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tion ∆u + f(u) = 0 on a bounded domain Ω ⊂ RN . We assume that
Ω is convex in a direction e and symmetric about the hyperplane
H = {x ∈ RN : x · e = 0}. It is known that if N ≥ 2 and Ω is of
class C2, then any nonzero nonnegative solution is necessarily strictly
positive and, consequently, it is reflectionally symmetric about H and
decreasing in the direction e on the set {x ∈ Ω : x · e > 0}. In this
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1 Introduction and the main results

Consider the elliptic problem

∆u+ f(u) = 0, x ∈ Ω, (1.1)

u = 0, x ∈ ∂Ω, (1.2)

where f : R → R is a locally Lipschitz function and Ω is a bounded do-
main in RN , which is convex in one direction and reflectionally symmetric
about a hyperplane orthogonal to that direction. Without loss of generality,
changing the coordinate system if necessary, we assume that the direction is
e1 := (1, 0, . . . , 0) (that is, Ω is convex in x1, or, shortly, x1-convex) and the
symmetry hyperplane is given by

H0 = {(x1, x
′) ∈ R× RN−1 : x1 = 0}.

By a well-known theorem of Gidas, Ni, and Nirenberg [17] and its more gen-
eral versions for nonsmooth domains, as given by Berestycki and Nirenberg
[4] and Dancer [10], each positive solution u of (1.1), (1.2) is even in x1:

u(−x1, x
′) = u(x1, x

′) ((x1, x
′) ∈ Ω), (1.3)

and, moreover, u(x1, x
′) decreases with increasing |x1|:

ux1(x1, x
′) < 0 ((x1, x

′) ∈ Ω, x1 > 0). (1.4)

The method of moving hyperplanes, used in these results, was introduced by
Alexandrov [1] and further developed and applied in a symmetry problem by
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Serrin [28]. We refer the reader to [3, 22, 23, 24] for surveys of related results
and references. Further extensions can be found in [5, 11] (equations with
non-Lipschitz nonlinearities) or [8] (viscosity solutions), for example.

In this paper, we continue our investigation of nonnegative solutions. The
question is whether the above symmetry and monotonicity theorem still holds
if the positivity of the solution is relaxed to the assumption that the solution
is nonnegative and not identical to zero.

In one dimension, the answer is no, as already noted in [17] and docu-
mented by the example u′′ + u − 1 = 0 on Ω = (−(2k + 1)π, (2k + 1)π),
k ∈ N (with the solution u(x) = 1 + cosx). Of course, the case N = 1 is
very special in that the boundary of Ω is not connected. So this example is
not very indicative of what happens in higher dimension. If one allows the
nonlinearity f to depend on x′ = (x2, . . . , xN), f = f(x′, u), which preserves
the reflectional symmetry of the problem, then nonnegative solutions with
nontrivial nodal sets in Ω do exist on some multidimensional domains, see
[26] for specific examples. In [26], we further examined such nonnegative
solutions and discovered that they have an interesting symmetry structure,
similar to that of the solution u(x) = 1 + cosx in the one-dimensional exam-
ple: each nonnegative solution is even in x1 and, if it is not identical to zero,
its nodal set divides Ω into a finite number of reflectionally symmetric sub-
domains in which the solution has the usual Gidas-Ni-Nirenberg symmetry
and monotonicity properties (see Section 3 for more details). This result is
valid for fully nonlinear equations

F (x, u,Du,D2u) = 0, x ∈ Ω, (1.5)

under suitable symmetry assumptions.
Examples of nonnegative solutions with nontrivial nodal sets, as given in

[26], rely on the explicit dependence of f on spatial variables. But even with
nonhomogeneous nonlinearities f(x′, u), there are domains such that no such
example exists, regardless how f(x′, u) is chosen (see [26]). It is an interesting
and natural question as to what kind of domains admit examples of solutions
with nontrivial nodal sets and whether there are any such examples at all
with spatially homogeneous equations. In this paper we focus on the latter
problem.

For the homogeneous problem (1.1), (1.2), several results proving the
nonexistence of nonnegative solutions with nontrivial nodal sets are avail-
able. In [7], the nonexistence is proved if Ω is a ball (see also the mono-
graphs [13, 16, 27] for a discussion and extensions of this result); in [9] it
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was proved for smooth domains which are convex in all directions; and in
[21] the smoothness of ∂Ω together with a strict x1-convexity was proved to
be sufficient. Recently, we proved the nonexistence result for problem (1.1),
(1.2) on a general C2-domain [25]. For nonsmooth domains, a sufficient con-
dition for the strict positivity of nonnegative nonzero solutions was given
in [15]. It requires, roughly speaking, that for any δ > 0 there be a fixed
two-dimensional wedge W , such that if the tip of W is translated to any
point of ∂Ω with x1 ≥ δ, then W is contained in Ω̄. In the recent work [14],
further sufficient conditions were derived from an extension of Serrin’s result
on overdetermined problems.

In this paper, we prove the positivity result for planar domains Ω, as-
suming, in addition to the symmetry and x1-convexity, just a minor technical
condition on Ω. Our result applies in particular to domains which are strictly
x1-convex or, more generally, domains whose boundary is piecewise C1,1 near
the points where the strict x1-convexity fails.

To be more precise, we say that ∂Ω has a step at a point y = (y1, y2) ∈ ∂Ω
if there exist a neighborhood B ⊂ R2 of y and ε > 0 such that

B ∩ ∂Ω = {(x1, ζ(x1)) : x1 ∈ (y1 − ε, y1 + ε)}, (1.6)

where ζ ∈ C(y1−ε, y1 +ε)∩C2((y1−ε, y1)∪ (y1, y1 +ε)), ζ ′ ≡ 0 on (y1−ε, y1)
and ζ ′ < 0 on (y1, y1 + ε).

