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Abstract. In this article, we investigate the parabolic logistic equation with blow-up initial

and boundary values over a smooth bounded domain Ω:(
ut −∆u = a(x, t)u− b(x, t)up in Ω× (0, T ),

u =∞ on ∂Ω× (0, T ) ∪ Ω× {0},
where T > 0 and p > 1 are constants, a and b are continuous functions, with b > 0 in Ω ×
[0, T ), b(x, T ) ≡ 0. We study the existence and uniqueness of positive solutions, and their

asymptotic behavior near the parabolic boundary. Under the extra condition that b(x, t) ≥
c(T − t)θd(x, ∂Ω)β on Ω × [0, T ) for some constants c > 0, θ > 0 and β > −2, we show that

such a solution stays bounded in any compact subset of Ω as t increases to T , and hence solves

the equation up to t = T .

1. Introduction

In this work, we study the parabolic logistic equation with blow-up initial and boundary

values: 
ut −∆u = a(x, t)u− b(x, t)up in Ω× (0, T ),

u =∞ on ∂Ω× (0, T ),

u =∞ on Ω× {0},

(1.1)

where Ω ⊂ RN (N ≥ 1) is a bounded smooth domain, T > 0 and p > 1 are constants,

a(x, t) and b(x, t) are continuous functions on Ω × [0, T ], with b > 0 in Ω × [0, T ) and

b = 0 on Ω× {T}.
Throughout this work, by u =∞ on ∂Ω× (0, T ), we mean that

u(x, t)→∞ as d(x, ∂Ω)→ 0 uniformly for t ∈ (0, T ),
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and by u =∞ on Ω× {0}, we mean that

u(x, t)→∞ as t→ 0 uniformly for x ∈ Ω.

We are interested in the existence and uniqueness of positive solutions to (1.1), and the

behavior of the solutions near t = T and near the parabolic boundary

Σ(T ) := ∂Ω× (0, T ) ∪ Ω× {0}.

Our investigation in the present work was partly motivated by [8] concerning the long-

time asymptotic behavior of the solution of a parabolic logistic equation with a degenerate

spatial-temporal coefficient b(x, t), of the form
vt −∆v = av − b(x, t)vp in D × (0,∞),

∂νv = 0 on ∂D × (0,∞),

v(x, 0) = v0(x) ≥, 6≡ 0 in D,

(1.2)

where a is a constant (for simplicity), p > 1, b(x, t) is Hölder continuous and L-periodic

in t, and there exist Hölder continuous functions p(x) and q(t) such that

(1.3) c1p(x)q(t) ≤ b(x, t) ≤ c2p(x)q(t) (x ∈ D, t ∈ R1)

for some positive constants c1 and c2, p(x) > 0 in a smooth domain Ω satisfying Ω ⊂ D,

p(x) ≡ 0 in D \ Ω, and q(t) is L-periodic and satisfies, for some T ∈ (0, L),

q(t) > 0 in (0, T ), q(t) ≡ 0 in [T, L].

In [8], the complementary case that p(x) > 0 in D \ Ω and p(x) ≡ 0 in Ω was studied,

but the results there carry over to the current case p(x) ≡ 0 in D \Ω, p(x) > 0 in Ω with

only minor variations of the proofs. These results indicate that there exists a∗ > 0 such

that when a ≥ a∗, the unique positive solution v(x, t) of (1.2) satisfies

lim
n→∞

v(x, t+ nL) =∞

uniformly for (x, t) in compact subsets of {(D \ Ω)× [0, T ]} ∪ {D × (T, L]}, and

lim
n→∞

v(x, t+ nL) = u(x, t)

uniformly for (x, t) in compact subsets of Ω × [0, T ), where u is the minimal positive

solution of (1.1) with a(x, t) ≡ constant.

In order to see the point clearer, we restate the above conclusions from a slightly

different angle. In any compact subset of the infinite cylinder (D \ Ω) × R1, clearly

limn→∞ v(x, t+ nL) =∞ uniformly. In the infinite cylinder Ω× R1, we define

u∗(x, t) =

{
u(x, t), (x, t) ∈ Ω× (0, T ),

∞, (x, t) ∈ Ω× (T, L],

and extend u∗ periodically into Ω× (R1 \ S), S := {T + kL : k = 0,±1,±2, ...}. Then

lim
n→∞

v(x, t+ nL) = u∗(x, t)
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uniformly for (x, t) in compact subsets of Ω×(R1\S). Thus the behavior of limn→∞ v(x, t+

nL) is unclear only over the set Ω× S.

To answer this remaining question, one needs to know the asymptotic behavior of the

solutions to (1.1) near t = T . The analogous results of [8] reveal that (1.1) has a maximal

and minimal solution, but the questions of uniqueness and asymptotic behavior of the

solution near t = T and near the parabolic boundary were left open.

These questions will be addressed here under the following assumptions on a(x, t) and

b(x, t): {
a and b are continuous in Ω× [0, T ] and Ω× [0, T ], respectively,

b(x, t) > 0 in Ω× [0, T ), b(x, t) = 0 on Ω× {T},
(1.4)

and there exist a constant β > −2 and positive continuous functions α1(t) and α2(t) on

[0, T ) such that

α1(t)d(x, ∂Ω)β ≤ b(x, t) ≤ α2(t)d(x, ∂Ω)β for (x, t) ∈ Ω× [0, T ).(1.5)

We note that, due to (1.4), necessarily α1(T ) = 0. Note also that if β ≤ −2, then (1.1)

may not have a solution. Indeed, if u(x, t) satisfies

ut −∆u = a(x, t)u− d(x, ∂Ω)βup in Ω× (0, T ),

with β ≤ −2, then one can easily modify the arguments in [4] or Lemma 6.12 of [6] (where

the corresponding elliptic problem was considered) to show that for each fixed t ∈ (0, T ),

u(x, t) ≤ C(t)d(x, ∂Ω)−
2+β
p−1 for all x near ∂Ω. Hence in such a case u(x, t) is always

bounded from above for x near ∂Ω.

