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Abstract

We consider reaction-diffusion equations ut = ∆u + f(u) on the
entire space RN , N ≥ 4. Assuming that the function f is sufficiently
smooth (C2 is sufficient) and has only nondegenerate zeros, we prove
that the equation has no bounded solutions u(x, t) which are radial
in x, and periodic and nonconstant in t. We also prove some weaker
nonexistence results for N = 3. In dimensions N = 1, 2, the nonexis-
tence of time-periodic solutions (radial or not) is known by results of
Gallay and Slijepčević.
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1 Introduction

We consider semilinear parabolic equations of the form

ut = ∆u+ f(u), x ∈ RN , t ∈ J, (1.1)

where ∆ in the Laplace operator in the spatial variable x = (x1, . . . , xN) ∈
RN , f is a C1 function on R, and J ⊂ R is an open interval (usually, J =
(0,∞) or J = (−∞,∞)).

In the qualitative theory of time-autonomous evolution equations, such
as (1.1), one of the most basic questions is whether bounded nonstationary
periodic solutions1 can exist. For (1.1), the question is open in general; we
will address it in this paper to some extent, focusing on solutions which are
radially symmetric in x (radial solutions, for short).

To put the question in some context, consider first the bounded-domain
counterpart of equation (1.1):

ut = ∆u+ f(u), x ∈ Ω, t ∈ J. (1.2)

Here, Ω is a bounded C1 domain in RN , and f and J are as above. Coupling
the equation with a common Dirichlet, Neumann, or Robin time-independent
boundary condition, the problem of existence of periodic solutions is resolved
easily by means of a Lyapunov functional. More specifically, it is well-known
that the energy functional

EΩ(w) =

∫
Ω

(
1

2
|∇w(x)|2 − F (w(x))

)
dx, F (u) =

∫ u

0

f(s) ds, (1.3)

is decreasing strictly along any nonstationary solution. Thus, trivially, no
periodic nonstationary solution can exist.

For the equation on RN , a similar argument can be applied—replacing Ω
by RN in (1.3)—but its scope is limited to spatially localized solutions along
which the existence and finiteness of the energy integral can be proved. Be-
yond localized solutions, the energy functional is seemingly of no help in

1By a periodic solution, we always mean a solution periodic in t.
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resolving the problem of existence of periodic solutions. However, as discov-
ered in [9], very relevant for the problem is the family of functionals (1.3),
where one takes Ω = BR, R > 0, BR ⊂ RN being the ball of radius R cen-
tered at the origin. A theorem of [9] says that if N = 1 or N = 2, then there
is no bounded nonstationary solution u of (1.1) satisfying, for some T > 0,
R0 > 0, the following relations:

EBR
(u(·, T )) ≥ EBR

(u(·, 0)) (R > R0). (1.4)

This clearly rules out the existence of bounded nonstationary periodic solu-
tions of (1.1). As further shown in [9, 10], these conclusions in dimensions
N = 1, 2 are valid for a larger class of nonlinearities—allowing the function
f = f(x, u) to depend on x—and for a number of different types of equations
obeying certain dissipation rules. Of course, insisting on the boundedness
of the solution is necessary here. Unbounded periodic solutions exist even
for the one-dimensional heat equation ut = uxx; an example is the real part
of eλ

2t+λx, where λ is any nonzero complex number whose square is on the
imaginary axis.

For N ≥ 3, the energy estimates of [9, 10] are not strong enough to rule
out the existence of periodic solutions. In fact, an example of [9] shows that
(1.4) can hold, even with R0 = 0, for bounded radial solutions of (1.1), with
f replaced by f(r, u), r = |x|. Another, example in [9] shows the existence
of a bounded radial nonstationary periodic solution of such an equation with
f(r, u) = W (r)u linear in u. However, the potential W is unbounded in that
example.

Coming back to (1.1), let us now consider a radial solution u of that
equation. Viewed as a function of t and the real variable r = |x| ≥ 0, u is a
solution of following problem:

ut = urr +
N − 1

r
ur + f(u), r > 0, t ∈ J, (1.5)

ur(0, t) = 0, t > 0. (1.6)

A bounded-domain counterpart of this problem is equation (1.2) where
Ω ⊂ RN is a rotationally symmetric domain, a ball or an annulus, and one
of the standard boundary conditions is assumed. The radial solutions are
then solutions of (1.5) on an interval satisfying the corresponding boundary
conditions (in the case of a ball, the boundary condition at r = 0 comes
from the symmetry and is the same as in (1.6)). For such solutions, there
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is an alternative to using the energy functional for showing the nonexistence
of periodic solutions, namely, a zero-number argument. For equations on a
ball BR (with a standard boundary condition on ∂BR), it goes as follows.
Assume u is a bounded radial solution defined on an open time-interval J , and
consider its time-derivative v := ut, which is a solution of a linear parabolic
equation. The zero number of v(·, t), z(v(·, t)), is defined as the number of
zeros of v(·, t) in the spatial interval [0, R]. It is well-known that if v ̸≡ 0, then
z(v(·, t)), as a function of t, is finite and nonincreasing on J , and, moreover,
its value drops strictly at any t0 ∈ J such that v(·, t0) has a multiple zero in
[0, R] (see [4]; for predecessors of these results concerning equations with one
spatial variable see [1, 3, 18]). Now, for a periodic solution u, the monotone
periodic function z(ut(·, t)) has to be constant. On the other hand, by the
periodicity of u(0, t), there is t0 > 0 such that ut(0, t0) = 0. Since r = 0 is
then automatically a multiple zero of ut(·, t0)—utr(0, t) = 0 holds for all t
due the boundary condition (1.6)—z(ut(·, t)) has to drop somewhere and thus
cannot stay constant, unless ut ≡ 0. This shows that all bounded periodic
solutions are steady states.

The above zero-number argument goes through, with no change, for so-
lutions of (1.5), (1.6), if one assumes that z(ut(·, t)) is finite. Thus, with this
argument we also have a finiteness issue, not unlike with the energy argu-
ment, which limits the argument’s applicability in the problem on RN . This,
certainly, is not unexpected; the possibility of an infinite zero number is a
common difficulty one faces when using intersection comparison arguments
in studies of parabolic equations on unbounded intervals. It has been dealt
with in some situations by ad hoc techniques (see [7, 19] for some exam-
ples), but it is also known that the behavior of bounded solutions of (1.5),
(1.6) may be qualitatively very different than the behavior of solutions on
bounded intervals (examples of this can be found in [8, 20, 21] where the
power nonlinearities f(u) = up are examined). In the present paper, we in a
way bypass the difficulty with infinite zero number: we mostly employ inter-
section comparison arguments on large bounded intervals. We facilitate this
approach by preliminary results describing the asymptotics of stationary and
(hypothetical) periodic solutions of (1.5), (1.6) as r → ∞.