In particular, if ∂Ω has a step at y, then y is the right-end point of
a horizontal portion of ∂Ω. If Ω is strictly convex in x1, ∂Ω contains no
horizontal line segments (that is, segments parallel to the x1-axis), hence it
has no steps. In case ∂Ω does have steps, the following hypothesis requires
∂Ω to be piecewise C1,1 near each of them.

(H1) If ∂Ω has a step at a point y = (y1, y2) ∈ ∂Ω and ζ : (y1−ε, y1 +ε)→ R
is as in (1.6), then there is ε1 ∈ (0, ε] such that ζ ′′ is bounded on
(y1, y1 + ε1); in other words, ζ ∈ C1,1(y1, y1 + ε1).

We also need a stronger regularity assumption on the function f near
u = 0:

(H2) There are positive constants δ, α such that f


[0,δ)
∈ C1,α[0, δ).

Theorem 1.1. Assume that Ω is a bounded domain in R2, which is x1 -
convex and symmetric about H0, and which satisfies condition (H1). Let
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f : [0,∞) → R be a locally Lipschitz function satisfying (H2). If u ∈
C2(Ω) ∩ C(Ω̄) is a nonnegative solution of (1.1), (1.2), then either u ≡ 0
(hence, necessarily, f(0) = 0) or else u > 0 and u has the symmetry and
monotonicity properties (1.3) and (1.4).

The symmetry of u, as stated in Theorem 1.1, follows by the results of
[4, 10], once we know that u is strictly positive. Note that the result is not
true in general if f is merely continuous, even if Ω is a ball; see [5, 17] for
examples, also see [5, 12] for local symmetry results for continuous f .

Remark 1.2. (i) Hypothesis (H1) can be relaxed by replacing the C1,1

regularity of ζ on (y1, y1+ε) with the C1,α regularity, for some α ∈ (0, 1).
However, some parts of the proof of Theorem 1.1 would then require
different and significantly more involved arguments. We did not find
this generalization worthwhile.

(ii) One can prove Theorem 1.1 (and Theorem 1.3 below) for a slightly
more general equations than (1.1), for example, quasilinear equations
considered in [25], which are invariant under reflections in all directions,
not just in the direction of the x1-axis.

(iii) The only purpose of hypothesis (H2) is to ensure that the solution u
is of class C3 near its nodal set in Ω. This follows by usual interior
Hölder estimates, since f(u) is of class C1,α near the nodal set.

As we discuss in the last section, several alternative hypotheses can be
used in place of (H1) in Theorem 1.1. An example is the convexity of Ω in
x2 (note that no symmetry of Ω in x2 is assumed).

Theorem 1.3. Theorem 1.1 remains valid if hypothesis (H1) is replaced with
the assumption that Ω is convex in x2.

We use the assumption that N = 2 at several places. For example, we
use the fact that the intersections of Ω with hyperplanes orthogonal to e1

have convex and reflectionally symmetric connected components (they are
line segments in dimension 2). Also, we employ an equal-angle restriction
on the intersection of nodal curves of solutions of linear elliptic equation.
Although some ideas from this paper apply in higher dimensions, they do
not lead to similarly general results.

The paper is organized as follows. In the next section, we introduce
notation associated with the method of moving hyperplanes and state some
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results for linear equations that facilitate the application of the method.
Theorems 1.1 and 1.3 are proved in Section 3. Section 4 contains remarks on
alternative hypotheses that can be used in Theorems 1.1, 1.3.

In the remainder of the paper, the standing hypotheses are that the do-
main Ω ⊂ R2 is bounded, x1-convex, and symmetric about H0; and that f is
a locally Lipschitz function. Hypotheses (H1), (H2), or the x2-convexity are
assumed only when explicitly stated.

2 Preliminaries

For any λ ∈ R and any set G ⊂ R2, we set

Hλ := {x ∈ R2 : x1 = λ},
ΣG
λ := {x ∈ G : x1 > λ},

ΓGλ := Hλ ∩G,
`G := sup{x1 ∈ R : (x1, x2) ∈ G for some x2 ∈ R}.

(2.1)

When G = Ω and there is no danger of confusion, we often omit the super-
script Ω and simply write Σλ for ΣΩ

λ , ` for `Ω, etc.
Let Pλ stand for the reflection in the hyperplane Hλ. Note that since Ω is

convex in x1 and symmetric about the hyperplane H0, Pλ(Σλ) ⊂ Ω for each
λ ∈ [0, `).

For any function z on Ω̄ and any λ ∈ [0, `], we define zλ and Vλz by

zλ(x) := z(Pλx) = z(2λ− x1, x2),

Vλz(x) := zλ(x)− z(x).
(2.2)

The function Vλz is defined on

Ω̄ ∩ Pλ(Ω̄) = Σ̄λ ∪ Pλ(Σ̄λ).

Below we rely on the following standard observations. If u is a solution
of (1.1), then uλ satisfies the same equation as u in Ω ∩ Pλ(Ω). Hence, for
any x ∈ Ω ∩ Pλ(Ω) we have

∆(uλ − u) + f(uλ)− f(u) = 0.

Therefore, by Hadamard’s formula, the function v = Vλu solves on U =
Ω ∩ Pλ(Ω) ⊃ Σλ the linear equation

∆v + c(x)v = 0, x ∈ U, (2.3)
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where c ∈ L∞(U) depends on λ, but its absolute value is bounded (uniformly
in λ) by the Lipschitz constant of f


[0,maxx∈Ω u(x)]

.

Since u ≥ 0, the Dirichlet condition (1.2) gives

v(x) ≥ 0 (x ∈ ∂Σλ \ Γλ). (2.4)

Of course, on the remaining part of ∂Σλ, Γλ, we have

v(x) = 0 (x ∈ Γλ). (2.5)

At several occasions, we will use reflections in other directions e ∈ S1.
For that purpose, we introduce a similar notation:

He
λ := {x ∈ R2 : x · e = λ},

ΣG,e
λ := {x ∈ G : x · e > λ},

ΓG,eλ := He
λ ∩G,

`G,e := sup{x · e : x ∈ G},
P e
λ := the reflection in He

λ.