The first two results in this paper are concerned with the behavior of positive solutions

of (1.1) near t = 0 and near t = T .

Theorem 1.1. Under conditions (1.4) and (1.5), problem (1.1) has a maximal positive

solution u and a minimal positive solution u, in the sense that any positive solution u

of (1.1) satisfies u ≤ u ≤ u. Moreover, for any given t0 ∈ (0, T ), there exist positive

constants c1 and c2, depending on t0, such that

(1.6) u(x, t) ≥ c1

(
t
− 1
pβ−1 + d(x, ∂Ω)−

2+β
p−1

)
((x, t) ∈ Ω× (0, t0]),

and

(1.7) u(x, t) ≤ c2

(
t
− 1
pβ−1

+ d(x, ∂Ω)−
2+β
p−1

)
((x, t) ∈ Ω× (0, t0]),

where

pβ = max

{
p,

2p+ β

2 + β

}
, p

β
= min

{
p,

2p+ β

2 + β

}
.

Clearly

pβ =

{
2p+β
2+β for β ∈ (−2, 0),

p for β ≥ 0,
p
β

=

{
p for β ∈ (−2, 0),
2p+β
2+β for β ≥ 0.
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Theorem 1.2. Under the conditions of Theorem 1.1, if we further assume that

α1(t) ≥ c0(T − t)θ in [0, T ) for some positive constants c0 and θ,

then for any t0 ∈ (0, T ), there exists C = C(t0) > 0 such that

(1.8) u(x, t) ≤ C min
{

(T − t)−
θ
p−1 , d(x, ∂Ω)−

2θ
p−1

}
d(x, ∂Ω)−

2+β
p−1 ((x, t) ∈ Ω× [t0, T )).

As we will see below, the behavior of the positive solutions of (1.1) near t = 0 will

help to determine whether the solution is unique. Theorem 1.2 implies that under the

extra mild condition imposed there, the asymptotic limit u∗(x, t) of the solution v(x, t) of

(1.2) extends to a continuous function in Ω× (kL, kL+ T ] for every integer k, and hence

exhibits an infinite jump each time t increases across kL+ T .

Moreover, let us mention, without elaborating, that Theorem 1.2 can also be used to

handle the problem (1.2), where (1.3) is satisfied with q(t) > 0 except at finitely many

points in (0, L]. If q(t) satisfies the condition in Theorem 1.2 at each of its vanishing

points, then one can use Theorem 1.2 to show that, there exists ã∗ > 0 so that for a ≥ ã∗,

the unique positive solution v(x, t) of (1.2) satisfies limt→∞ v(x, t) = ∞ uniformly in

D \ Ω, and limn→∞ v(x, t + nL) = U(x, t) uniformly in any compact subset of Ω × R1,

where U is the minimal positive solution of

Ut −∆U = aU − b(x, t)Up in Ω× R1, u =∞ on ∂Ω× R1,

which is L-periodic in t.

The other results of this paper deal with the uniqueness and the local behavior of the

solution of (1.1) near the parabolic boundary Σ(T ). These questions were considered in

[3] for the (spatially and temporally) autonomous problem

ut −∆φ(u) = f(u) in Ω× (0,∞), u =∞ on Σ,(1.9)

under suitable conditions on the functions φ and f , where Σ := ∂Ω× (0,∞) ∪ Ω× {0}.
If we take φ(u) = u and f(u) = a0u − b0up with constants p > 1, a0 > 0, b0 > 0, then

the result of [3] implies that

(i) u(x, t)/t−1/(p−1) → [(p− 1)b0]−1/(p−1) as t→ 0 (x ∈ Ω),

(ii) U(x, t)/d(x, ∂Ω)−2/(p−1) →
[

2(p+1)
b0(p−1)2

]1/(p−1)
as x→ ∂Ω (t > 0).

Indeed, (i) and (ii) above are consequences of the fact that

u(x, t)/z(t)→ 1 as t→ 0 for fixed x ∈ Ω,

and

u(x, t)/V (x)→ 1 as x→ ∂Ω for fixed t > 0,

where z(t) is the unique solution of the ODE

z′ = a0z − b0zp for t > 0, z(0) =∞,

and V (x) is the unique solution to the elliptic boundary blow-up problem

−∆V = a0V − b0V p in Ω, V |∂Ω =∞.
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Related results for nonsmooth domains can be found in [1, 2, 11]. For the non-autonomous

problem (1.1), we have the following results.

Theorem 1.3. Under the assumptions of Theorem 1.1, let u(x, t) be any solution of

(1.1). Then

(i)
u(x, t)

t−1/(p−1)
→ [(p− 1)b(x, 0)]−1/(p−1) as t→ 0 for fixed x ∈ Ω;

(ii)
u(x, t)

d(x, ∂Ω)−(2+β)/(p−1)
→
[ 2(p+ 1)

γ(x0, t)(p− 1)2

]1/(p−1)
as x→ x0 ∈ ∂Ω for

fixed t ∈ (0, T ), provided that

γ(x, t) :=
b(x, t)

d(x, ∂Ω)β

extends to a continuous function on Ω× (0, T ).

Theorem 1.4. Under the assumptions of Theorem 1.1, if β = 0, then (1.1) has a unique

positive solution.

Theorems 1.1 and 1.2 are proved in section 2. The proof of Theorem 1.1 is based on

various comparison arguments, while that for Theorem 1.2 is based on a scaling argument.

We remark that the scaling argument here is different from those in [12], where a suitable

scaling process based on a key doubling lemma is combined with a Liouville type result

to deduce some universal a priori bounds; our proof here does not rely on such a lemma

or a Liouville theorem, instead it combines a suitable scaling process with a comparison

argument to obtain the required bound.

In section 3, we prove Theorems 1.3 and 1.4. Since (1.1) has variable coefficients,

and b(x, t) may vanish or blow-up on ∂Ω, we need to introduce some new localization

techniques to prove Theorem 1.3, which are considerably different from the arguments in

[3], where only constant coefficients appear in the equation. The equations in [1, 2, 11] also

only involve constant coefficients. Theorem 1.4 follows from Theorem 1.1 and a convex

function technique of Marcus and Véron [9, 10].