In dimensions N ≥ 4, we are able to show, by zero-number arguments,
the nonexistence of bounded nonstationary periodic solutions for any C2-
nonlinearity with only nondegenerate zeros. Here is that result more specif-
ically:
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Theorem 1.1. Assume that N ≥ 4, f : R → R is of class C2, and f ′(ξ) ̸= 0,
whenever f(ξ) = 0. Then equation (1.1) has no bounded radial periodic
solutions other than steady states.

In the next section, we give a slightly stronger version of this theorem,
reducing the regularity requirement (cp. Corollary 2.6).

The above theorem does not include the case N = 3, although we do have
partial results concerning this dimension; see the next section. Dimensions
N = 1, 2 are covered by the results of [9, 10], as mentioned above.

Unlike [9, 10], we are only considering radial solutions, which is a lim-
itation of the intersection comparison techniques. Now, the fact that the
equation for radial solutions reduces to the one-dimensional (singular) prob-
lem (1.5), (1.6) suggests a thought that it may be possible to adapt to this
problem the energy arguments used in [9, 10] for one-dimensional equations
(1.1). However, the examples of radial periodic solutions and radial solutions
satisfying (1.4), as given in [9] and mentioned briefly above, speak against
such a possibility.

For N ≥ 4, our theorem shows that generically with respect f (in suitable
topological spaces of C2 functions), equation (1.1) has no bounded nonsta-
tionary radial periodic solutions. We emphasize, however, that the genericity
is expressed by the explicit nondegeneracy condition: f ′(ξ) ̸= 0, whenever
f(ξ) = 0.

Let us elaborate a little on the role of the nondegeneracy condition in our
results. One of the theorems given in the next section, which is valid in any
dimension, says that if u is a bounded periodic solution of (1.5), (1.6), then
the limit ζ = limr→∞ u(r, t) exists and is a zero of f (independent of t). The
proof of this theorem does use the nondegeneracy condition but in a very
unessential way (much weaker conditions are sufficient). Once the existence
of the limit ζ ∈ f−1{0} is known for a given periodic solution u, to prove
that u is a steady state we only need the nondegeneracy at that particular
zero of f : f ′(ζ) ̸= 0; no other nondegeneracy conditions are needed. The
proof is simple in the case f ′(ζ) < 0; it works in any dimension (including
N = 3) and under the weaker condition requiring merely that f ′(u) ≤ 0 on
a neighborhood of ζ. The proof in the case f ′(ζ) > 0 is rather involved and
it is in that case that we need the condition N ≥ 4. For N = 3 our proof
applies under more restrictive conditions; for example, it works if f is of class
C3 and the function u 7→ f(u− ζ) is odd.

To conclude our introductory discussion, we make a remark about the
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connection between equation (1.5) and the one-dimensional equation

ut = urr + f(u), r ∈ R. (1.7)

The latter can viewed, at least formally, as the “limit equation” of (1.5) as
r → ∞, so one naturally hopes to gain some information about solutions
of (1.5) from (1.7). We use this idea at several places. For example, in our
proof of the existence of the limit ζ = limr→∞ u(r, t) for a periodic solution
of (1.7), we employ equation (1.7) and use the fact that it has no bounded
nonstationary periodic solution [9, 10]. Of course, there is nothing new about
the observation that equations (1.5) and (1.7) are related; this has been used
in a number of other results; see [14, 24] for some early ones. We also
mention the recent papers [6, 22], where an interesting aspect of the relation
between (1.5) and (1.7) is shown: the asymptotic shape (as t → ∞) of
propagating solutions of (1.5) is described in term of steady states of (1.5)
and propagating terraces of (1.7).

The rest of the paper is organized as follows. Our main results are given
in Section 2. In Section 3, after stating some zero-number results, we prove
that for a given bounded periodic solution u of (1.5), (1.6) the limit ζ =
limr→∞ u(r, t) exists. In Sections 4 and 5, we then separately consider the
cases f ′(ζ) < 0 and f ′(ζ) > 0, and prove that u is a steady state.

2 Main results

In the rest of the paper, we assume that N ≥ 3 and make the following our
standing regularity assumption on the nonlinearity f :

(R) f : R → R is a C1 function with bounded derivative

Of course, the boundedness of f ′, or the global Lipschitz continuity of f ,
is just a convenience assumption which has no effect on the validity of our
results concerning individual bounded solutions. We can always modify f
outside the range of the solutions in question to achieve the global Lipschitz
continuity.

In most results, we also need some nondegeneracy condition. The follow-
ing global nondegeneracy condition is assumed in some results, as specified.

(ND) One has f ′(ζ) ̸= 0 whenever f(ζ) = 0.
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Proposition 2.1. Assuming (ND), let u(r, t) be a radial bounded periodic
solution of (1.1). Then there is ζ ∈ f−1{0} such that

lim
r→∞

u(r, t) = ζ, uniformly in t ∈ R. (2.1)

The proof of this proposition is given in Section 3.

Remark 2.2. (i) For steady states u = u(r), the existence of the limit in
(2.1) is known from earlier papers. It was proved in [13] (see also [15, 17])
that if ψ is any bounded radial steady state of (1.1), or more generally,
any solution of equation (3.3) below which is bounded on [1,∞), then

(ψ(r), ψ′(r)) → (ζ, 0), where ζ ∈ f−1{0}. (2.2)

In fact, as shown in [13, 15], this conclusion is valid under much weaker
nondegeneracy conditions than (ND). For example, for N ≥ 3 it is suffi-
cient that for any ζ ∈ f−1{0} there be ϵ > 0 with the following property:
if I is any of the intervals (ζ − ϵ, ζ), (ζ, ζ + ϵ), then the function f ′ does
not change sign in I (that is, it does not assume both positive and neg-
ative values in I). This condition is clearly satisfied if f is analytic in a
neighborhood of ζ or, more generally, if f ′(u) = c(u− ζ)k + o(|u− ζ|q) as
u→ ζ, where k is a nonnegative integer and q, c are constants satisfying
q > k, c ̸= 0. Examples of equations (1.1) with nonconvergent bounded
radial steady states were given in [16] for N = 2. We are not aware of
such examples for N ≥ 3.

(ii) In the proof of Proposition 2.1, we will actually show, without assuming
(ND), that the convergence for the steady states implies the convergence
for periodic solutions: if the statement of Proposition 2.1 holds with the
extra assumption that u = u(r) is a steady state, then the statement also
holds without this extra assumption.

We now focus our attention on periodic solutions satisfying (2.1) for some
ζ ∈ f−1{0}. We will assume that ζ is a nondegenerate zero of f : f ′(ζ) ̸= 0,
and consider separately the cases f ′(ζ) < 0 and f ′(ζ) > 0. We remark that
the nondegeneracy of other zeros of f is not needed in the corresponding
theorems.