(2.6)

For a function z defined on Ω (or another set), we use the notation
V e
λ z(x) := z(P e

λx)− z(x); the domain of V e
λ z is Dom(z) ∩ P e

λ(Dom(z)).
In addition to the usual maximum principle and the Hopf boundary prin-

ciple, we shall use suitable versions of other well-known results concerning
linear equations (2.3), as summarized in Propositions 2.1-2.3. We assume
that U is a bounded domain in R2, β0 = ‖c‖L∞(U), |U | denotes the mea-
sure of U , and B(x0, r) denotes the open disk of radius r centered at x0.
We remark that while we generally consider classical solutions of (1.1), it
is sufficient to consider weaker notions of solutions when dealing with the
linear equation (2.3). Below a solution of (2.3) refers to a strong solutions (a
function in W 2,2

loc (U) satisfying (2.3) almost everywhere). It would make no
difference if weak solutions were considered instead; since c ∈ L∞(U), each
weak solution of (2.3) is automatically a strong solution [18, Section 8.3].

Proposition 2.1. Let v ∈ W 2,2
loc (U) be a solution of (2.3).

(i) If v ≥ 0 in U , then either v ≡ 0 or v > 0 in U .

(ii) There is δ0 > 0 depending only on β0 such that the conditions |U | < δ0

and lim infx→∂U v ≥ 0 imply v ≥ 0 in U .
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(iii) If v ≡ 0 in a nonempty open subset of U , then v ≡ 0 in U .

Note that no sign condition on the coefficient c is needed in Proposition
2.1. Statement (i) is the standard strong maximum principle for nonnegative
solutions. Statement (ii) is the maximum principle for small domains (see
[4, 6]). Statement (iii) is the well-known weak unique continuation theorem.

Proposition 2.2. Assume that U is a connected component of ΣW,e
λ for some

bounded C1,1 domain W , some λ ∈ R, and some direction e ∈ S1 which is
tangent to ∂W at a point x0 ∈ ∂W ∩ Ū ∩He

λ. If v is a solution of (2.3) such
that

v ≥ 0 in U , v ∈ C2(Ū), (2.7)

and v(x0), Dv(x0), D2v(x0) all vanish, then v ≡ 0 in U .

This is a version of the corner point lemma proved in [28], but we have to
justify our hypotheses. First we note that the condition c ≡ 0 in [28, Lemma
2] can be removed, thanks to the fact that v is allowed to be a supersolution
there (cf. p. 316 in [28]). The main difference of the above statement from
[28, Lemma 2] is that W is assumed to be of class C1,1, rather than C2.
The C2-assumption is used in the proof of [28, Lemma 2] to guarantee that
W satisfies the interior ball condition at x0. This remains valid under the
weaker C1,1 assumption (cf. [2]). The rest of the proof of [28, Lemma 2]
applies without change.

The next lemma is a form of the “sweeping principle.”

Proposition 2.3. Let v, w ∈ W 2,2
loc (U) be two solutions of (2.3) such that

v > 0 in U and lim supx→∂U w ≤ 0. Then either w ≤ 0 in U or there is
β > 0 such that βv ≡ w in U .

Proof. First we claim that for a sufficiently large σ > 0 we have σv > w in
U . Since v, w ∈ W 2,2

loc (U) ⊂ C(U), for any compact set K ⊂ U , we achieve
σv > w in K by choosing σ = σ(K) large enough. Proposition 2.1(iii) implies
that if we do this with a set K such that U \K has a small enough measure,
then σv > w in U . Let now β = inf{σ > 0 : σv(x) ≥ w(x) (x ∈ U)}. If
β = 0, then w ≤ 0 in U . If β > 0, then βv − w ≥ 0, so, by Proposition
2.1(iii), either βv ≡ w in U or βv − w > 0 in U . However, the latter would
imply that if K ⊂ U is a compact set, then σv − w > 0 in K for all σ ≤ β
close enough to β. Choosing again K such that U \ K has a small enough
measure, we find 0 < σ < β such that σv − w > 0 in U , contradicting the
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definition of β. Thus the possibility βv − w > 0 in U is ruled out and the
lemma is proved.

We finish this section with the following result, essentially a corollary to
Proposition 2.2, which will come handy in the next section. Since this is a
local result, the symmetry hypothesis on Ω plays no role.

Lemma 2.4. Let u ∈ C2(Ω) ∪ C(Ω̄) be a nonnegative solution of (1.1). Let
W be a C1,1 subdomain of Ω, x0 a point on ∂W , and e a unit vector, tangent
to ∂W at x0. Set λ = e · x0 (so that x0 ∈ He

λ). Assume that there is a ball B
centered at x0 such that the following conditions are satisfied:

(i) V e
λ u is defined on Σ̄W,e

λ ∩ B̄ and V e
λ u ∈ C2(Σ̄W,e

λ ∩ B̄),

(ii) V e
λ u ≥ 0 on ΣW,e

λ ∩B,

(iii) u = 0 and ∇u = 0 on Σ̄W,e
λ ∩ ∂W ∩B.

Then necessarily V e
λ u ≡ 0 on the (unique) connected component of ΣW,e

λ

whose closure contains x0.

Remark 2.5. If x0 ∈ Ω and the ball B is such that B̄ ⊂ Ω, then, obviously,
V e
λ u is defined everywhere in B̄, regardless of the direction e, and V e

λ u ∈
C2(B̄). Thus condition (i) holds trivially for small balls. However, in case
x0 ∈ ∂Ω, for V e

λ u to be defined on Σ̄W,e
λ ∩ B̄, one must have P e

λ(Σ̄W,e
λ ∩ B̄) ⊂

Ω̄. Also, the C2 regularity of V e
λ u up to the boundary of ΣW,e

λ ∩ B is not
automatically guaranteed if x0 ∈ ∂Ω.

