2, . . . the set

Mn := {t ∈ J : the function v(·, t) has a multiple zero in [0, n]}

is discrete, hence countable. Fix an arbitrary t0 ∈Mn (if there is any). Since
the zeros of v(·, t0) are isolated, there is r̄1 > n such that v(r̄1, t0) ̸= 0. By
continuity, v(r̄1, t) ̸= 0 for all t ∈ (t0 − ϵ, t0 + ϵ), where ϵ is a sufficiently
small positive number. Therefore, statement (i) applies with r1 replaced by
r̄1 and J replaced by (t0 − ϵ, t0 + ϵ). Consequently, since r1 > n, making
ϵ > 0 smaller if necessary, we obtain that Mn ∩ (t0 − ϵ, t0 + ϵ) = {t0}, as
desired.

We will also use the following robustness property.

Lemma 2.5. Let wn(r, t) be a sequence of functions converging to v(r, t) in
C1(Ī × [s, T ]), where s < T are numbers in J , and either I = (r0, r1) for
some 0 < r0 < r1 < ∞ or I = [0, r1) for some r1 ∈ (0,∞). If I = (r0, r1),
assume that v is a solution of (2.7); and if I = [0, r1), assume that v is a
radial solution of (2.5) and ∂rwn(0, t) = 0 for all t ∈ [s, T ] and n = 1, 2, . . . .
Finally, assume that v ̸≡ 0 and v(·, t0) has a multiple zero ρ0 ∈ I for some
t0 ∈ (s, T ). Then there exist sequences {rn} in I and {tn} in J such that
rn → ρ0, tn → t0, and for all sufficiently large n the function wn(·, tn) has a
multiple zero at rn: wn(rn, tn) = ∂rwn(rn, tn) = 0.

Proof. In the case I = (r0, r1) with 0 < r0 < r1 < ∞, the lemma is a
reformulation of [9, Lemma 2.6]. The proof for r0 = 0 uses similar arguments
to those in [9]; see [43] for the details.

2.3 Limit sets and entire solutions

We summarize here some well-know properties of the ω-limit set.
By standard parabolic estimates, the orbit {u(·, t), t ≥ 1} of a bounded

solution u of (1.1) is relatively compact in L∞
loc(RN). This implies that the

omega limit set of u, as defined in (1.3), is nonempty, compact, and connected
in L∞

loc(RN), and it attracts the solution in (the metric space) L∞
loc(RN):

distL∞
loc(RN ) (u(·, t), ω(u)) −→

t→∞
0.
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It is also well-known that for each φ ∈ ω(u) there exists a unique entire
solution U(x, t) of (1.1)

U(·, 0) = φ, U(·, t) ∈ ω(u) (t ∈ R). (2.8)

The entire solution refers to a solution defined for all t ∈ R. It will be
useful to recall how such an entire solution U is found. Let tn → ∞ be as
in the definition of ω(u): u(·, tn)→φ in L∞

loc(RN). The boundedness of u and
parabolic regularity estimates imply that all first-order spatial and temporal
partial derivatives, and all second-order spatial derivatives of u are bounded
on RN × [1,∞) and are globally α−Hölder continuous for any α ∈ (0, 1).
Therefore, denoting un(x, t) := u(x, t + tn), n = 1, 2 . . . , and passing to a
subsequence if necessary, we obtain that un → U in C1

loc(RN × R) for some
function U ; this function U is then easily shown to be an entire solution of
(1.1). By definition, U satisfies (2.8). The uniqueness of this entire solution
follows from the uniqueness and backward uniqueness for the Cauchy problem
(1.1), (1.2).

Obviously, if the solution u is radial, then all functions in ω(u) are radial.

3 Some general results and the proofs of The-

orems 1.1, 1.2

In this section, we first prove some useful general results and then give proofs
of Theorems 1.1, 1.2. By default, in the following statements we only assume
the standing hypotheses (F) and (IC); the nondegeneracy conditions (ND),
(ND2) are assumed only where indicated.