2. Estimates near t = 0 and near t = T

We prove Theorems 1.1 and 1.2 in this section. To simplify notations, we will write

d(x) = d(x, ∂Ω) from now on.

Proof of Theorem 1.1: We first prove the existence of a minimal positive solution

u(x, t) and a maximal positive solution u(x, t) of (1.1) in the sense that any positive

solution u(x, t) of (1.1) satisfies u(x, t) ≤ u(x, t) ≤ u(x, t) in Ω×(0, T ). The proof of (1.6)

and (1.7) partly builds upon the arguments leading to the existence of the minimal and

maximal solutions.

For arbitrarily small ε > 0, since α1(t) > 0 in [0, T −ε], we may assume that α1(t) ≥ mε

on [0, T − ε] for some positive constant mε. Choose A > 0 such that |a(x, t)| ≤ A in
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Ω× (0, T ]. Then, for any given constant n ≥ 1, we consider the problem{
ut −∆u = au− bup in Ω× (0, T − ε),

u = n on ∂Ω× (0, T − ε) ∪ Ω× {0}.
(2.1)

It is clear that (2.1) has a unique positive solution un for any given n ≥ 1, ε > 0.

Moreover, the classical comparison theorem for parabolic equations guarantees that un is

strictly increasing in n, that is, un < un+1 on Ω× [0, T − ε].
In the sequel, we will find a supersolution of (2.1), which is independent of n. For this

purpose, we consider the following two auxiliary problems:

w′ = Aw − wpβ for t > 0, w(0) =∞,(2.2)

and

−∆z = Az − d(x)βzp in Ω, z =∞ on ∂Ω.(2.3)

The unique solution w∗ of (2.2) can be explicitly written as

w∗(t) = A
1

pβ−1
eAt
[
e
A(p

β
−1)t − 1

] 1
1−pβ , t > 0.

It is well-known (see, for example, Theorem 6.15 in [5]) that problem (2.3) admits a unique

positive solution z∗, and

lim
x→∂Ω

z∗(x)

d(x)−
2+β
p−1

=
[(2 + β)(1 + β + p)

(p− 1)2

] 1
p−1

.

It follows that

(2.4) c1d(x)−
2+β
p−1 ≤ z∗(x) ≤ c2d(x)−

2+β
p−1 (x ∈ Ω)

for some positive constants c1 and c2.

If β ∈ (−2, 0), then we can find c3 > 0 such that c3d(x)β ≥ 1 in Ω. Recalling also that

p
β

= p in this case, it follows that

(w∗)′ ≥ Aw∗ − c3d(x)β(w∗)p (x ∈ Ω, t > 0).

Thus we can find M > 1 sufficiently large such that U∗ := M(w∗ + z∗) satisfies

U∗t −∆U∗ ≥ AU∗ −mεd(x)β(U∗)p (x ∈ Ω, t > 0).

It follows that

(2.5) U∗t −∆U∗ ≥ a(x, t)U∗ − b(x, t)(U∗)p (x ∈ Ω, t ∈ (0, T − ε]).

If β ≥ 0, then there exists c4 > 0 such that d(x)β ≤ c4z
∗(x)−β

p−1
2+β and thus

−∆z∗ ≥ Az∗ − c4(z∗)
p
β .

Thus, we can find M0 ≥ 1 large enough such that U0 = M0(w∗ + z∗) satisfies

(U0)t −∆U ≥ AU0 − U
p
β

0 (x ∈ Ω, t > 0).
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Since

p
β

= p− β p− 1

2 + β
≤ p

and

U0 ≥ z∗ ≥ c1d(x)−
2+β
p−1 ,

we have

U
p
β

0 ≤ c5d(x)βUp0

for some c5 > 0 and thus

(U0)t −∆U0 ≥ AU0 − c5d(x)βUp0 (x ∈ Ω, ∀t > 0).

It follows that there exists M ≥ M0 such that U∗ = M(w∗ + z∗) = (M/M0)U0 satisfies

(2.5).

For any fixed n, we have U∗(x, t) > un(x, t) on ∂Ω × (0, T − ε) and on Ω for all small

t > 0. Hence, for all n ≥ 1, by the comparison principle, we have un(x, t) ≤ U∗(x, t) on

Ω×(0, T−ε]. It should be noticed that, for fixed small ε > 0 and any compact subset K of

Ω, U∗ is bounded on K × [ε, T − ε]. As a consequence, by standard regularity arguments,

un(x, t) → u(x, t) as n → ∞ uniformly on any compact subset of Ω × (0, T ), where u

satisfies (1.1). Thus, u is a solution to (1.1). (The fact that the boundary conditions are

satisfied by u can be easily proved as in the elliptic case; see e.g. page 13 of [7]. This also

follows from the proof of (1.6) given below.) Actually, u is the minimal positive solution

of (1.1). Indeed, let u be any positive solution of (1.1). Then, for any small ε > 0, we can

easily apply the parabolic comparison principle to conclude that un < u in Ω× (0, T − ε).
Letting n → ∞ we deduce u ≤ u on Ω × (0, T − ε]. By the arbitrariness of ε, u ≤ u in

Ω× (0, T ), which implies that u is the minimal positive solution.

We next prove the existence of a maximal positive solution of (1.1). To achieve this,

for any small ε > 0, we define Ωε = {x ∈ Ω : d(x, ∂Ω) > ε}. Obviously, for small ε, ∂Ωε

has the same smoothness as ∂Ω. Then, we consider the following problem:{
ut −∆u = a(x, t)u− b(x, t)up in Ωε × (ε, T ),

u =∞ on ∂Ωε × (ε, T ) ∪ Ωε × {ε}.
(2.6)

Let us denote by uε the minimal positive solution of (2.6).