In applications below, W is chosen such that Σ̄W,e
λ ∩ ∂W ∩ B is a nodal

curve of u in Ω. As u ≥ 0 in Ω, condition∇u = 0 in (iii) is then automatically
satisfied.

Proof of Lemma 2.4. To apply Proposition 2.2, we first choose a smaller C1,1

domain W̃ ⊂ W ∩ B which shares with W its boundary in a neighborhood
of x0 and is such that He

λ ∩ W̃ is a line segment. Let U be the connected

component of ΣW̃ ,e
λ whose closure contains x0. Set v = V e

λ u. Clearly, con-
ditions (i), (ii) imply that the hypotheses of Proposition 2.2 up to (2.7) are
satisfied. We use (iii) to show that v(x0), Dv(x0), D2v(x0) all vanish.

First, since x0 ∈ He
λ, we have v(x0) = V e

λ u(x0) = 0. For the same reason,
if η is a unit vector orthogonal to e, then we have the following relations for
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the directional derivatives:

(Dηv)(x0) = (V e
λ (Dηu))(x0) = 0,

(Dηηv)(x0) = (V e
λ (Dηηu))(x0) = 0.

Next, on the closure of Hλ ∩ W̃ , we have Dev = −2Deu and, similarly,
Deηv = −2Deηu. Consequently, by condition (iii), Dev(x0) = 0. Further,
differentiating the second identity in (iii) along ∂W , we obtain Deηv(x0) =
−2Deηu(x0) = 0. Finally, the derivative Deev(x) = Deeu(P e

λx) − Deeu(x)
vanishes for x ∈ He

λ, consequently, Deev(x0) = 0. Since e, η are orthonormal,
these computations show that v(x0) = 0, Dv(x0) = 0, D2v(x0) = 0.

By Proposition 2.2, V e
λ u ≡ 0 in U . By Proposition 2.1(iii), one also has

V e
λ u ≡ 0 in the connected component of ΣW,e

λ containing U , which proves the
lemma.

3 Proofs of the main Theorems

Throughout the section we assume that the standing hypotheses are satisfied
and u ∈ C2(Ω) ∩ C(Ω̄) is a nonnegative solution of (1.1), (1.2).

If f(0) ≥ 0, then the maximum principle implies that either u ≡ 0 or
u > 0 and there is nothing to prove. We therefore assume that

f(0) < 0. (3.1)

This condition in particular implies that u 6≡ 0.
We start by quoting the following result of [26].

Theorem 3.1. There exist m ∈ N and constants λ1, . . . , λm with the follow-
ing properties:

(i) 0 = λm < λm−1 < · · · < λ1 < `.

(ii) For i = 1, . . . ,m, Vλi
u ≡ 0 on a connected component of Σλi

. In
particular, as Σ0 is connected, V0u ≡ 0 in Σ0, that is, u is even in x1.

(iii) There are open mutually disjoint open sets Gi ⊂ Ω, i = 1, . . . ,m, with
Gm possibly empty, such that the following statements are true:

(a) ∅ 6= Gi ⊂ Σ0 (i = 1, . . . ,m− 1).
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(b) Ω̄ = Ḡm ∪
⋃m−1
i=1 (Ḡi ∪ P0(Ḡi)).

(c) For i = 1, . . . ,m, the set Gi is convex in x1 and Pλi
(Gi) = Gi.

(d) For i = 1, . . . ,m, one has u > 0 in Gi, u = 0 on ∂Gi, Vλi
u ≡ 0 in

Gi, and ux1 < 0 in ΣGi
λi

.

(iv) ΣG1
λ1

is the union of (some) connected components of Σλ1 = ΣΩ
λ1

.

Up to (iii), these are the statements of [26, Theorem 2.2]. Statement (iv),
although not explicitly included in that theorem, follows from the definitions
of λ1 and the set G1 in [26, Sections 4.2, 4.3]. Namely,

λ1 := inf {µ ∈ (0, `] : Vλu(x) > 0 for all x ∈ Σλ and λ ∈ [µ, `] }, (3.2)

and ΣG1
λ1

is the union of all connected components of Σλ1 on which Vλu
vanishes identically (G1 is determined from this by the symmetry requirement
Pλ1G1 = G1).

The results of [26] are proved for fully nonlinear equations under suitable
symmetry conditions. They apply to the semilinear problem (1.1), (1.2)
without any additional assumptions on f ((H2) is not needed).

If λ1 = 0 (hence m = 1), (ii) and (iii) give the usual symmetry and
monotonicity properties of u and, in fact, u is positive in Ω in that case.
The proofs of Theorems 1.1 and 1.3 consist in showing that, under the given
hypotheses, λ1 > 0 cannot occur.

We continue assuming that λ1 > 0. From now on, we also assume hy-
pothesis (H2) to hold.

In Subsection 3.1, we draw several conclusions from the assumption λ1 >
0. In Subsections 3.2, 3.3, we show that these conclusions lead to a contra-
diction under the hypotheses of Theorems 1.1, 1.3, respectively.

In the proof of Theorem 1.1, we do not need the global description of the
nodal structure of u, as given in Theorem 3.1. We only need the symmetry
properties of the function u and the set G1. In the proof of Theorem 1.3, we
use in addition the fact that the nodal set of u contains all local minima of
u. More precisely, the following result is a direct consequence of statements
(b)-(d) of Theorem 3.1.

Corollary 3.2. If y = (y1, y2) is a point in Ω such that for some ε > 0
ux1(·, y2) < 0 on (y1 − ε, y1) and ux1(·, y2) > 0 on (y1, y1 + ε), then u(y) = 0.
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For the remainder of this section, we fix a connected component G of the
set G1. By statements (a) and (iv) of Theorem 3.1, G ⊂ Σ0 and ΣG

λ1
is a

connected component of Σλ1 . In particular,

∂G ∩ Σ̄λ1 ⊂ ∂Ω. (3.3)

By statement (d), Vλ1u ≡ 0 in G and

Vλu > 0 in ΣG
λ for each λ > λ1. (3.4)

For later reference, we also formulate a similar condition for the opposite
direction −e1:

V −e
1

−λ u > 0 in ΣG,−e1
−λ for each λ < λ1. (3.5)

This follows from (3.4) and statement (d) of Theorem 3.1.