We start with the following characterization of convergence of bounded
solutions of equation (1.1) (we are not involving (1.2) here, so condition (IC)
is not relevant in this result).

Proposition 3.1. Let u be any bounded radial solution of (1.1). Then u(·, t)
is convergent if and only if u(0, t) is convergent as t→ ∞.

Recall that the convergence of u(·, t) refers to the convergence (to a steady
state) in L∞

loc(RN).

Proof of Proposition 3.1. If u(·, t) is convergent, then, trivially u(0, t) is con-
vergent. To prove the converse, assume that u(0, t) → a ∈ R as t → ∞.
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Then each φ ∈ ω(u) has φ(0) = a. Pick any φ ∈ ω(u) and let U be the
radial entire solution of (1.1) with U(·, 0) = φ, U(·, t) ∈ ω(u) for all t ∈ R
(cp. Section 2.3). Then U(0, t) = a and so Ut(0, t) = 0 for all t ∈ R. The
function v := Ut is a radial solution of a linear equation (2.5), and in partic-
ular vr(0, t) = 0 for all t. Thus, r = 0 is a multiple zero of v(·, t) for all t.
By Corollary 2.4, this is only possible if v ≡ 0, hence φ is a steady state of
(1.1).

We have proved that all elements φ of ω(u) are steady states. Since they
are all radial, the relation φ(0) = a implies that there is just one of them.
This shows that u is indeed convergent.

Proposition 3.2. Let u be the radial solution of (1.1), (1.2) (with u0 sat-
isfying the standing hypotheses (IC).) Then for any t ∈ [0, T (u0)) the limit
ξ(t) := limr→∞ u(r, t) exists, and the function ξ(t) is the solution of the dif-
ferential equation ξ̇ = f(ξ) with ξ(0) = ζ.

Proof. For one-dimensional equations, the proof of a (more general) version
of this result can be found in [52]. This proof, consisting essentially in taking
limits in Picard iterates in the variation of constants formula, works, after
straightforward modifications, for equations (1.1) in any dimension.

Alternatively, one can use the following argument. If f(0) = 0, then it
is well-known (see [23, 29]) that equation (1.1) is well-posed on C0(Rn), the
space of all continuous functions whose limit as |x| → ∞ is 0. In other words
the space C0(Rn) is invariant under (1.1) (which is well-posed on larger spaces
as well). The same is true if f(u) is replaced by a t-dependent function f(t, u)
satisfying suitable regularity assumptions and the condition f(t, 0) = 0 for
all t. One can obtain the conclusion of Proposition 3.2 from the previous
observation by considering the function ũ(x, t) := u(x, t)− ξ(t), where ξ(t) is
the solution of the equation ξ̇ = f(ξ) with ξ(0) = ζ. Indeed, ũ is a solution
of (1.1) with f(u) replaced by the function f̃(t, u) = f(u + ξ(t)) − f(ξ(t))
satisfying f̃(t, 0) = 0.

We now prove Theorem 1.1.

Proof of Theorem 1.1. Assume that (ND), (ND2) and the other hypotheses
of the theorem are satisfied: (IC) holds with f(ζ) ̸= 0 and the solution u
of (1.1) is bounded. For a contradiction, assume that u is not convergent.
Then, by Proposition 3.1,

a1 := lim inf
t→0

u(0, t) < a2 := lim sup
t→0

u(0, t).
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Pick any a ∈ (a1, a2) and let ψ be the solution of (2.2) with r0 = 0, b = 0.
Then there is a sequence tk → ∞ such that u(0, tk) = a, which means, by
symmetry, that r = 0 is a multiple zero of the function u(·, tk)− ψ. We now
distinguish the cases when ψ is bounded and when it is unbounded.