By using the parabolic comparison principle, we easily deduce that uε1 ≥ uε2 ≥ u when

ε1 > ε2 > 0. Therefore, one can extract a decreasing sequence εn satisfying εn → 0,

such that uεn → u as εn → 0 and u solves (1.1). Moreover, u is the maximal positive

solution of (1.1). Indeed, for any positive solution u of (1.1), it follows from the parabolic

comparison principle again that uεn > u in Ωεn × (εn, T ) for each n. By taking n → ∞
we obtain u ≥ u. Hence u is the maximal positive solution of (1.1).

Finally, we prove (1.6) and (1.7). By checking the previous analysis, we have

u ≤ u ≤M(w∗δ + z∗δ ) in Ωδ × (δ, T − ε),(2.7)



8 Y. DU, R. PENG, AND P. POLÁČIK

where M ≥ 1 is independent of δ, w∗δ(t) = w∗(t− δ) and z∗δ is the unique positive solution

of

−∆z = Az − d(x)βzp in Ωδ, z =∞ on ∂Ωδ

for the case β ∈ (−2, 0), and z∗δ is the the unique positive solution of

−∆z = Az − d(x, ∂Ωδ)
βzp in Ωδ, z =∞ on ∂Ωδ

for the case β ≥ 0. (The existence and uniqueness of z∗δ in both cases are well-known; see,

for example, Theorem 6.15 of [6].) Letting δ → 0 in (2.7), and using the easily proved

fact that z∗δ → z∗, we deduce

u ≤ u ≤M(w∗ + z∗) in Ω× (0, T − ε).(2.8)

For any given t0 ∈ (0, T ), we may choose ε > 0 small so that t0 < T − ε. From the

formula of w∗(t), clearly we can find some c > 0 such that w∗(t) ≤ c t
− 1
pβ−1

for t ∈ (0, t0].

On the other hand, we already have z∗(x) ≤ c2d(x)−
2+β
p−1 in Ω. Hence (1.7) follows from

u ≤M(w∗ + z∗).

It remains to prove (1.6). Choose Mε > 0 such that α2(t) ≤ Mε on [0, T − ε]. We also

note that |a| ≤ A on Ω × [0, T ]. Then, for any small δ > 0, we consider the following

auxiliary problems:

w′ = −Aw − wpβ for t > −δ, w(−δ) =∞,(2.9)

and

−∆z = −Az − d(x)βzp in Ω, z =∞ on ∂Ω.(2.10)

The unique solution wδ∗(t) of (2.9) can be explicitly written as

wδ∗(t) = w∗(t+ δ), w∗(t) = A
1

pβ−1 e−At
[
1− e−A(pβ−1)t

] 1
1−pβ .

Clearly, wδ∗ → w∗ locally uniformly on (0, T ] as δ → 0, and w∗(t) is the unique solution of

w′ = −Aw − wpβ for t > 0, w(0) =∞.

On the other hand, similarly to (2.3), it is well-known that problem (2.10) possesses a

unique positive solution z∗(x), and

lim
x→∂Ω

z∗(x)

d(x)−
2+β
p−1

=
[(2 + β)(1 + β + p)

(p− 1)2

] 1
p−1

.

Hence, there is a constant c0 > 1 such that

c−1
0 d(x)−

2+β
p−1 ≤ z∗(x) ≤ c0d(x)−

2+β
p−1 in Ω.(2.11)

If β ≥ 0, then pβ = p and c6d(x)β ≤ 1 for some positive constant c6. Thus we have

(wδ∗)
′ = −Awδ∗ − (wδ∗)

p ≤ −Awδ∗ − c6d(x)β(wδ∗)
p.

It follows that for m > 0 small enough (independent of δ), U∗ = m(wδ∗ + z∗) satisfies

(U∗)t −∆U∗ ≤ −AU∗ −Mεd(x)βUp∗ (x ∈ Ω, t ≥ −δ).
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Therefore,

(2.12) (U∗)t −∆U∗ ≤ a(x, t)U∗ − b(x, t)Up∗ (x ∈ Ω, t ∈ [0, T − ε]).

If β ∈ (−2, 0), then

p
β

= p− β p− 1

2 + β
> p

and there exists c7 > 0 such that d(x)β ≥ c7z∗(x)pβ−p. Hence

(z∗)t −∆z∗ ≤ −Az∗ − c7(z∗)
pβ .

Therefore, for m1 > 0 small, U1
∗ := m1(wδ∗ + z∗) satisfies

(U1
∗ )t −∆U1

∗ ≤ −AU1
∗ − (U1

∗ )
pβ (x ∈ Ω, t > −δ).

Clearly there exists some c8 > 0 such that

(U1
∗ )
pβ−p ≥ (m1z∗)

pβ−p ≥ c8d(x)β (x ∈ Ω).

Therefore

(U1
∗ )t −∆U1

∗ ≤ −AU1
∗ − c8d(x)β(U1

∗ )
p (x ∈ Ω, t > −δ).

This implies that for all small m ∈ (0,m1), U∗ := m(wδ∗ + z∗) satisfies

(U∗)t −∆U∗ ≤ −AU∗ −Mεd(x)β(U∗)
p (x ∈ Ω, t > −δ),

and hence (2.12) holds.

By a standard argument (see, for example, the proof of Theorem 6.14 in [6]), the

problem

−∆z = −Az − d(x)βzp in Ω, z = n on ∂Ω

has a unique solution zn, and zn → z∗ locally uniformly in Ω as n → ∞. Moreover,

after further shrinking m if needed, it is easily seen by the comparison principle that

u(x, t) ≥ 2mzn(x) in Ω × (0, T − ε] for all n ≥ 1. It follows that u(x, t) ≥ 2mz∗(x) in

Ω× (0, T − ε]. Thus

lim inf
(x,t)→Σε

[u(x, t)− U∗(x, t)] ≥ 0,

where Σε = (∂Ω × (0, T − ε]) ∪ (Ω × {0}). In view of (2.12), we may now apply the

maximum principle to deduce that

u(x, t) ≥ U∗(x, t) = m(wδ∗(t) + z∗(x)) in Ω× (0, T − ε].

Letting δ → 0 we obtain

u(x, t) ≥ m(w∗(t) + z∗(x)) in Ω× (0, T − ε].