3.1 Consequences of λ1 > 0

We first examine the structure of ∂G in more detail. Set

S := ∂G ∩ Ω.

Below, we refer to lines parallel to the x1-axis as horizontal and to their
perpendicular lines as vertical.

Lemma 3.3. There are numbers a < b and a C2-function µ : (a, b) →
(−∞, λ1) such that

S = {(µ(x2), x2) : x2 ∈ (a, b)} (3.6)

and one has
∂G = S ∪ Pλ1(S) ∪ Ja ∪ Jb, (3.7)

where Ja, Jb are closed connected subsets of the horizontal lines Ta := R×{a},
Tb = R × {b}, respectively (thus each of them is either a point or a closed
line segment).

Proof. Since the domain G is convex in x1 and symmetric about Hλ1 , it is
contained in the strip

T(a,b) := R× (a, b), (3.8)

where a < b are such that Hλ1 ∩G = {λ1} × (a, b). By the x1-convexity and
symmetry of G, the set Ja := ∂G ∩ Ta is either a closed segment, symmetric
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about Hλ1 , or the set consisting of the single point (λ1, a). An analogous
statement applies to Jb := ∂G ∩ Tb.

Take now any point x ∈ ∂G ∩ Σλ1 \ (Ta ∪ Tb). The x1-convexity and
symmetry of Ω, and the assumed relation λ1 > 0 imply Pλ1x ∈ Ω, hence
Pλ1x ∈ S. It follows that

Pλ1(S \ (Ta ∪ Tb)) = ∂G ∩ Σ̄λ1 \ (Ta ∪ Tb),

which proves (3.7).
Next we prove that S is a C2 submanifold of Ω. Since u = 0 on ∂G ⊃ S

and u ≥ 0 in Ω, we have
∇u = 0 on S. (3.9)

Fix any x0 ∈ S. Since

∆u(x0) = −f(u(x0)) = −f(0) > 0,

we have uxixi
(x0) 6= 0, where i = 1 or i = 2. By the implicit function theorem,

there is a neighborhood B of x0 such that {x ∈ B : uxi
(x) = 0} = γ, where γ

is a one-dimensional C2 submanifold of Ω (here we use the fact that u ∈ C3

near its zeros, cp. Remark 1.2(iii)). Obviously, S ∩ B ⊂ γ. We have thus
proved that the following is true:

(SM) Locally, near any of its points, S is a subset of a C2 curve (that is, a
connected one-dimensional submanifold) in Ω.

Next we observe that the x1-convexity of Ω implies that for each x ∈ G,
the horizontal line T passing through x intersects ∂G ∩ Σ̄λ1 at exactly one
point or at a closed segment of T . The same is therefore true for S. In
particular, if two points of S lie on the same horizontal line, then a segment on
that line must be contained in S. However, the following claim in particular
implies that there is no horizontal line segment M in S. Hence no two points
of S lie on the same horizontal line. This readily implies that (3.6) is valid
for some function µ, therefore, by (SM), S is a C2 curve itself. Also note
that the function µ takes values in (−∞, λ1), since S ⊂ G \ Σ̄λ1 . To show
that µ is a C2-function, we now only need to verify that the tangent lines to
S are nowhere horizontal. This also follows from the following claim. Hence,
once we prove the claim, the proof of Lemma 3.3 will be complete.

Claim. If M is a C2 curve contained in S and x0 is any point in M , then
the tangent line to M at x0 is not horizontal. In particular, S cannot contain
a horizontal line segment.
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We prove this by contradiction. Assume that the tangent line to M at x0

is horizontal, that is, e := −e1 is tangent to M at x0. Set λ := e1 · x0 < λ1.
Choose ε > 0 so small that B := B(x0, ε) has the following properties:

B̄ ⊂ Ω \ Σ̄λ1 , (3.10)

B̄ ∩ S = B̄ ∩M (3.11)

(the latter is possible by statement (SM)). In particular, ∂G ∩ B̄ ⊂ S. It is
then easy to find a C2 subdomain W ⊂ G such that W ∩ B̄ = G ∩ B̄.

By (3.10) and (3.5), the function V e
−λu is (strictly) positive in ΣG,e

−λ ⊃
ΣW,e
−λ ∩B. Since ∂W ∩ B̄ ⊂ S is a nodal line of u, the hypotheses of Lemma

2.4 are satisfied (cp. Remark 2.5). However, the strict positivity of V e
−λu

contradicts the conclusion of Lemma 2.4.

Lemma 3.4. Let a, b be as in Lemma 3.3 and T(a,b) as in (3.8). There
is a function ũ ∈ C2(T(a,b)) ∩ C(T̄(a,b)) such that ũ ≡ u in Ω̄ ∩ T̄(a,b) and
∆ũ+ f(ũ) ≡ 0 in T(a,b).

Proof. Obviously, Ω̄∩ T̄(a,b) is x1-convex. Using the symmetry of u

G

about

Hλ1 and reflecting in Hλ1 , we find an extension u∗ of u


Ω∩T(a,b)
to (Ω∩T(a,b))∪

Pλ1(Ω ∩ T(a,b)), which solves there the same equation (1.1). Moreover, by
Theorem 3.1, u is also symmetric about the hyperplanes H0, H±λ1 , hence u∗

is symmetric about H0, H±λ1 , H2λ1 . Clearly, we can use these symmetries and
further reflections to eventually obtain the extension to T(a,b), as needed.

The previous lemma allows us to apply to u

G

the method of moving
hyperplanes in the direction e2 := (0, 1). The point is that, although a priori
we do not know if G itself is x2-convex or not, T(a,b) is of course x2-convex.
We apply the moving hyperplanes to the extension ũ, while still employing
the Dirichlet condition satisfied by u on ∂G. That way we will establish the
following additional symmetries of G and u


G

.