In the case f ′(ζ) < 0, we have the following general theorem.

Theorem 2.3. Let u(r, t) be a radial bounded periodic solution of (1.1).
Assume that (2.1) holds with f(ζ) = 0 > f ′(ζ). Then u is a steady state.
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Note that this theorem needs no additional assumptions; just the standing
regularity assumption (R) and the condition f ′(ζ) < 0 are assumed. The
condition f ′(ζ) < 0 can be replaced by the weaker condition that f ′(u) ≤ 0
on a neighborhood of ζ. We will prove the conclusion of the theorem under
this weaker assumption in Section 4.

In our theorem for f ′(ζ) > 0, we have additional hypotheses:

Theorem 2.4. Let u(r, t) be a radial bounded periodic solution of (1.1).
Assume that (2.1) holds with f(ζ) = 0 < f ′(ζ). If N ≥ 4, assume further
that f is of class C1,σ for some σ ∈ (2/(N − 1), 1]; if N = 3, assume further
that f is of class C2,σ for some σ ∈ (0, 1] and f ′′(ζ) = 0. Then u is a steady
state.

The proof of this theorem is given in Section 5.

Remark 2.5. The extra assumptions in this theorem are used in the proof
of a certain property of radial steady states of (1.1) (see Lemma 5.2 below).
Most likely, they are just technical assumptions. Obviously, there is a signif-
icant difference between the assumptions for N ≥ 4, which just add a minor
extra regularity requirement to the standing hypothesis (R), and the assump-
tions for N = 3, which include the condition f ′′(ζ) = 0. While the assumed
nondegeneracy condition f ′(ζ) ̸= 0 is generically satisfied, the “degeneracy
condition” f ′′(ζ) = 0 is quite restrictive. It holds, however, if v 7→ f(ζ + v)
is an odd function.

Incidentally, the extra assumptions in Theorem 2.4 are the same as the
technical assumptions used in [12] for the proof a result concerning radial
steady states, which we recall in Lemma 5.1(i) below (these technical as-
sumptions were later removed in [11]).

The following result is a direct consequence of Proposition 2.1 and Theo-
rems 2.3, 2.4. It is slightly stronger than Theorem 1.1 given in the introduc-
tion.

Corollary 2.6. Assume that N ≥ 4, f is of class C1,σ with 2/(N − 1) <
σ ≤ 1, and condition (ND) holds. Then equation (1.1) has no bounded radial
periodic solutions other than steady states.
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3 Steady states and intersection comparison

principles

In this section, we first recall several zero number properties of radial solu-
tions of linear parabolic equations and then use them to prove some useful
conclusions concerning radial solutions of (1.1). With a slight abuse of no-
tation, we often view radial functions ψ(x) on RN as functions of the real
variable r = |x|.

Let J be an open interval. For any two solutions u, ũ of (1.1), the function
v := u− ũ solves the linear equation

vt = ∆v + c(x, t)v, |x| < r1, t ∈ J, (3.1)

where r1 = ∞ and c is a continuous bounded function given by

c(x, t) =

∫ 1

0

f ′(ũ(x, t) + s(u(x, t)− ũ(x, t)) ds.

If u, ũ are radial solutions, then c = c(r, t) is radial as well and the equation
for v = v(r, t) takes the form

vt = vrr +
N − 1

r
vr + c(r, t)v, r0 < r < r1, t ∈ J, (3.2)

with r0 = 0, r1 = ∞, and we also have vr(0, t) = 0 for t ∈ J . The zeros of
the function r 7→ v(r, t), which we examine in this section, give the points
of intersection of the graphs of the radial solutions u(·, t), ũ(·, t) (this is the
reason for the “intersection comparison principles” in the title of this section).
In most cases, we will assume that ũ is a radial steady state of (1.1), but we
also consider differences v := u−ψ, where ψ is just a solution of the equation

ψrr +
N − 1

r
ψr + f(ψ) = 0, r > 0. (3.3)

Such a solution is not necessarily a steady state of equation (1.1); it may
well be unbounded as r ↘ 0 (one can then refer to ψ as a singular steady
state, but we do adopt this terminology here). This is the reason why we
sometimes consider equations (3.2) with r0 > 0. At occasions, it will also be
convenient to take r1 <∞.
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Note that (3.2) is a regular parabolic equation if r0 > 0. Likewise, (3.3) is
a regular ordinary differential equation on (0,∞), and our standing assump-
tion (R) implies that for any (a, b) ∈ R2 and r0 > 0 the solution of (3.3)
satisfying the initial conditions

ψ(r0) = a, ψr(r0) = b, (3.4)

is defined globally on (0,∞). It is also well known that for r0 = 0, b = 0
the initial value problem (3.3), (3.4) is well posed: it has a unique solution
ψ(·, a) ∈ C1[0,∞) ∩ C2(0,∞), and for any R > 0 the C1[0, R]-valued map
a 7→ ψ(·, a) depends continuously on the initial value a. This can be proved
in a standard way by a fixed-point argument (considering first a short r-
interval) applied to the integral equation

u(r) = a−
∫ r

0

s−(N−1)

∫ s

0

θN−1f(u(θ)) dθds. (3.5)

The following lemma regarding the behavior of solutions as r → 0 will be
useful below.

Lemma 3.1. Let ψ be a solution of (3.3). Then either ψ(r) is unbounded
as r → 0+ or else ψ = ψ(·, a) for some a ∈ R (that is, ψ is the solution of
(3.3), (3.4) with r0 = 0 and b = 0).

Proof. From (3.3), we have

rN−1ψr(r) = ρN−1ψr(ρ)−
∫ r

ρ

θN−1f(ψ(θ)) dθ (r > ρ > 0). (3.6)

Assume that ψ(r) stays bounded as r → 0+. Then, necessarily, ψr(r)
stays bounded along a sequence rn ↘ 0. Putting ρ = rn in (3.6) and taking
the limit as n→ ∞, we obtain

rN−1ψr(r) = −
∫ r

0

θN−1f(ψ(θ)) dθ. (3.7)

This implies that ψr(r) → 0 as r → 0. Consequently, the limit a :=
limr→0 ψ(r) exists as well. Defining ψ(0) = a, we see from (3.7) that ψ sat-
isfies the integral equation (3.5) which is equivalent to problem (3.3), (3.4)
with r0 = 0 and b = 0. Thus ψ = ψ(·, a).
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We now recall some zero-number results. When referring to equation
(3.1), we always assume that c is a continuous bounded radial function on
{x ∈ RN : |x| < r1} × J . Similarly, in equation (3.2), c is always assumed to
be a continuous bounded function on (r0, r1)× J .