The inequality (1.6) now follows easily from the behavior of w∗(t) and z∗(x). The proof

is complete. �

To show that under the assumption c(T − t)θd(x)β ≤ b(x, t) on Ω × [0, T ), the maxi-

mal solution of (1.1) satisfies (1.8), by a simple comparison argument, it is sufficient to

establish the following result.
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Theorem 2.1. Assume that a, β, θ are constants with a > 0, θ > 0, β > −2, and u(x, t)

is the maximal solution to{
ut −∆u = au− (T − t)θd(x)βup in Ω× (0, T ),

u =∞ on ∂Ω× (0, T ) ∪ Ω× {0}.
(2.13)

Then (1.8) holds.

Proof. Let

u(x, t) = (T − t)−
θ
p−1 eatv(x, t).(2.14)

A simple calculation shows that v(x, t) satisfies
vt −∆v = − θ

p− 1
(T − t)−1v − ea(p−1)td(x)βvp in Ω× (0, T ),

v =∞ on ∂Ω× (0, T ),

v =∞ on Ω× {0}.

(2.15)

Let z0(x) be the unique positive solution of

(2.16) −∆z = −d(x)βzp in Ω, z =∞ on ∂Ω.

For any given t0 ∈ (0, T ), due to (1.7) (applied to v(x, t)) and the behavior of z0(x) near

∂Ω (cp. (2.4)), there exists a constant c1 ≥ 1 such that

v(t0, x) ≤ c1z0(x) in Ω.

Let zσ be the unique positive solution of (2.16) with Ω replaced by Ωσ := {x ∈ Ω : d(x) >

σ}, with σ > 0 small. Then zσ > z0 in Ωσ and zσ → z0 as σ → 0. A simple comparison

consideration shows that v(x, t) ≤ c1zσ(x) in Ωσ × [t0, T ). Letting σ → 0 we deduce

v(x, t) ≤ c1z0(x) in Ω× [t0, T ).

Since

z0(x) ≤ c2d(x)−
2+β
p−1 in Ω

for some c2 > 0, we thus obtain, for some c3 > 0,

(2.17) u(x, t) ≤ c3(T − t)−
θ
p−1d(x)−

2+β
p−1 in Ω× [t0, T ).

Define

M(x, t) := u(x, t)d(x)
2+2θ+β
p−1 for (x, t) ∈ Ω× [t0, T ),

and

M(t) := sup
x∈Ω

M(x, t) for t ∈ [t0, T ).

We prove that there exists C > 0 such that

(2.18) M(t) ≤ C (t ∈ [t0, T )).

Clearly, (1.8) is a consequence of (2.17) and (2.18).
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Thus to prove the theorem, it suffices to show (2.18). We argue indirectly. Suppose

that (2.18) does not hold. Then we can find a sequence tn increasing to T as n → ∞,

such that

M(tn)→∞, M(t) ≤M(tn) (t ∈ [t0, tn]).

From (2.17) we see that M(x, t) = 0 for x ∈ ∂Ω. Thus there exists xn ∈ Ω such that

Mn := M(tn) = M(xn, tn).

We now define

λn = u(xn, tn)−
1
σ with σ =

2θ + 2

p− 1
,

and

vn(y, s) = λσnu(xn + λnd(xn)ξy, tn + λ2
nd(xn)2ξs) for (y, s) ∈ Dn,

where ξ = −β/(2 + 2θ) and

Dn := {(y, s) : sn ≤ s ≤ 0, xn + λnd(xn)ξy ∈ Ω}, sn := − tn − t0
λ2
nd(xn)2ξ

.

A direct calculation yields

∂svn − ∆yvn = λσ+2
n d(xn)2ξ(ut −∆u)

= λ2
nd(xn)2ξavn − λ2+σ−σp+2θ

n d(xn)2ξ+β+2θξ(ηn − s)θ
(
d(xn + λnd(xn)ξy)

d(xn)

)β
vpn,

with

ηn =
T − tn

λ2
nd(xn)2ξ

> 0.

By the choice of σ and ξ, we have

2 + σ − σp+ 2θ = 0, 2ξ + β + 2θξ = 0.

Thus

(2.19) ∂svn−∆yvn = λ2
nd(xn)2ξavn−(ηn−s)θ

(
d(xn + λnd(xn)ξy)

d(xn)

)β
vpn ((y, s) ∈ Dn).

Moreover, by the definitions of tn, xn and λn, we have vn(0, 0) = 1 and

λnd(xn)ξ = u(xn, tn)−1/σd(xn)ξ

= M
−1/σ
n d(xn)→ 0 as n→∞.

It follows that

sn → −∞, Rn :=
d(xn)

2λnd(xn)ξ
= M

1/σ
n /2→∞ as n→∞.

Define

D0
n := {(y, s) : sn ≤ s ≤ 0, |y| ≤ Rn}.
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Then from the definition of Rn we find that D0
n ⊂ Dn for all n ≥ 1. Furthermore, for

(y, s) ∈ D0
n,

d(xn + λnd(xn)ξy)

d(xn)
≤ d(xn) + λnd(xn)ξ|y|

d(xn)
≤ d(xn) + λnd(xn)ξRn

d(xn)
=

3

2
,

and

(2.20)
d(xn + λnd(xn)ξy)

d(xn)
≥ d(xn)− λnd(xn)ξ|y|

d(xn)
≥ d(xn)− λnd(xn)ξRn

d(xn)
=

1

2
.

Consequently, (
d(xn + λnd(xn)ξy)

d(xn)

)β
≥ c1 := min{(1/2)β, (3/2)β}.

From the definition of λn and (2.20), we also obtain

0 ≤ vn(y, s) = λσnM(xn + λnd(xn)ξy, tn + λ2
nd(xn)2ξs)d(xn + λnd(xn)ξy)−

2+2θ+β
p−1

≤ λσnu(xn, tn)

[
d(xn + λnd(xn)ξy)

d(xn)

]− 2+2θ+β
p−1

≤ C0 := 2
2+2θ+β
p−1 .