Lemma 3.5. Let a, b, and µ be as in Lemma 3.3 and θ = (a + b)/2. Then
the following statements are valid:

(i) µ′ > 0 on (θ, b) and µ ≡ µ(2θ − ·) on (a, b) (that is, G is symmetric
about He2

θ ),

(ii) u(P e2

θ x) = u(x) for each x ∈ G and ux2(x) < 0 for each x ∈ G with
x2 > θ.
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Proof. Let ũ be as in Lemma 3.4. For λ ∈ [θ, b), consider the function
v := V e2

λ ũ. It solves a linear equation (2.3) on T(λ,b) whose coefficient c is
bounded uniformly with respect to λ. Since u (and hence ũ) vanishes on ∂G
and ũ ≥ 0 everywhere in T(a,b), we have v ≥ 0 on the boundary of T(λ,b) ∩G.
For λ ≈ b, T(λ,b) ∩ G has small measure. Hence, by Proposition 2.1(ii),

V e2

λ ũ ≥ 0 in T(λ,b) ∩ G. By Proposition 2.1(i), either V e2

λ ũ > 0 or V e2

λ ũ ≡ 0
in T(λ,b) ∩G. The latter cannot happen if λ > θ. Indeed, we have ũ = u > 0

in G, whereas V e2

λ ũ ≡ 0 in conjunction with ũ = u = 0 on ∂G ⊃ Jb would
imply that ũ vanishes at P e2

λ ((λ1, b)) ∈ G. Hence V e2

λ ũ > 0 in T(λ,b) ∩ G for
all λ ≈ b. Set

ν0 := inf{ν ∈ [θ, b) : V e2

λ ũ > 0 in T(λ,b) ∩G for all λ ∈ [ν, b)}. (3.12)

Then V e2

ν0
ũ ≥ 0 in T(ν0,b). As above, if ν0 > θ, then we obtain the strict

inequality. Choose a compact set K ⊂ G∩T(ν0,b). For λ < ν0 close enough to

ν0, we have V e2

λ ũ > 0 in K. Choosing K suitably, we achieve that T(λ,b)∩G\K
has small measure for λ ≈ ν0. Then it follows from Proposition 2.1(ii) that
V e2

λ ũ > 0 in T(λ,b)∩G\K, hence in T(λ,b)∩G, in contradiction to the definition
of ν0. Thus necessarily ν0 = θ.

By continuity, V e2

θ ũ ≥ 0 in T(θ,b) ∩ G and, as usual, the Hopf boundary

principle applied to V e2

λ ũ gives ux2(x) < 0 for each x ∈ G with x2 = λ > θ.
Applying an analogous moving hyperplane procedure in the opposite direc-
tion, we obtain V e2

θ ũ ≤ 0 in P e2

θ (T(a,θ) ∩G) = T(θ,b) ∩ P e2

θ (G). Consequently,

V e2

θ ũ ≡ 0 in T(θ,b) ∩G∩P e2

θ (G). Since this open set is nonempty (it contains
the vertical segment {(λ1, x2) : x2 ∈ (θ, b)}), by unique continuation we have
V e2

θ ũ ≡ 0 in T(a,b). This and the relations ũ ≡ u > 0 in G and ũ = u = 0 on

∂G, readily imply that G is symmetric about He2

θ , which gives µ ≡ µ(2θ− ·)
on (a, b).

It remains to prove that µ′(λ) > 0 for each λ ∈ (θ, b). For any λ ∈ (θ, b),
we have V e2

λ ũ > 0 in T(λ,b) ∩ G. We first rule out the relation µ′(λ) < 0.
Assume it holds. Then one easily finds a point x ∈ T(λ,b) ∩ G in a vicinity

of (µ(λ), λ) such that P e2

λ x ∈ ∂G. But then, since ũ(x) > 0 = ũ(P e2

λ x), we
have V e2

λ ũ(x) < 0, a contradiction. Thus µ′(λ) ≥ 0. The equality would
mean that e2 is tangent to S ⊂ ∂G at (µ(λ), λ). This is easily excluded using
Lemma 2.4, Remark 2.5, and the relation V e2

λ ũ > 0 in T(λ,b) ∩G.

Some arguments in the next section rely on regularity of the function
u (or, more precisely, the restriction of u to Ḡ) up to the boundary of G.
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Basic regularity properties are established in the following lemma. We use
the simplified notation

ui = uxi
= Diu, uij = uxixj

.

Lemma 3.6. (i) u ∈ W 2,p(G) for each p ∈ [1,∞) and u1, u2 ∈ Cα(Ḡ) for
each α ∈ (0, 1).

(ii) u1 ∈ W 1,2
0 (G) and it is a weak solution of the problem

∆v + f ′(u(x))v = 0, x ∈ G, (3.13)

v = 0, x ∈ ∂G. (3.14)

Consequently, u1 ∈ W 2,2
loc (G) and it is a strong solution of (3.13).

(iii) If Ja, Jb consist of single points, then statement (ii) holds with u1 re-
placed by u2.

Proof. We have u ∈ W 1,2
0 (G). Indeed, since u ∈ C2(Ω) ∩ C(Ω̄) is a classical

solution of (1.1), (1.2), and u = 0 on ∂G, it coincides on G with the unique
weak W 1,2

0 (G)-solution of (the Dirichlet problem for) the equation

∆u = −h(x), x ∈ G,

with h(x) = f(u(x)).
From u ∈ W 1,2

0 (G) it follows that the function ū defined by

ū(x) =

{
u(x), x ∈ Ḡ,
0, x ∈ T̄(a,b) \ Ḡ,

belongs to W 1,2
0 (T(a,b)). Clearly, the function h̄ defined by

h̄(x) =

{
f(u(x)), x ∈ Ḡ,
0, x ∈ T̄(a,b) \ Ḡ,

belongs to L∞(T(a,b)). Since ∇u ≡ 0 on ∂G ∩ T(a,b) (cp. (3.9), (3.7)), an
integration by parts shows that for each C1 function φ with compact support
in T(a,b) one has ∫

T(a,b)

∇ū∇φ =

∫
T(a,b)

h̄φ,
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hence ū is a weak solution of the Dirichlet problem for

∆ū = −h̄(x), x ∈ T(a,b).