If I ⊂ [0,∞) is an interval and g : I → R is a continuous function, we
denote by zI(g) the number of zeros of g in I. If I = [0,∞), we often omit
the subscript I: z(g) = z[0,∞)g.

Lemma 3.2. Let 0 ≤ r0 < r1 ≤ ∞; and I := [r0, r1] if r1 <∞, I = [r0,∞),
if r1 = ∞. Assume that either r0 = 0 and v(r, t) is a nontrivial bounded
radial solution of (3.1), or r0 > 0 and v is a nontrivial bounded solution of
(3.2) such that v ∈ C(I×J) and v(r0, t) ̸= 0 for all t ∈ J . Finally, if r1 <∞
assume also that v(r1, t) ̸= 0 for all t ∈ J . Then the following statements are
valid:

(i) For each t ∈ J , the zeros of v(·, t) in I are isolated. In particular, if
r1 <∞, then zI(v(·, t)) <∞ for all t ∈ J .

(ii) The function t 7→ zI(v(·, t)) is monotone nonincreasing.

(iii) If for some t0 ∈ J the function v(·, t0) has a multiple zero ρ0 in I
(that is, v(ρ0, t0) = vρ(ρ0, t0) = 0) and zI(v(·, t0)) < ∞, then for any
t1, t2 ∈ J with t1 < t0 < t2, one has zI(v(·, t1)) > zI(v(·, t2)).

Proof. For r0 = 0 the lemma is proved in [4]; for r0 > 0, proofs can be found
in [1, 3].

Remark 3.3. Under the assumptions of Lemma 3.2, if r1 < ∞, then the
times t0 ∈ J such that the function v(·, t0) has a multiple zero are isolated.
Indeed, if t̄ ∈ J were an accumulation point of such times t0, then, picking
t1, t2 ∈ J with t1 < t̄ < t2, the finite zero number zI(v(·, t)) would have to
drop infinitely many times in [t1, t2] which is impossible by the monotonicity.

We also need the following robustness property.

Lemma 3.4. Let wn(r, t) be a sequence of functions converging to v(r, t) in
C1(Ī × [s, T ]), where s < T are numbers in J , and either I = (r0, r1) for
some 0 < r0 < r1 < ∞ or I = [0, r1) for some r1 ∈ (0,∞). If I = (r0, r1),
assume that v is a solution of (3.2); and if I = [0, r1), assume that v is a
radial solution of (3.1) and ∂rwn(0, t) = 0 for all t ∈ [s, T ] and n = 1, 2, . . . .
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Finally, assume that v ̸≡ 0 and v(·, t0) has a multiple zero ρ0 ∈ I for some
t0 ∈ (s, T ). Then there exist sequences {rn} in I and {tn} in J such that
rn → ρ0, tn → t0, and for all sufficiently large n the function wn(·, tn) has a
multiple zero at rn: wn(rn, tn) = ∂xnwn(rn, tn) = 0.

Proof. In the case I = (r0, r1) with 0 < r0 < r1 < ∞, the lemma is a
reformulation of [5, Lemma 2.6]; we just remark that although [5, Lemma 2.6]
is stated for equations of the form vt = vrr + c(r, t)v, without the drift term,
its proof applies equally well to equations with the drift term (N − 1)vr/r
which is nonsingular on [r0, r1]. If I = [0, r1), and ρ0 > 0, we can choose a
small r0 > 0 (in particular, r0 < ρ0) and obtain the desired conclusion by
applying [5, Lemma 2.6] with I = [0, r1) replaced by I = (r0, r1).

Assume now that r0 = 0 = ρ0. We use very similar arguments as in
[5]. First of all we note that, since the zeros of v(·, t0) are isolated, for any
sufficiently small r1 > 0, ρ0 = 0 is the only zero of v(·, t0) in [0, r1]. Fix
any such r1. If ϵ > 0 is sufficiently small, then, by continuity, |v(r1, t)| > 0
for all t ∈ [t0 − ϵ, t0 + ϵ] and, by Remark 3.3, the functions v(·, t0 ± ϵ) have
only simple zeros in [0, r1). Applying Lemma 3.2 to the solution v on the
rectangle [0, r1]× [t0 − ϵ, t0 + ϵ], we obtain that

z[0,r1](v(·, t0 − ϵ)) > z[0,r1](v(·, t0 + ϵ)).

Now, from the convergence of wn(r, t) to v(r, t) in C
1(Ī× [s, T ]), we infer that

for all sufficiently large n the function wn has the following two properties:

|wn(r1, t)| > 0 (t ∈ [t0 − ϵ, t0 + ϵ]), (3.8)

z[0,r1](wn(·, t0 − ϵ)) > z[0,r1](wn(·, t0 + ϵ)). (3.9)

If wn(·, t) has only simple zeros in [0, r1) (in particular, wn(0, t) ̸= 0) for all
t ∈ [t0 − ϵ, t0 + ϵ] , then a simple continuation argument using (3.8) and
the implicit function theorem shows that z[0,r1](wn(·, t)) is independent of
t ∈ [t0 − ϵ, t0 + ϵ]. This is impossible due to (3.9). Thus, there is tn ∈
[t0 − ϵ, t0 + ϵ] such that wn(·, t) has a multiple zero rn in [r0, r1). Since the
positive constants r1 and ϵ can be chosen arbitrarily small, the conclusion of
the lemma is proved.

Using the above results, we now prove the following useful proposition.
It gives conditions which guarantee that a given bounded radial solution of
(1.1) cannot be periodic. Note that no nondegeneracy condition is assumed
in this proposition.
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Proposition 3.5. Let u(r, t) be a radial bounded solution of (1.1) with J =
(0,∞). Assume that ψ is a solution of (3.3) such that for some r1 ∈ (0,∞)
the following conditions are satisfied:

(ci) u(r1, t)− ψ(r1) ̸= 0 for all t > 0.

(cii) There is t0 ∈ R such the function u(·, t0) − ψ has a multiple zero ρ ∈
[0, r1) (ρ = 0 is allowed only if ψ is a radial steady state of (1.1), cp.
Lemma 3.1).

Then the solution u is not periodic in t.

Proof. We use Lemma 3.2 with v := u− ψ, J := (0,∞), I := [r0, r1], where
r0 is defined as follows. By Lemma 3.1, either ψ is a radial steady state of
(1.1) or ψ(r) is unbounded as r ↘ 0. Set r0 := 0 in the former case. In the
latter case, pick any r0 ∈ (0, ρ) such that u(r0, t)−ψ(r0) ̸= 0 for all t > 0 (r0
exists as u is bounded).