If ψ is bounded, then, by Lemma 2.2, the limit η := ψ(∞) exists and
f(η) = 0. In particular, η ̸= ζ = u0(∞). By Proposition 3.2, the limit
u(∞, t) exists and is different from η for any t > 0. This and the fact that
the zeros of u(·, t)−ψ are isolated (see Lemma 2.3) imply that z(u(·, t)−ψ)
is finite. By the monotonicity of the zero number, z(u(·, t)−ψ) can drop only
finitely many times as t increases in [1,∞). On the other hand, by Lemma
2.3(iii), z(u(·, t)− ψ) drops at t = t1, t2, . . . , and we have a contradiction.

If ψ is unbounded, then, since u is bounded, there exists r1 such that
u(r1, t) − ψ(r1) ̸= 0 for all t ≥ 0. Applying the zero number arguments as
in the previous paragraph, considering this time the zero number in [0, r1]
rather than [0,∞), we obtain a contradiction.

Thus the assumption that u is not convergent always leads to a contra-
diction, which proves the convergence of u.

With u0 and ζ as is as in (IC), we next assume that f(ζ) = 0 and
give a sufficient condition for the quasiconvergence of the solution of (1.1),
(1.2). The sufficient condition involves the stable set of ζ with respect to the
ordinary differential equation (2.1), which we now define. For any r0 > 0 and
(a, b) ∈ R2, denote by ψ(r; r0, a, b) the solution of (2.1), (2.2). The stable set
of ζ (with the initial “time” r0) is defined as follows:

S(ζ, r0) := {(a, b) ∈ R2 : lim
r→∞

ψ(r; r0, a, b) = ζ}. (3.1)

Note that

S(ζ, r0) = {(a, b) ∈ R2 : lim
r→∞

(ψ(r; r0, a, b), ψr(r; r0, a, b)) = (ζ, 0)}, (3.2)

for the convergence ψr(r; r0, a, b) → 0 follows automatically from the conver-
gence of the solution ψ(r; r0, a, b).

Proposition 3.3. Assume (ND), (ND2). Further assume that (IC) holds
with f(ζ) = 0 and for some r0 > 0 the set S(ζ, r0) ⊂ R2 has empty inte-
rior. Then, if the solution u of (1.1) is bounded, it is quasiconvergent: ω(u)
consists of (radial) steady states of (1.1).
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We remark, that if S(ζ, r0) has empty interior for some r0, then it has
empty interior for all r0 > 0. This follows from standard properties of the
planar map (a, b) 7→ (ψ(r; r0, a, b), ψr(r; r0, a, b)) (see the proof of Lemma 3.4
below).

Proof of Proposition 3.3. Fix an arbitrary φ ∈ ω(u). We show by contradic-
tion that φ is a steady state. Assume it is not.

With r0 > 0 as in the assumptions, let ψ be the solution of (2.1) with

ψ(r0) = φ(r0), ψr(r0) = φr(r0). (3.3)

Let U be the radial entire solution of (1.1) with U(·, 0) = φ, U(·, t) ∈ ω(u)
for all t ∈ R (cp. Section 2.3). Relations (3.3) imply that U(·, 0) − ψ has
a multiple zero at r = r0. We have U − ψ ̸≡ 0, as φ is not a steady
state. Since intS(ζ, r0) = ∅, there is a sequence (an, bn) ∈ R2 \ S(ζ, r0)
converging to (φ(r0), φr(r0)). By the continuity with respect to initial data,
ψ(·; r0, an, bn) → ψ in C1

loc(0,∞). Therefore, by Lemma 2.5, for a sufficiently
large n, which we henceforth fix, the function U(·, τ) − ψ(·; r0, an, bn) has a
multiple zero ρ0 near r0 for some τ ≈ 0. As noted in Section 2.3, there is a
sequence tk → ∞ such that u(·, tk + ·) → U in C1

loc(0,∞). Applying Lemma
2.5 again, we find a sequences τk → τ and ρk → ρ0 such that for all large
enough k the function u(·, tk + τk)−ψ(·; r0, an, bn) has a multiple zero at the
point ρk.