Denoting εn := λ2
nd(xn)2ξa, we have εn → 0 as n→∞, and

(2.21) ∂svn −∆yvn ≤ εnvn − c1(−s)θvpn, 0 ≤ vn ≤ C0 in D0
n, vn(0, 0) = 1

for all n ≥ 1.

We now fix δ ∈ (0, 1) and consider, for ε > 0 to be determined later, the ODE problem

(2.22) w′ = ε w − c1(−s)θwp for s ≤ 0, w(0) = δ.

The unique solution of (2.22) satisfies, for s < 0, w(s) = eεsw0(s), and

w0(s)1−p = δ1−p −
∫ 0

s
c1(p− 1)(−t)θeε(p−1)tdt

= δ1−p − c1(p− 1)

[ε(p− 1)]1+θ

∫ 0

ε(p−1)s
(−t)θetdt.

Set

C0 :=

∫ 0

−∞
(−t)θetdt,

and fix ε > 0 small enough such that

δ1−p <
c1(p− 1)

[ε(p− 1)]1+θ
C0.

Then there exists a unique s0 < 0 such that w0(s) → +∞ as s decreases to s0, and

w0(s) > 0 in (s0, 0]. Hence w(s)→ +∞ as s decreases to s0, and w(s) > 0 in (s0, 0].

For the above chosen ε > 0 we define Z(y) = ε
4N |y|

2 + 1. Clearly

−∆Z = − ε
2
≥ − ε

2
Z (y ∈ RN ).
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It follows that, for V (y, s) = w(s)Z(y) and (y, s) ∈ RN × (s0, 0],

Vs −∆V = w′(s)Z(y)− w(s)∆Z(y)

≥ [εw − c1(−s)θwp]Z − ε

2
wZ

=
ε

2
wZ − c1(−s)θwpZ

≥ ε

2
V − c1(−s)θV p.

Clearly V (y, s)→ +∞ uniformly in y as s decreases to s0, and

V (y, s) ≥ min
s∈(s0,0]

w(s)(
ε

4N
|y|2 + 1) ≥ C0 for |y| = Rn and all large n.

Moreover, ε/2 ≥ εn for all large n. Thus in view of (2.21), we can apply the comparison

principle to conclude that

vn(y, s) ≤ V (y, s) for |y| ≤ Rn, s ∈ (s0, 0] and all large n.

In particular,

1 = vn(0, 0) ≤ V (0, 0) = δ.

This contradiction completes the proof. �

3. Local behavior at the parabolic boundary and uniqueness

Throughout this section, we assume that (1.4) and (1.5) hold, and u(x, t) is an arbitrary

positive solution of (1.1).

We first consider the behavior of u(x, t) near ∂Ω× (0, T ).

Theorem 3.1. Let u be a positive solution of (1.1). Suppose that γ(x, t) := b(x, t)/d(x)β

extends to a continuos function on Ω× (0, T ). Then, for x0 ∈ ∂Ω and t0 ∈ (0, T ),

lim
x→x0, x∈Ω

u(x, t0)

d(x)−
2+β
p−1

=

[
(2 + β)(p+ β + 1)

γ(x0, t0)(p− 1)2

] 1
p−1

.

Proof. Fix x0 ∈ ∂Ω and t0 ∈ (0, T ) and let

a0 := a(x0, t0), γ0 := γ(x0, t0).

For any given small ε ∈ (0, γ0/2), we can find δ ∈ (0, t0) small enough such that, for

(x, t) ∈ Ω× (0, T ) satisfying |x− x0| < 2δ and |t− t0| < δ, the following holds:

a0 − ε ≤ a(x, t) ≤ a0 + ε, γ0 − ε ≤
b(x, t)

d(x)β
≤ γ0 + ε.

Let B0 ⊂ Ω ∩ B2δ(x0) be a smooth domain such that ∂B0 and ∂Ω coincide inside

Bδ(x0), and let v(x) be a positive solution of

−∆v = (a0 + ε)v − (γ0 − 2ε)d(x)βvp in B0, v =∞ on ∂B0.
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Then we have by [6] and [4],

lim
x→x0

v(x)

d(x)−
2+β
p−1

= C0 :=

[
(2 + β)(1 + β + p)

(γ0 − 2ε)(p− 1)2

] 1
p−1

.

In the case β ≥ 0, the above limit follows from Theorem 2.5 of [6], and the case β ∈ (−2, 0)

can be proved by the same argument as in section 4 of [4].

Thus we can find δ1 ∈ (0, δ) such that

v(x)1−p ≤ 2C1−p
0 d(x)2+β ≤ εδ(p− 1)d(x)β (x ∈ B0 ∩B2δ1(x0)).

We now consider Ωσ := {x ∈ Ω : d(x) > σ} for sufficiently small σ ∈ [0, δ). For each

such Ωσ we can construct a smooth domain B0
σ ⊂ Ωσ ∩B2δ1(x0) ⊂ B0 such that ∂B0

σ and

∂Ωσ coincide inside Bδ1(x0), and B0
σ varies continuously with σ for all small nonnegative

σ. We may also require that B0
σ ⊂ B0

σ′ when σ > σ′. Let vσ be the maximal positive

solution of

−∆v = (a0 + ε)v − (γ0 − 2ε)d(x)βvp in B0
σ, v =∞ on ∂B0

σ.

A standard comparison argument (see, for example, Proposition 2.1 in [6]) shows that

vσ ≥ v in B0
σ, and by further using the elliptic regularity and the maximality of v0, we

see that vσ decreases to v0 as σ decreases to 0. Therefore

(3.1) vσ(x)1−p ≤ v(x)1−p ≤ εσ(p− 1)d(x)β (x ∈ B0
σ).

Define

η(t) = [1 + δ−1(t− t0)]1/(1−p) for t ∈ (t0 − δ, t0].

It is easily checked that

η′ = − 1

δ(p− 1)
ηp, η ≥ 1 in (t0 − δ, t0], η(t0 − δ) = +∞, η(t0) = 1.

Set

uσ(x, t) = η(t)vσ(x).