This choice of r0 and condition (ci) imply that the hypotheses of Lemma
3.2 are satisfied. Thus, the map t 7→ zI(u(·, t)−ψ) in monotone nonincreasing
and, since r1 < ∞, there is a constant m such zI(v(·, t)) ≤ m for all t ≥ 1.
If the solution u were periodic in t, then condition (cii) would imply that
there is an unbounded sequence of times t ≥ 1 such that u(·, t) − ψ has a
multiple zero. By Lemma 3.2(iii), zI(u(·, t) − ψ) would then drop infinitely
many times as t ≥ 1 increases, which is absurd. Thus, u cannot be a periodic
solution.

We can now prove Proposition 2.1.

Proof of Proposition 2.1. We prove that the statement in Proposition 2.1
holds, provided it holds for any bounded radial steady state u = u(r) of
(1.1) (cp. Remark 2.2(ii)). This will prove Proposition 2.1, for, as noted in
Remark 2.2(i), the convergence for steady states is known to hold under the
nondegeneracy condition (ND).

Let u(r, t) be a radial bounded periodic solution of (1.1). We first prove
that ut(r, t) → 0 as r → ∞, uniformly in t. If not, there exist sequences
{rn}, {tn} with rn → ∞ and tn in a bounded period interval of u(r, ·) such
that for all n one has |ut(rn, tn)| > δ with δ > 0. Consider the functions
un(r, t) := u(rn+r, tn+t), n = 1, 2, . . . . Note that un is a bounded (uniformly
in n) solution of the equation

ũt = ũrr +
N − 1

rn + r
ũr + f(ũ), r > −rn, t ∈ R,
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and, of course, it is periodic with the same period as u. Using the bound-
edness and standard parabolic estimates, and passing to a subsequence if
necessary, we obtain that un → ū, ∂tun → ∂tū, locally uniformly2 on R2,
where ū is a bounded periodic solution of the one-dimensional equation

ūt = ūrr + f(ū), r ∈ R, t ∈ R.

By [9, 10], ū is a necessarily a steady state and ūt = 0. This yields a
contradiction to |ut(rn, tn)| > δ, n = 1, 2, . . . . Thus, ut(r, t) → 0 as r → ∞,
uniformly in t, is true, as claimed.

Pick now any τ ∈ R, and set a := u(0, τ), b := 0 = ur(0, τ). Let ψ be
the solution of (3.3), (3.4) with r0 = 0 (so ψ = ψ(·, a) is a radial steady
state of (1.1)). First we verify that ψ has to be bounded. Assume it is
not. Then we can find r1 > 0 such that |ψ(r1)| > sup(x,t)∈R2 |u(x, t)|. In
particular, u(r1, t)− ψ(r1) ̸= 0 for all t. Since r = 0 is a multiple zero of the
function u(·, τ)− ψ, Proposition 3.5 tells us that u is not periodic, which is
a contradiction.

Having proved that ψ is bounded, we obtain, due to our starting assump-
tion, that the limit ζ := ψ(∞) ∈ R exists and f(ζ) = 0. We show that
u(r, t) → ζ as r → ∞, uniformly in t ∈ R. Assume this is not true. Then,
since u is periodic and ut(r, t) → 0 as r → ∞, uniformly in t, there exists
r1 ∈ (0,∞) such that u(r1, t) ̸= ψ(r1) for all t ∈ R. Thus, as above, Propo-
sition 3.5 says that u is not periodic, which is a contradiction. The proof is
complete.

Remark 3.6. Notice that the arguments in the last two paragraphs of the
above proof also show that if u and ζ are as in Proposition 2.1, and ψ is a
solution of (3.3) such that for some τ the function u(·, τ)− ψ has a multiple
zero, then necessarily ψ(∞) = ζ.

4 Stable limit ζ: proof of Theorem 2.3

In this section, we assume that u(r, t) is a radial bounded periodic solution of
(1.1) and that (2.1) holds with the limit ζ ∈ f−1{0} satisfying the following

2This is a slight abuse of language, which we also use at other places below. What we
mean here is that for any bounded set K ⊂ R2 the functions un, ∂tun are defined on K
for all large enough n and un → ū, ∂tun → ∂tū uniformly on K.
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condition: there is δ > 0 such that

f ′(u) ≤ 0 (u ∈ [ζ − δ, ζ + δ]). (4.1)

This condition holds in particular if f ′(ζ) < 0, as assumed in Theorem 2.3.
We prove that u is a steady state.

With δ > 0 as in (4.1), pick ρ0 such that

|u(r, t)− ζ| < δ (r ≥ ρ0, t ∈ R). (4.2)

Let ψ be the solution of the following initial-value problem:

ψrr +
N − 1

r
ψr + f(ψ) = 0, r > 0, (4.3)

ψ(ρ0) = u(ρ0, 0), ψ
′(ρ0) = ur(ρ0, 0). (4.4)

Note that u(·, 0)− ψ has a multiple zero at r = ρ0. We claim that u ≡ ψ0.
We prove our claim by contradiction. Assume u ̸≡ ψ0. If there is r1 ≥ ρ0

such that u(r1, t) − ψ(r1) ̸= 0 for all t, then, according to Proposition 3.5,
u cannot be periodic. So no such r1 can exist. This and (4.2) imply that
|ψ| < δ for all r ≥ ρ0. Pick ϵ > 0 so that |ψ| < δ holds also in [ρ0 − ϵ, ρ0].
Let now ψ̃ be the solution of (4.3) with the following initial conditions

ψ̃(ρ0) = ψ(ρ0), ψ̃
′(ρ0) = γ, (4.5)

where γ > ψ′(ρ0) is chosen as follows. Appealing to the continuous depen-
dence of solutions of (4.3) on the initial data, we choose γ > ψ′(ρ0) sufficiently
close to ψ′(ρ0) so that the function ψ̃ has the following two properties:

(i) |ψ̃| < δ on [ρ0 − ϵ, ρ0 + ϵ];

(ii) there is t̃0 such that the function u(·, t̃0) − ψ̃ has a multiple zero ρ̃0 ∈
(ρ0 − ϵ, ρ0 + ϵ) (here we also use Lemma 3.4).

Just like for ψ, applying Proposition 3.5, we obtain that there can be no r1 ≥
ρ0+ϵ such that u(r1, t)−ψ̃(r1) ̸= 0 for all t. Therefore, |ψ̃| < δ on [ρ0+ϵ,∞).
Thus, ψ and ψ̃ are distinct solutions of (4.3) satisfying ψ(ρ0) = ψ̃(ρ0) and
|ψ|, |ψ̃| < δ on [ρ0,∞). Moreover, by Remark 3.6, ψ(∞) = ψ̃(∞) = ζ. The
difference w := ψ − ψ̃ is a solution of the linear equation

wrr +
N − 1

r
wr + c(r)w = 0, r > ρ0,
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where

c(r) =

∫ 1

0

f ′(ψ̃(r) + s(ψ(r)− ψ̃(r)) ds.