To simplify the notation, denote ψ̃ := ψ(·; r0, an, bn) and t̃k := tk + τk.
Thus, ψ̃ is a solution of (2.1), t̃k → ∞, and there is a compact interval
[ρ0 − δ, ρ0 + δ] ⊂ (0,∞) such that for each k the function u(·, t̃k) − ψ̃ has a
multiple zero in [ρ0 − δ, ρ0 + δ].

If ψ̃(r) is bounded as r → ∞ set r1 := ∞. Note that in this case the limit
η := ψ̃(∞) exists (cp. Lemma 2.2) and η ̸= ζ since (an, bn) ̸∈ S(ζ, r0). If
ψ̃(r) is not bounded as r → ∞, pick r1 > ρ0+δ such that u(r1, t)− ψ̃(r1) ̸= 0
for all t > 0 (such r1 exists as u is bounded).

Similarly, if ψ̃(r) is bounded as r → 0 set r̄0 := 0. Note that ψ̃ is then the
solution of (2.1), (2.2) with r0 = 0, b = 0, and a := ψ̃(0+) (cp. Lemma 2.1).
If ψ̃(r) is not bounded as r → 0, pick r̄0 < ρ0−δ such that u(r̄0, t)−ψ(r̄0) ̸= 0
for all t > 0.

Let I := [r0, r1] if r1 <∞ and I := [r0,∞) if r1 = ∞.
Observe that the zero number zI(u(·, t) − ψ) is finite for t > 0. This

is obvious if r1 < ∞ (cp. Lemma 2.3(i)); in the case r1 = ∞, it follows
from Lemma 2.3(i) and the facts that the limits ζ = u(∞, t) and η = ψ(∞)
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are different. By the monotonicity, zI(u(·, t) − ψ) can drop only finitely
many times as t increases in [1,∞); but, on the other hand, Lemma 2.3(iii)
implies that it does drop at t = t̃1, t̃2, . . . . Thus, we have obtained a desired
contradiction, showing that each φ ∈ ω(u) is a steady state.

To prove Theorem 1.2, it is now sufficient to show that S(ζ, r0) has empty
interior if f ′(u) ≤ 0 on a neighborhood of ζ. In the following lemma, we derive
this result from the maximum principle. We remark that under the stronger
assumption f ′(ζ) < 0, one can also use results of [25, 51] to obtain a more
precise description (a manifold structure) of S(ζ, r0).

Lemma 3.4. Assume that f(ζ) = 0 and there is δ > 0 such that f ′(u) ≤ 0
for all u ∈ [ζ − δ, ζ + δ]. Given any r0 > 0, the set S(ζ, r0) ⊂ R2 has empty
interior.

Proof. We show that the set S(ζ, r0) is covered by a countable union of
nowhere dense sets. The desired conclusion then follows immediately from
the Baire category theorem.

To simplify the notation, we assume that ζ = 0. This is at no cost to
generality, just replace f(u) by f(u+ ζ).

With δ > 0 as in the assumption on f and n = 1, 2, . . . , define

Tn := {(α, β) ∈ S(0, n) : |(ψ(r;n, α, β), ψr(r;n, α, β))| ≤ δ (r ≥ n)}.

Clearly, if (a0, b0) ∈ S(0, r0), then for sufficiently large n we have

(ψ(n; r0, a0, b0), ψr(n; r0, a0, b0)) ∈ Tn.

This means that (a0, b0) belongs to the preimage, denoted by Qn, of the set
Tn under the map

(a, b) 7→ (ψ(n; r0, a, b), ψr(n; r0, a, b)) : R2 → R2. (3.4)

Note that this is the time n − r0 map (with the initial time r0) of the first
order system corresponding to equation (2.1). By well-known results in or-
dinary differential equations, this maps is a diffeomorphism. Therefore Qn

is nowhere dense if Tn is such. We will prove the latter momentarily. Since
the sets Qn, n = 1, 2, . . . cover S(0, r0), we will then be done.