Now, the boundary of T(a,b) being smooth, we obtain by standard elliptic
regularity results that ū ∈ W 2,p(T(a,b) ∩ B) for each p ∈ [1,∞) and each
ball B in R2. Consequently, by the Sobolev imbedding theorem ū1, ū2 ∈
Cα(T̄(a,b)∩B) for each α ∈ (0, 1) and each ball B. This proves statement (i).

Further, for the derivatives of ū we have ū1, ū2 ∈ W 1,2(T(a,b)) ∩ C(T̄(a,b))
and ū1 ≡ ū2 ≡ 0 in T(a,b) \ Ḡ. If the sets Ja and Jb are segments, rather
than single points, then also ū1 = 0 on Ja ∪ Jb, which shows that the trace
of ū1 is zero. Hence (thanks to the regularity of the boundary of T(a,b)),

ū1 ∈ W 1,2
0 (T(a,b)). Since ū1 is the zero extension of u1


G

, this means that

u1 ∈ W 1,2
0 (G). The fact that u1 is a weak solution of (3.13), (3.14), is proved

easily using (1.1). Since the function x 7→ f ′(u(x)) belongs to L∞(G), u1 is
also a strong solution of (3.13) (see [18, Section 8.3]). This proves statement
(ii).

If Ja, Jb consists of single points, the trace of ū2 is zero also. The above
arguments then apply to ū2 equally well and one obtains (iii).

3.2 Proof of Theorem 1.1

We derive a contradiction from the conclusions obtained in the previous
subsection, assuming that (H1) holds (in addition to the standing hypotheses
and (H2)). Actually, we use different arguments depending on whether the
set Jb in (3.7) is a single point or a line segment and hypothesis (H1) is only
needed in the latter case.

CASE A: Jb is a single point.

By the symmetry of G about θ = (a + b)/2 (Lemma 3.5), Ja is a single
point, as well. By Lemma 3.6, u1, u2 ∈ W 1,2

0 (G)∩C(Ḡ) and they are (strong)
solutions of (3.13).

We use a comparison argument with the functions v(x) := −u1(x) and
w(x) := −(x2−θ)u1(x)+(x1−λ1)u2(x). Note that, after putting the origin at
the point (λ1, θ) and letting ρ, ϕ be the polar coordinates, w coincided with
the angular derivative uϕ of u. Clearly, w ∈ W 1,2

0 (G) ∩C(Ḡ) and it is also a
solution of (3.13). Since (λ1, θ) is the intersection of Hλ1 and He2

θ , the lines

of symmetry of u, we have w = 0 on ∂G00, where G00 := ΣG
λ1
∩ ΣG,e2

θ is the
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“upper-right quarter” of G. Since v > 0 in ΣG
λ1
⊃ G00, applying Proposition

2.3 to the functions v, w, and then to v, −w, we obtain that w ≡ 0 in G00.
Consequently, by unique continuation, w ≡ 0 in G. This means that u


G

is
radially symmetric around (λ1, θ). Since u > 0 in G and u = 0 on ∂G, G
must be a ball centered at (λ1, θ).

To derive a contradiction, we now use similar arguments as in [25]. The
function w satisfies ∆w + f ′(u(x))w = 0 in the whole of Ω, hence w ≡ 0
in Ω by unique continuation. Thus u is constant on connected components
of ∂B ∩ Ω, where B is any disk centered at (λ1, θ). If B has radius slightly
larger than the radius of G, then ∂B intersects ∂Ω and hence, by the Dirichlet
boundary condition, u = 0 on a connected component of ∂B ∩Ω. Taking all
such balls B, we obtain that u ≡ 0 on a nonempty open subset of Ω. From
(1.1) we then conclude that f(0) = 0 a contradiction to (3.1).

CASE B: Jb is a line segment.

In this case we need further regularity of u. This is the only place where
we need (H1).

Lemma 3.7. Assume that Jb is a line segment. Then u ∈ C2(Ḡ).

Proof. It follows from the symmetry of G in Hλ1 and Lemmas 3.3, 3.5 that
∂Ω has a step at the point y := Pλ1((µ(b), b)), the upper right “corner” of Ḡ
(note that ∂Ω coincides with ∂G near this point). By (H1), there is a ball
around y such that ∂G∩B consists of the horizontal segment Jb∩B and of a
C1,1 curve ending at y. Of course, this curve is contained in T(a,b), hence y is
a corner point of Ḡ of opening at most π, in the sense of Definition 2.4 of [20].
By Proposition 2.8 of [20], u1 is C1,α near y, for each α ∈ (0, 1). Using the
symmetries of u about Hλ1 and He2

θ , we obtain that u1 is also C1,α near the
other three corners of Ḡ. Consequently, by standard interior and boundary
regularity results, u1 ∈ C1,α(Ḡ). Thus u11 and u12 = u21 extend to continuous
functions on Ḡ and the same is true of u22(x) = −f(u(x))− u11(x).

For x ∈ S∪Pλ1(S) ⊂ ∂G, let τ(x) = (τ1(x), τ2(x)) denote the unit tangent
vector to ∂G at x with τ2(x) > 0. Let y := Pλ1((µ(b), b)), as in the proof of
Lemma 3.7. Then y = (λ, b) for some λ. As Jb is a segment, we have λ > λ1,
which implies

Vλu > 0 in ΣG
λ . (3.15)

Assume first that τ2(x) → 0 as x → y. Then G is a C1,1-domain (near
y, hence globally by symmetry) and e1 is tangent to ∂G at y. Moreover,
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ΣG
λ ∩ ∂G = Pλ1S, hence u = 0 and ∇u = 0 on this set. Applying Lemma 2.4

with W = G (which is legitimate by Lemma 3.7), we get a contradiction to
(3.15).