We have w(ρ0) = 0 = w(∞) and, due to (4.1), c(r) ≤ 0 in [ρ0,∞). The
relation w ̸≡ 0 now gives a contradiction to the maximum principle.

We have shown that the assumption u ̸≡ ψ leads to a contradiction, thus
proving that u ≡ ψ must hold, as claimed.

5 Unstable limit ζ: proof of Theorem 2.4

Here we assume that u(r, t) is a radial bounded periodic solution of (1.1)
and that (2.1) holds with ζ ∈ f−1{0}, f ′(ζ) > 0. We prove that under the
additional hypotheses given in Theorem 2.4, u is a steady state. We remark
that there is only one place where the extra hypotheses of Theorem 2.4 are
needed, namely, Lemma 5.2; all the other lemmas and arguments in this
section are valid without them.

At no cost to generality, we may assume that ζ = 0 (replace f by f(·+ ζ)
and u by u− ζ). We use the following notation

ζ = 0, β :=
√
f ′(0). (5.1)

We need additional results concerning solutions ψ of (3.3). As above, we
denote by ψ(·, a) the solution of (3.3), (3.4) with r0 = 0 and b = 0; |(a, b)|
denotes the Euclidean norm of a vector (a, b) ∈ R.

Lemma 5.1. (i) If ψ is a solution of (3.3), then the function r(N−1)/2ψ(r)
is bounded as r → ∞ and there are constants A, B such that

ψ(r) = r−(N−1)/2(A cos βr +B sin βr + o(1)) as r → ∞. (5.2)

(ii) There are positive constants d, c1 such that if r0 ≥ 1 and ψ is a solution
of (3.3) with |(ψ(r0), ψ′(r0))| ≤ d, then

|(ψ(r), ψ′(r))| ≥ c1(1+r−s)−(N−1)|(ψ(s), ψ′(s))| (r > s ≥ r0). (5.3)

(iii) There are positive constants δ and ℓ, such that if r0 ≥ 1/δ and ψ is a
solution of (3.3) with |(ψ(r0), ψ′(r0))| ≤ δ, then ψ has a critical point
in every subinterval of (r0,∞) of length ℓ.
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Proof of Lemma 5.1. For the proof of statement (i) we refer the reader to
[11].

To prove statement (ii), we use the standard energy functional in a similar
way as in [2, Proposition 2.6]. Assuming ψ is a solution of (3.3), let

E(r) :=
ψ2
r(r)

2
+ F (ψ(r)), F (u) :=

∫ u

0

f(s) ds. (5.4)

Then, by (3.3),

E ′(r) = −N − 1

r
ψ2
r(r) = −N − 1

r
(2E(r)− 2F (ψ(r))). (5.5)

Rewriting this as

E ′(r) +
2(N − 1)

r
E(r) =

2(N − 1)

r
F (ψ(r)),

and multiplying by the integrating factor r2(N−1), we obtain(
r2(N−1)E(r)

)′
= 2(N − 1)r2(N−1)−1F (ψ(r)).

Since F (0) = F ′(0) = f(0) = 0, and F ′′(0) = f ′(0) > 0, there is a constant
d̄ > 0 such that F (u) ≥ 0 for |u| ≤ d̄. It follows that if r0 ≥ 1 and
|ψ(r)| ≤ d̄ for all r ≥ r0, then F (ψ(r)) ≥ 0 and the function r2(N−1)E(r) is
nondecreasing in [r0,∞). In this case, for all r > s ≥ r0 one has

E(s) ≤
(r
s

)2(N−1)

E(r) =

(
1 +

r − s

s

)2(N−1)

E(r) ≤ (1 + r − s)2(N−1)E(r).

(5.6)
From the relations F (0) = F ′(0) = 0 < F ′′(0) it also follows that, making

d̄ > 0 smaller if necessary, there is a constant c ≥ 1 such that

c−1|(ψ(r), ψ′(r))|2 ≤ E(r) ≤ c|(ψ(r), ψ′(r))|2 (5.7)

whenever |(ψ(r), ψ′(r))| ≤ d̄. If the latter is true for all r ≥ r0, we obtain
from (5.6), (5.7) that (5.3) holds with c1 = c−2. The following claim implies
that |(ψ(r), ψ′(r))| ≤ d̄ does hold for all r ≥ r0, provided |(ψ(r0), ψ′(r0))| is
sufficiently small. This completes the proof of statement (ii).

Claim. Given any d̄ > 0, there is a constant d > 0 such that if r0 ≥ 1 and
ψ is a solution of (3.3) with |(ψ(r0), ψ′(r0))| ≤ d, then |(ψ(r), ψ′(r))| ≤ d̄ for
all r ≥ r0.
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The claim is a direct consequence of (5.7) and the fact that E(r) is nonin-
creasing (cp. (5.5)).

To prove statement (iii), we use arguments of [11, 12] based on the Sturm
comparison principle. For any solution ψ of (3.3), the function v = ψ′ is a
solution of

v′′ +
N − 1

r
vr + (f ′(ψ(r))− N − 1

r2
)v = 0, r > 0.

If δ ∈ (0, 1) is a sufficiently small constant, r0 ≥ 1/δ, and |(ψ(r0), ψ′(r0))| ≤ δ,
then the above claim implies that the coefficient f ′(ψ(r)) − (N − 1)/r2 is
greater than β2/2 > 0 (recall that f ′(0) = β2). This justifies a Sturmian
comparison with the Bessel-type equation

v′′ +
N − 1

r
vr +

β2

2
v = 0.

Any nontrivial solution of this equation has an increasing unbounded se-
quence of zeros, with the distance between any two successive ones bounded
by a constant ℓ/2. By the Sturm comparison principle, between any two such
zeros, there is a zero of ψ′. This gives the property in statement (iii).

Lemma 5.2. Under the hypotheses of Theorem 2.4, the following statement
holds. If ψ, ψ̃ are two distinct solutions of (3.3), then

lim sup
r→∞

r(N−1)/2|ψ(r)− ψ̃(r)| > 0. (5.8)

Remark 5.3. A conclusion equivalent to (5.8) is that no two distinct solu-
tions of (3.3) can have the same pair of constants A, B in (5.2).

Proof of Lemma 5.2. Assume that ψ ̸≡ ψ̃ are solutions of (3.3). Let w =
ψ̃ − ψ. Then w satisfies the equation

wrr +
N − 1

r
wr + (β2 + q(r))w = 0, r > 0,

where β2 = f ′(0), as above, and

q(r) =

∫ 1

0

(f ′(ψ(r) + τw(r))− f ′(0)) dτ. (5.9)
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An elementary computation shows that the function v(r) := r(N−1)/2w(r)
satisfies the equation

vrr +

(
β2 − (N − 1)(N − 3)

4r2
+ q(r)

)
v = 0, r > 0. (5.10)

Let

H :=
v2r
2

+
β2v2

2
.

