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Abstract

A d-zonotope may be thought of as either the image of some pro-

jection of the n-cube into R

d

; with n � d; or as the Minkowski sum

of n vectors in R

d

containing some basis for R

d

: A rhombohedral tiling

of a d-zonotope Z is a decomposition of Z into a non-disjoint union

of cells, each of which is a translation of the Minkowski sum of some

independent d-subset of the generating vectors for Z: The tiling is said

to be coherent if it arises as the projection of the \top face" of some

(d + 1)-zonotope onto Z: The primary goal of this work is to explore

and compare the enumeration and structure of

� the set of all tilings of Z:

� the subset of coherent tilings of Z:

To any zonotope Z; one may associate a particular hyperplane arrange-

ment, called the discriminantal arrangement D(Z); which is useful in

understanding the coherent tilings of Z: Understanding the structure

of the set of all tilings of Z is best approached using the theory of

oriented matroids.

In this work, we use these notions to

� Prove a new instance of Stembridge's \q = �1 phenomenon."

� Justify an idea of the French physicists Destainville, Mosseri and

Bailly for counting tilings inductively.

� Resolve a�rmatively a new case of the generalized Baues prob-

lem for tilings of d-zonotopes generated by multiple copies of

(d+ 1) vectors.

� Classify the 3-zonotopes which are generated by multiple copies

of 5 vectors and which have all tilings coherent, and provide

formulas enumerating their tilings.

� Characterize the free, factored, inductively factored and super-

solvable hyperplane arrangements among a certain class of gain-

graphic arrangements.
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1 History and main results

The following is a standard undergraduate-level counting problem:

How many partitions � (viewed as Ferrers shapes) �t into an r by s box,

where r and s are positive integers?

When one views the problem from the correct perspective, it is immediately

seen to be a problem of enumerating lattice paths in an r by s grid.

(0;0)

(r;s)

Figure 1: A Ferrers shape in an r by s grid

Since the boundary of each Ferrers shape de�nes a unique path from (0; 0)

to (r; s); one may answer the question by enumerating all such paths which

are \monotone increasing." Notice each path consists of r+ s unit segments,

exactly r of which are horizontal and s of which are vertical. Thus each path

is completely determined by the position of its horizontal (or equivalently, its

vertical) segments, and so there are

�

r+s

r

�

distinct partitions which �t inside

an r by s box.

A considerably more di�cult enumeration problem occurs when one gen-

eralizes the question to plane partitions. A convenient phrasing of this higher-

dimensional question is:

How many distinct ways are there to stack unit cubes \ush into the corner"

of a rectangular box with integer side lengths r; s; t?
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The answer, along with a q-analogue, was originally given by MacMahon

[Mac] in 1899:

N(r; s; t) =

H(r + s+ t)H(r)H(s)H(t)

H(r + s)H(r + t)H(s+ t)

where H(n) = (n � 1)!(n � 2)! � � �2! is the hyperfactorial function. Both of

the above questions may be phrased as questions about zonotopal tilings.

A zonotope Z(V ) is (a translate of) the Minkowski sum of a vector set V;

and a zonotopal tiling of Z is the decomposition of Z into a union of smaller

zonotopes. A one-dimensional zonotope is simply a line segment, while a

two-dimensional zonotope is a centrally symmetric 2n-gon. To see how each

of the partition questions is equivalent to a tiling question, one only needs

to view the partitions from a point in general position.

x

y

3 2 2

3 2 0

1 1 0

z

y

x

Figure 2: A stack of cubes induces a rhombic tiling of a hexagon

When the boundary of a Ferrers shape is viewed from a point in general

position (in 2-space), one sees a line segment of length r+ s (modulo a slight

deformation), broken up into r \horizontal" segments and s \vertical" seg-

ments. When one views a plane partition from a point in general position,

2



things are a bit more interesting. Figure 2 illustrates the correspondence be-

tween a particular plane partition and the corresponding tiling of a hexagon,

which is an example of a two-dimensional zonotope. In the left-hand view,

the stack of unit cubes has been projected along the (0; 0; 1) vector, with the

integer entries indicating the heights of each smaller stack. In the right-hand

view, the stack has been projected along the (1; 1; 1) vector. Note that both

MacMahon's problem and the Ferrers diagram problem can be phrased as

counting tilings of d-zonotopes generated by multiple copies of (d+1) vectors.