Then, due to (3.1), for (x, t) ∈ B0
σ × (t0 − δ, t0], we have

(uσ)t −∆uσ = η′(t)vσ(x)− η(t)∆vσ(x)

= (a0 + ε)uσ −
1

δ(p− 1)
v1−p
σ upσ − (γ0 − 2ε)d(x)βη(t)1−pupσ

≥ (a0 + ε)uσ − (γ0 − ε)d(x)βupσ.

It follows from the comparison principle that

u(x, t) ≤ uσ(x, t) = η(t)vσ(x) ((x, t) ∈ B0
σ × (t0 − δ, t0]).

Letting σ → 0, we deduce

u(x, t) ≤ η(t)v0(x) ((x, t) ∈ B0
0 × (t0 − δ, t0]).
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Hence

lim sup
x→x0, x∈Ω

u(x, t0)

d(x)−
2+β
p−1

≤ lim
x→x0, x∈B0

0

v0(x)

d(x)−
2+β
p−1

=

[
(2 + β)(1 + β + p)

(γ0 − 2ε)(p− 1)2

] 1
p−1

,(3.2)

where we have applied Theorem 2.5 of [6] and the arguments in section 4 of [4] to v0(x).

We show next that

lim inf
x→x0, x∈Ω

u(x, t0)

d(x)−
2+β
p−1

≥
[

(2 + β)(p+ β + 1)

(γ0 + ε)(p− 1)2

] 1
p−1

.(3.3)

Let wσ be the unique positive solution of

(3.4) −∆w = (a0 − ε)w − (γ0 + ε)d(x)βwp in Ωσ, w|∂Ωσ =∞.

Then from the comparison principle we find that wσ decreases to some w0 as σ decreases

to 0, and by elliptic regularity we see that w0 is a positive solution of (3.4) with σ = 0.

By the asymptotic behavior of w0 and u(x, t0 − δ) near ∂Ω (cp. (1.6)), we can find

ε0 ∈ (0, 1) sufficiently small so that

ε0w
0(x) ≤ u(x, t0 − δ) in Ω.

With ε0 > 0 fixed as above, we let α(t) be a smooth increasing function on [t0 − δ, t0]

with α(t0 − δ) = ε0, α(t0) = 1, and define

L := max
[t0−δ,t0]

α′(t)

α(t)
.

We then choose B2δ(x0) as before, set B0 := Ω ∩ Bδ(x0), and consider the auxiliary

problem

(3.5) −∆w = (a0 − ε− L)w − (γ0 + ε)d(x)βwp in B0, w|∂B0∩∂Ω =∞, w|∂B0∩Ω = 0.

If β ≥ 0 then we can apply Theorem 1.1 of [7] to conclude that (3.5) has a positive

solution w0. In what follows we use a variant of the argument in [7] to show that this is

true for the entire range β > −2.

Let φn be smooth functions over Ω such that φn|∂B0∩Ω = 0 and φn increases to ∞ as

n→∞ on any compact subset of ∂B0 ∩ ∂Ω. Then for each m ≥ 1 the problem

−∆v = (a0 − ε− L)w − (γ0 + ε) min{d(x)β,m}vp in B0, v|∂B0
= φn

has a unique positive solution vm. By the comparison principle we have vm ≥ vm+1.

Thus v = limm→∞ v
m exists, and one easily sees by standard elliptic regularity that v is

a solution to

−∆v = (a0 − ε− L)w − (γ0 + ε)d(x)βvp in B0, v|∂B0
= φn.

Using Proposition 2.1 of [6], we conclude that such a solution v is unique, and we may

denote it by vn. Moreover, this comparison principle also infers that vn ≤ vn+1 ≤ wσ

in B0 ∩ Ωσ. Hence v∗ := limn→∞ vn exists, and by elliptic regularity we find that v∗ is
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a positive solution of (3.5). Moreover v∗ ≤ wσ in B0 ∩ Ωσ. Letting σ → 0 we deduce

v∗ ≤ w0 in B0.

Set un(x, t) = α(t)vn(x) for (x, t) ∈ B0 × [t0 − δ, t0]. Clearly

un(x, t0 − δ) = ε0vn(x) ≤ ε0v∗(x) ≤ ε0w
0(x) ≤ u(x, t0 − δ) for x ∈ B0.

It is also evident that un ≤ u on ∂B0 × [t0 − δ, t0]. Moreover, in B0 × [t0 − δ, t0],

unt −∆un =

(
α′(t)

α(t)
+ a0 − ε− L

)
un − (γ0 + ε)d(x)β(un)pα(t)1−p

≤ (a0 − ε)un − (γ0 + ε)d(x)β(un)p.

Hence we can apply the comparison principle to deduce that

un(x, t) ≤ u(x, t) in B0 × [t0 − δ, t0].

In particular,

vn(x) ≤ u(x, t0) in B0.

Letting n→∞ we deduce v∗(x) ≤ u(x, t0) in B0. It follows that

lim inf
x→x0, x∈Ω

u(x, t0)

d(x)−
2+β
p−1

≥ lim
x→x0, x∈B0

v∗(x)

d(x)−
2+β
p−1

=

[
(2 + β)(p+ β + 1)

(γ0 + ε)(p− 1)2

] 1
p−1

,

where, as before, we have used Theorem 2.5 of [6] and section 4 of [4] to obtain the

asymptotic behavior of v∗. Hence (3.3) holds. The desired result clearly follows from

(3.2) and (3.3), since ε > 0 can be arbitrarily small. �

Next, we study the blow-up rate of the solution at the initial time t = 0.

Theorem 3.2. Let u be a positive solution of (1.1). Then,

lim
t→0

t
1
p−1u(x0, t) = [(p− 1)b(x0, 0)]

1
1−p , (x0 ∈ Ω).

Proof. We take a fixed x0 ∈ Ω. Then, for any given small ε > 0, we can find a small

ball BR(x0) and small t0 > 0 such that BR(x0) ⊂ Ω and

a0 − ε ≤ a(x, t) ≤ a0 + ε, 0 < b0 − ε ≤ b(x, t) ≤ b0 + ε

for all x ∈ BR(x0), t ∈ [0, t0], where a0 := a(x0, 0) and b0 := b(x0, 0).