Then

H ′ = (vrr + β2v)vr = hvvr, with h(r) :=
(N − 1)(N − 3)

4r2
− q(r). (5.11)

Assume for a contradiction that (5.8) is not true, or, in other words,
v(r) → 0 as r → ∞. Since v is a solution of (5.10), standard estimates show
that then also vr(r) → 0, and therefore H(r) → 0, as r → ∞. Of course,
H(r) > 0 for any r > r0, as v is a nontrivial solution of (5.10). From (5.11)
we obtain

H ′(r)

H(r)
= h(r)

v(r)vr(r)

H(r)
,

which gives, for any fixed r1 > 0,

logH(r)− logH(r1) =

∫ r

r1

h(s)
v(s)vr(s)

H(s)
ds, (r > r1).

Consequently, ∫ r

r1

h(s)
v(s)vr(s)

H(s)
ds→ −∞ as r → ∞. (5.12)

The function vvr/H is clearly bounded. We next show that the function
q(r) given by (5.9) is integrable on (r1,∞), therefore also the function h(r)
given by (5.11) is integrable on (r1,∞). Indeed, Lemma 5.1(i) applied to both
ψ and ψ̃, and the hypotheses of Theorem 2.4 give the following estimates. If
N ≥ 4,

|q(r)| ≤ C max
τ∈[0,1]

|τ ψ̃(r) + (1− τ)ψ(r)|σ ≤ C̃r−(N−1)σ/2,
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where (N − 1)σ/2 > 1 and C, C̃ are constants. If N = 3 (in which case we
are assuming f ′′(0) = 0), then, similarly,

|q(r)| ≤ C max
τ∈[0,1]

|τ ψ̃(r) + (1− τ)ψ(r)|1+σ ≤ C̃r−(N−1)(1+σ)/2 = C̃r−(1+σ),

where σ > 0. In either case, q and h are integrable, as claimed, and we have
a desired contradiction to (5.12). The proof of the lemma is complete.

We now return to the periodic solution u(r, t). Let T > 0 be its period:
u(r, t + T ) = u(r, t) for all r ≥ 0, t ∈ R. Since (2.1) holds with ζ = 0, there
is a sequence {(rn, tn)}n with rn → ∞ and tn ∈ [0, T ] such that

κn := |u(rn, tn)| = ∥u(rn, ·)∥L∞(0,T ) = max
r≥rn, t∈R

|u(r, t)|. (5.13)

We will also assume, passing to a subsequence if necessary, that rn+1 > rn >
ς, where ς is large enough for the following relations to be satisfied with d > 0
and δ > 0 as in Lemma 5.1(ii),(iii):

ς > max{1, 1/δ}, |(u(r, t), ur(r, t))| ≤ min{d, δ} (r ≥ ς) (5.14)

(in the last relation, we use the fact that ur(r, t) → 0 as r → ∞, uniformly
in t, which follows from (2.1) and standard parabolic regularity estimates).

Our first goal is to find a limit function, as n → ∞, of the sequence
{u(rn + r, tn + t)/κn}n. For that aim, let

vn(r, t) := u(rn + r, tn + t)/κn (r > −rn, t ∈ R, n = 1, 2, . . . ). (5.15)

Then vn is periodic in t with period T and satisfies the equation

vnt = vnrr +
N − 1

rn + r
vnr + qn(r, t)vn, r > −rn, t ∈ R, (5.16)

where

qn(r, t) =


f(u(rn + r, tn + t))

u(rn + r, tn + t)
if u(rn + r, tn + t) ̸= 0,

f ′(0) if u(rn + r, tn + t) = 0.

(5.17)

Note that qn is a continuous function, bounded on (−rn,∞)×R by a constant
independent of n (here we use the Lipschitz continuity of f). We now give
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estimates, uniform in n, of the functions vn. First of all, by the definitions
of rn and vn, we have

|vn(0, 0)| = 1 ≥ ∥vn(r, ·)∥L∞(R) (r ≥ 0). (5.18)

The following lemma yields estimates for r < 0.

Lemma 5.4. For each ϵ > 0 there is a constant Cϵ such that

eϵr∥vn(r, ·)∥L∞(R) ≤ Cϵ (r ∈ [−rn + ς, 0), n = 1, 2, . . . ). (5.19)

Proof. Assume the statement is not true for some ϵ > 0. This means that,
possibly after passing to a subsequence, the following holds. There are se-
quences {ρn}, {ϑn}, {t̄n} such that −ρn ∈ [−rn + ς, 0) for all n, ϑn → ∞,
and

e−ϵρnu(rn−ρn, t̄n) = e−ϵρnκnv
n(−ρn, t̄n−tn) > ϑnκn (n = 1, 2, . . . ). (5.20)

Given any n, let ψ = ψn be the solution of (3.3) satisfying the following
initial conditions at r0 = rn − ρn

ψ(rn − ρn) = u(rn − ρn, t̄n), ψ′(rn − ρn) = ur(rn − ρn, t̄n). (5.21)

Applying Lemma 5.1(ii) to ψ (which is justified by (5.14) and the relations
rn − ρn ≥ ς > 1), we obtain

|(ψ(rn), ψ′(rn))| ≥ c1(1 + ρn)
−(N−1)|(ψ(rn − ρn), ψ

′(rn − ρn))|
≥ c2e

−ϵρn|(ψ(rn − ρn), ψ
′(rn − ρn))|,

(5.22)

where c1 > 0 is as in (5.3) and c2 > 0 is a small enough constant (such that
c2e

−ϵρ ≤ c1(1 + ρ)−(N−1) for all ρ > 0). Combining (5.22) with (5.21) and
(5.20), we obtain

|(ψ(rn), ψ′(rn))| ≥ c2e
−ϵρn|(u(rn − ρn, t̄n), ur(rn − ρn, t̄n))| > c2ϑnκn. (5.23)

By Lemma 5.1(iii), we can pick r̃n ∈ (rn, rn+ℓ) such that ψ′(r̃n) = 0 (note
that the application of Lemma 5.1(iii) is justified by the relations (5.21),
(5.14), rn > rn − ρn ≥ ς > 1/δ). Applying estimate (5.3) again, we obtain

|ψ(r̃n)| = |(ψ(r̃n), ψ′(r̃n))| ≥ c1(1 + r̃n − rn)
−(N−1)|(ψ(rn), ψ′(rn))|

≥ c1(1 + ℓ)−(N−1)|(ψ(rn, ψ′(rn))|.
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This, in conjunction with (5.23) and (5.13), gives

|ψ(r̃n)| > c1c2(1 + ℓ)−(N−1)ϑnκn ≥ c1c2(1 + ℓ)−(N−1)ϑn|u(r̃n, t)| (t ∈ R).