We now show that for each n the set Tn is nowhere dense, that is, its
closure T̄n has empty interior. This clearly follows from the following claim:
if (α, β), (α, β̃) are elements of T̄n (with the same α), then β = β̃.
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To prove the claim, let {(αk, βk)}, {(α̃k, β̃k)} be sequences in Tn converg-
ing to (α, β), (α, β̃), respectively. For any k, consider the solutions

ψk(r) := ψ(r;n, αk, βk), ψ̃k(r) := ψ(r;n, α̃k, β̃k) (3.5)

of (2.1). The definition of Tn yields

ψk(∞) = 0 = ψ̃k(∞), |ψk(r)|, |ψ̃k(r)| ≤ δ (r ≥ n). (3.6)

The difference v := ψk − ψ̃k satisfies the linear equation

vrr +
N − 1

r
vr + c(r)v = 0, r > 0, (3.7)

where

c(r) =

∫ 1

0

f ′(sψk(r) + (1− s)ψ̃k(r)) ds.

Note that c(r) ≤ 0 for all r ∈ [n,∞) due to (3.6) and the assumption on f .
Since v(∞) = 0, we deduce from the maximum principle that

|ψk(r)− ψ̃k(r)| ≤ |ψk(n)− ψ̃k(n)| = |αk − α̃k| (r ≥ n).

Since the sequences {αk}, {α̃k} both converge to α, we obtain

|ψk(r)− ψ̃k(r)| → 0 (r ≥ n). (3.8)

On the other hand, by the continuity of solutions with respect to initial data,

ψk(r) = ψ(r;n, αk, βk) → ψ(r;n, α, β),

ψ̃k(r) = ψ(r;n, α̃k, β̃k) → ψ(r;n, α, β̃).

By (3.8), these limits are equal, which gives β = β̃, proving our claim.

The proof of of Theorem 1.2 can now be completed.

Proof of Theorem 1.2. The theorem follows directly from Proposition 3.3
and Lemma 3.4.

By Theorem 1.2, ω(u) is a connected and compact set of radial steady
states (the connectedness and compactness refer to the topology of L∞

loc(RN)).

17



We conclude this section with an additional information on these steady
states. Let

T := {ψ(0) : ψ ∈ ω(u)}.

Denoting by ψ(r, a) the solution of (2.1), (2.2) with r0 = 0 and b = 0, we
have

ω(u) = {ψ(·, a) : a ∈ T }. (3.9)

Since T is clearly compact and connected, it is a singleton or a nontrivial
compact interval. The following proposition concerns the latter.

Proposition 3.5. If a ∈ int T , then the following relations are valid

z(u(·, t)− ψ(·, a)) = ∞ (t > 0), (3.10)

ψ(∞, a) := lim
r→∞

ψ(r, a) = ζ. (3.11)

As already elucidated in the introduction, if for some f and ζ one can rule
out the existence of an interval of values a ∈ R for which (3.11) holds, T and
ω(u) consist of a single element. Theorem 1.2 then becomes a convergence
theorem.

Proof of Proposition 3.5. By the definition of T , from a ∈ int T it follows
that there is an increasing sequence t̄n in (0,∞) such that t̄n → ∞ and
u(0, t̄n) = a. Consider the function v(r, t) := u(r, t) − ψ(r, a), which is a
nontrivial radial solution of a linear equation (2.5) with r1 = ∞. For each n,
r = 0 is a zero of v(·, t̄n), automatically a multiple zero due to the symmetry.
By the monotonicity and diminishing properties of the zero number (see
Lemma 2.3), the existence of such an infinite sequence t̄n is possible only if
(3.10) holds.

Now, being an element of ω(u), the function ψ(·, a) is bounded. By
Lemma 2.2, the limit ψ(∞, a) ∈ R exists. Since the zeros of u(·, t) − ψ(·, a)
are isolated and u(∞, t) = ζ (cp. Proposition 3.2), (3.10) implies (3.11).
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[16] E. Feireisl and H. Petzeltová, Convergence to a ground state as a thresh-
old phenomenon in nonlinear parabolic equations, Differential Integral
Equations 10 (1997), 181–196.
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