We show that

lim sup
t→0

[(p− 1)((b0 − ε))t]
1
p−1u(x0, t) ≤ 1.(3.6)

This follows from a localization argument based on the results of [3]. But for com-

pleteness we give a simple alternative proof. Let w̃ and z̃ be the solution of the following

problems, respectively:

w′ = (a0 + ε)w − (b0 − ε)wp, t > 0; w(0) =∞,

and

−∆z = (a0 + ε)z − (b0 − ε)zp in BR(x0), z =∞ on ∂BR(x0).
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By a simple comparison argument, we have

u ≤ w̃ + z̃ on BR(x0)× (0, t0].(3.7)

From the explicit expression of w̃(t) we easily find

[(p− 1)(b0 − ε)t]
1
p−1 w̃(t)→ 1 as t→ 0.

Furthermore, z̃ is bounded on BR/2(x0). These facts, together with (3.7), enable us to

obtain (3.6).

Next we prove that

lim inf
t→0

[(p− 1)(b0 + ε)t]
1
p−1u(x0, t) ≥ 1.(3.8)

For this purpose, we let λ1 be the first eigenvalue of the problem

−∆φ = λφ in BR(x0), φ = 0 on ∂BR(x0),

and φ with supBR(x0) φ = 1 be the positive eigenfunction corresponding to λ1. Obviously,

0 < φ(x) < 1 in BR(x0) \ {x0} and φ(x0) = 1.

Let w
:

denote the solution of

w′ = [(a0 − ε)− λ1]w − (b0 + ε)wp, t > 0; w(0) =∞.

Then, one easily checks that, for any small δ > 0, w
:

(t + δ)φ(x) is a subsolution to the

following problem:{
vt −∆v = a(x, t)v − b(x, t)vp in BR(x0)× (0, t0),

v = u on ∂BR(x0)× (0, t0) ∪BR(x0)× {0}.
(3.9)

Clearly u solves (3.9). The comparison argument then implies w
:

(t + δ)φ(x) ≤ u(x, t) in

BR(x0) × (0, t0]. Letting δ → 0 we deduce w
:

(t)φ(x) ≤ u(x, t) in BR(x0) × (0, t0]. In

particular,

w
:

(t) ≤ u(x0, t) (t ∈ (0, t0]).(3.10)

By the explicit expression of w
:

, we have

[(p− 1)((b0 + ε))t]
1
p−1w

:
(t)→ 1 as t→ 0.

Thus it follows from (3.10) that (3.8) holds.

Combining (3.6) and (3.8), and taking into account that ε > 0 can be arbitrarily small,

we deduce

[(p− 1)b(x0, 0)t]
1
p−1u(x0, t)→ 1 as t→ 0,

which is the desired result. �
Finally, we use the convex function technique introduced by Marcus and Véron [9, 10]

to show the uniqueness of positive solutions of (1.1) for the case β = 0.
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Proof of Theorem 1.4: Clearly, it suffices to prove that u = u in Ω× (0, T − ε) for

any fixed 0 < ε < T . Since pβ = p
β

when β = 0, from (1.6) and (1.7) we find that when

β = 0, there exists a constant k > 1 such that

u ≤ u ≤ ku in Ω× (0, T − ε).(3.11)

To prove u ≡ u, we argue by contradiction. Assume that u ≤, 6≡ u in Ω × (0, T − ε).
Then, by the strong maximum principle for parabolic equations, it is easily seen that

u < u in Ω× (0, T − ε). We then define

U = u− (2k)−1(u− u).

Simple computations show that

u > U ≥ k + 1

2k
u in Ω× (0, T − ε),(3.12)

and
2k

2k + 1
U +

1

2k + 1
u = u.(3.13)

It is clear that f(x, t, v) = −av+ b(x, t)vp is convex with respect to v in (0,∞). Hence,

by virtue of (3.13), we obtain

f(x, t, u) ≤ 2k

2k + 1
f(x, t, U) +

1

2k + 1
f(x, t, u).

As a result, we have

Ut −∆U = −2k + 1

2k
f(x, t, u) +

1

2k
f(x, t, u) ≥ −f(x, t, U),

from which and (3.12), we deduce{
Ut −∆U ≥ aU − b(x, t)Up in Ω× (0, T − ε),

U =∞ on ∂Ω× (0, T − ε) ∪ Ω× {0}.
Therefore, U is a supersolution of (2.1) and the comparison principle shows that un ≤ U

in Ω × (0, T − ε) for all n ≥ 1. Letting n → ∞ we have u ≤ U , which is a contradiction

with (3.12). Thus we must have u = u and so the uniqueness conclusion holds. The proof

is complete. �
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[2] W. Al Sayed and L. Véron, Solutions of some nonlinear parabolic equations with initial blow-up, preprint

(arXiv:0809.1805), 2008.

[3] C. Bandle, G. Dı́az and J.I. Dı́az, Solutions of nonlinear reaction-diffusion equations blowing up at the parabolic

boundary (in French), C. R. Acad. Sci. Paris Sr. I Math. 318 (1994), 455-460.

[4] M. Chuaqui, C. Cortazar, M. Elgueta and J. Garcia-Melian, Uniqueness and boundary behavior of large

solutions to elliptic problems with singular weights, Commun. Pure Appl. Anal. 3 (2004), no. 4, 653-662.

[5] Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations, Vol. 1, Maximum

Principles and Applications, World Scientific, Singapore, 2006.

[6] Y. Du, Asymptotic behavior and uniqueness results for boundary blow-up solutions, Diff. Integral Eqns. 17

(2004), 819-834.



THE PARABOLIC LOGISTIC EQUATION 19

[7] Y. Du and Z.M. Guo, The degenerate logistic model and a singularly mixed boundary blow-up problem,

Discrete Contin. Dyn. Syst. 14 (2006), 1-29.

[8] Y. Du and R. Peng, The periodic logistic equation with spatial and temporal degeneracies, Trans. Amer.

Math. Soc., to appear.
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