Since ϑn → ∞, we conclude that if we fix large enough n, the function ψ = ψn

satisfies
|ψ(r̃n)| > |u(r̃n, t)| (t ∈ R).

Now, by (5.21), the function u(·, t̄n)−ψ has a double zero rn−ρn ∈ (0, r̃n).
Therefore, according to Proposition 3.5, u cannot be periodic and we have a
desired contradiction. The lemma is proved.

Estimates in Lemma 5.4 and (5.18) in particular show that for any bounded
interval J ⊂ R the sequence vn starting from a large enough n is uniformly
bounded on J × R. Recall also that vn is a solution of (5.16), with qn as in
(5.17). Using parabolic regularity estimates and passing to a subsequence,
we obtain that vn → v, locally uniformly on R2, where v is a solution of the
following limit equation (with β2 = f ′(0))

vt = vrr + β2v, r ∈ R, t ∈ R. (5.24)

Also, v is T -periodic in t and, by (5.18) and Lemma 5.4, satisfies the following
estimates:

v(0, 0) = 1 ≥ ∥v(r, ·)∥L∞(R) (r ≥ 0) (5.25)

eϵr∥v(r, ·)∥L∞(R) ≤ Cϵ (r < 0, ϵ > 0). (5.26)

We next show that v is independent of t. This follows from a more general
classification of (unbounded) periodic solutions of (5.24) given in [23], but
since the proof of our more specific claim is simple, we include it here for the
reader’s convenience.

Multiplying equation (5.24) by e2kπit/T and integrating from 0 to T , we
obtain equations for the Fourier coefficients of the T -periodic function v(r, ·).
Namely,

γk(r) :=
1

T

∫ T

0

v(r, t)e2kπit/T dt (5.27)

satisfies the following ordinary differential equation on R:

−2kπi

T
γ = γ′′ + β2γ. (5.28)
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Also, by (5.25), (5.26),

e−ϵ|r||γ(r)| ≤ Cϵ (r ∈ R, ϵ > 0). (5.29)

The characteristic equation of (5.28) is

λ2 + β2 +
2kπi

T
= 0.

Its roots have nonzero real parts if k ̸= 0. Therefore, for k ̸= 0, there is no
nontrivial solution of (5.28) satisfying (5.29). This shows that γk ≡ 0 for all
k ̸= 0, which means that the function v(r, t) is independent of t.

We have thus proved that, replacing (rn, tn) by a subsequence, we have

u(rn + r, tn + t)

κn
→ φ(r), locally uniformly in (r, t) ∈ R2, (5.30)

where φ satisfies φrr+β
2φ = 0 and |φ(0)| = 1 (thus, φ(r) = ± cos βr+b sin βr

for some b ∈ R). Observe that, due to the periodicity of u in t, the locally
uniform converge actually means that the convergence is uniform on any set
J × R, where J ⊂ R is any bounded interval.

Having found the limit (5.30), we now compare it to a similar limit when
u is replaced by a suitable steady state ψ. Take ψ = ψ(·, a), where a is
chosen such that for some t̄ the function u(·, t̄)−ψ has a multiple zero ρ (for
example, a = u(0, 0), in which case 0 is a multiple zero of u(·, 0) − ψ). We
show that

ψ(rn + r)

κn
→ φ(r), locally uniformly in r ∈ R. (5.31)

Suppose this is not true. Then, in view of (5.30), we can replace {rn} by a
subsequence so as to achieve the following. There exist a bounded sequence
r̄n and a positive constant ϵ > 0 such that

|u(rn + r̄n, t)

κn
− ψ(rn + r̄n)

κn
| > ϵ (t ∈ R, n = 1, 2, . . . ). (5.32)

Since rn → ∞, we can pick large enough n so that rn + r̄n > ρ (ρ being the
multiple zero of u(·, t̄)− ψ, as above). Using (5.32) and Proposition 3.5, we
obtain that u is not periodic in t, which is a contradiction. This contradiction
proves (5.31).

23



We now claim that u ≡ ψ. Suppose that u ̸≡ ψ. Then, by Lemma 3.4,
if we choose ã ̸= a close enough to a and set ψ̃ := ψ(·, ã), then the function
u(·, t) − ψ̃ has also a multiple zero for some t. Therefore, (5.31) is valid
equally well when ψ is replaced by ψ̃. Consequently,

ψ(rn + r)

ψ̃(rn + r)
→ 1, (5.33)

uniformly on any compact set K ⊂ R not containing any zero of the function
φ(r). This implies that if A, B are as in Lemma 5.1(i), and Ã, B̃ are the
constants in a similar expression for ψ̃, then A = Ã and B = B̃. To see
this, replace rn by a subsequence such that the sequence {rn mod 2π}n
converges to some r̄ ∈ [0, 2π]. Take any compact interval K (of positive
length) not containing any zero of the function φ(r) = ± cos r + b sin r. For
any η ∈ r̄ +K, use (5.33) and the expressions from Lemma 5.1(i) for ψ, ψ̃
to obtain the identity

A cos βη +B sin βη

Ã cos βη + B̃ sin βη
= 1 (η ∈ r̄ +K).

The relations A = Ã and B = B̃ now follow immediately from the linear
independence of the functions cos βη, sin βη.

Relations A = Ã, B = B̃ and Lemma 5.1(i) in particular imply that
r(N−1)/2|ψ(r) − ψ̃(r)| → 0 as r → ∞. This, however, is a contradiction to
Lemma 5.2 because ψ̃ ̸≡ ψ (we have chosen ã ̸= a). By this contradiction we
have proved that u ≡ ψ, completing the proof of Theorem 2.4.
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[20] P. Poláčik and E. Yanagida, On bounded and unbounded global solutions
of a supercritical semilinear heat equation, Math. Ann. 327 (2003), 745–
771.

[21] , Localized solutions of a semilinear parabolic equation with a
recurrent nonstationary asymptotics, SIAM, J. Math. Anal. 46 (2014),
3481–3496.

[22] E. Risler, Global behaviour of radially symmetric solutions stable at in-
finity for gradient systems, (preprint).

[23] D.-H. Tsai and C.-H. Nien, On space-time periodic solutions of the one-
dimensional heat equation, Discrete Contin. Dyn. Syst. 40 (2020), 3997–
4017.

[24] K. Uchiyama, Asymptotic behavior of solutions of reaction-diffusion
equations with varying drift coefficients, Arch. Rational Mech. Anal. 90
(1985), 291–311.

26