Next consider the opposite case: there is a sequence xn ∈ S such that
Pλ1(xn) → y and τ2(xn) = τ2(Pλ1(xn)) → s 6= 0 (the relation τ2(Pλ1(x)) =
τ2(x) follows from the symmetry of G about Hλ1). Differentiating the rela-
tions u1 = 0, u2 = 0 along S, we obtain

u11τ1 + u12τ2 = u21τ1 + u22τ2 = 0 on S. (3.16)

Of course, u12 = u21 on S and thus (3.16) and (1.1) imply the following
identities on S

0 = u11τ
2
1 − u22τ

2
2 = u11τ

2
1 + u11τ

2
2 + τ 2

2 f(u) = u11 + τ 2
2 f(0),

where we have also used the fact that u = 0 on S. Evaluating these identi-
ties along the sequence xn and taking the limit, using the continuity of u11

(Lemma 3.7), we obtain

u11(Pλ1(y)) = −s2f(0) 6= 0.

On the other hand, u11 = 0 on the horizontal segment Jb. Since Pλ1(y) ∈ Jb,
we have a contradiction.

We have thus derived a contradiction in all cases and the proof of Theorem
1.1 is complete.

3.3 Proof of Theorem 1.3

Assume, in addition to the standing hypotheses and (H2), that Ω is x2-
convex.

Set W = Ω ∩ P e2

θ (Ω) with θ = (a + b)/2, as in Lemma 3.5. Then W is
a domain, which is convex in both x1 and x2, and it is symmetric about the
lines H0 and He2

θ . Since V e2

θ u ≡ 0 in G, unique continuation implies that
V e2

θ u ≡ 0 in the whole of W . This and (1.2) readily imply that u = 0 on ∂W .
Therefore, we can use known symmetry results with respect to the direction
e2; in particular, a statement analogous to Corollary 3.2 holds. Specifically,
if y = (y1, y2) ∈ W and ε > 0 are such that u2(y1, ·) < 0 on (y2 − ε, y2) and
u2(y1, ·) > 0 on (y2 + ε, y2), then u(y) = 0. We are going to verify that this
conclusion applies to all points y ∈ He2

θ close to the point (µ(θ), θ) ∈ S ∩W .
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First recall that u2 = 0 on S. By the symmetry of u, u2 = 0 also on
He2

θ ∩Ω. We claim that there is a ball B centered at (µ(θ), θ) ∈ S such that
S ∪He2

θ exhausts the nodal set of u2 in B:

{x ∈ B : u2(x) = 0} ⊂ S ∪He2

θ . (3.17)

To prove this, we use the following well-known equal-angle property of the
nodal set of u2 (which is a solution of a linear equation (2.3)). There is a
ball B centered at (µ(θ), θ) such that {x ∈ B : u2(x) = 0} consists of a
finite number, say k, of C1-curves ending at (µ(θ), θ) and having tangents at
(µ(θ), θ) ∈ S, and the tangents divide B into k angles of equal size (see, for
example, [19] or [20, Theorem 2.1]). Also, u2 must have different signs in any
two neighboring sectors in B determined by these nodal curves (otherwise,
u2 or −u2 is nonnegative, but not strictly positive, in the union of these
sectors and the separating nodal curve, contradicting the strong maximum
principle).

Now, by Lemma 3.5, the nodal set of u2 in G coincides with He2

θ ∩ G.
Since He2

θ is orthogonal to S ⊂ Ḡ at (µ(θ), θ), the above equal-angle result
implies that there can be no nodal curves of u2 in B other than those given
by S and He2

θ . This proves the claim.
Let B be as in the above claim. Then u2


B

has exactly four nodal

domains (that is, the connected components of B \ u−1
2 (0)), in two of them

u2 < 0 and in the remaining two u2 > 0. By Lemma 3.5, u2 < 0 for each
x ∈ B ∩ G with x2 > θ. This determines the signs of u2 in the remaining
three nodal domains: in particular, u2 > 0 for each x ∈ B \ Ḡ with x2 > θ
and u2 < 0 for each x ∈ B \ Ḡ with x2 < θ. These relations show that the
analog of Corollary 3.2, as mentioned above, indeed applies to all points on
the horizontal segment J := He2

θ ∩B\Ḡ. Hence u = 0 on J and consequently
u1 = 0 on J .

Let us now consider the nodal set of u1 in B. It contains J and S,
therefore, by the equal-angle result, there must also be a nodal curve of u1

ending at the point (µ(θ), θ) ∈ S and contained in G. However, since u1 > 0
in G \ ΣG

λ1
, there can be no such curve and we have a contraction.

This proves Theorem 1.3.
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4 Concluding remarks

Let us briefly discuss other conditions which can be used in Theorem 1.1 in
place of (H1).

First note that the case when the set Jb is a single point, rather than a
segment, was treated in Subsection 3.2 without using (H1). Therefore, even
without assuming (H1), the following conclusion can be derived from the
assumption that (1.1), (1.2) has a nonnegative solution u with a nontrivial
nodal set in Ω. There is a subdomain G ⊂ Ω, which is symmetric about
the two lines Hλ1 and He2

θ and such that ∂G ∩ ∂Ω consists of two horizontal
line segments Ja, Jb, and the curve γ = Pλ1(S), where S has the symmetry
and monotonicity properties described in (3.6) and Lemma 3.5. Thus the
assumption that there is no such symmetric part of ∂Ω involving horizontal
segments is also sufficient for Theorem 1.1. Or, we can require that if such a
symmetric part exists and the connecting curve γ happens to be of class C2

(locally), then γ is of class class C1,1 up to its end points. The arguments
used in Subsection 3.2 apply in this situation.
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