In the century since MacMahon's work, people have considered many

other questions concerning plane partitions, especially the question of enu-

merating those tilings of a hexagon which are invariant under certain sym-

metries. It appears that even now, the work on these questions is not quite

complete (for an exhaustive account of current results, see [Ste]). Naturally,

many people have also attempted to give simple, closed formulas enumerat-

ing higher-dimensional partitions, but have failed even in the case of solid

partitions, that is, stacks of 4-dimensional hypercubes \ush into the corner"

of an r by s by t by u hyperbox. It seems that a more general approach is

in order.

A straightforward generalization of MacMahon's work (given the histor-

ical di�culty of pursuing the question in higher dimensions) is to try to

understand tilings of more general two-dimensional zonotopes. This is the

approach Elnitsky [El] takes in his thesis, as he considers tilings of certain

restricted classes of octagons. Elnitsky successfully q-counts the tilings for

two related classes of octagons, and also completely enumerates those tilings

invariant under each of several symmetries. In particular, he proves two in-

stances of Stembridge's \q = �1 phenomenon" [Ste], which asks when the

number of tilings of a 2n-gon which are invariant under 180

�

rotation may
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be obtained by evaluating some q-count at q = �1: The principal technique

Elnitsky uses is one in which certain zones of the zonotope are collapsed in

a prescribed way, simplifying the problem. A similar technique for higher-

dimensional zonotopes is suggested by the physicists Destainville, Mosseri

and Bailly [DMB].

Much of the motivation for the study of higher-dimensional zonotopes

comes not from MacMahon's work, but from a surprising connection be-

tween zonotopal tilings and oriented matroids (see [BLSWZ]). While there

is a natural correspondence between zonotopes and arrangements of hyper-

planes (see [OT]), and thus with certain oriented matroids, it was not until

the appearance of the Bohne-Dress Theorem in 1989 (see [BD], [RZ]) that

there began to be a greater interest in the study of zonotopal tilings. Sim-

ply stated, the Bohne-Dress Theorem describes a bijective correspondence

between tilings of a zonotope Z(V ) and single-element liftings of the corre-

sponding oriented matroid M(V ):

Another relatively new area which both motivates and facilitates the

study of higher-dimensional zonotopal tilings is that of discriminantal ar-

rangements of hyperplanes. Discriminantal arrangements were �rst de�ned

by Manin and Schechtman [MS] in 1986 as a generalization of the braid ar-

rangement of type A

n�1

: This de�nition was itself broadened by Bayer in

1993 [Ba]. For a particular zonotope Z = Z(V ); it turns out that there is

a bijection between the collection of coherent rhombohedral tilings of Z and

chambers in the corresponding discriminantal arrangement D(V ) (see [BS]).

Loosely stated, a zonotopal tiling of a rank d zonotope Z is coherent if it

may be obtained by \looking at" some rank (d+ 1) zonotope. For example,

a coherent tiling of a regular hexagon of side length 1 may be obtained by

viewing a cube from a point in general position. However, the tiling of the
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regular hexagon of side length 3 pictured in Figure 2 is incoherent.

This paper extends Elnitsky's results slightly and formalizes the method

suggested by Destainville, Mosseri and Bailly, but our principal goal is to

characterize and give enumeration formulas for three-dimensional zonotopes

which have the property that all of their rhombohedral tilings are coherent.

The following chapter contains the necessary background and de�nitions

for the work to follow. In the third chapter, we give a q-count for the tilings

of one of the classes of octagons considered by Elnitsky, and show that this

class of octagons provides another example of Stembridge's \q = �1 phe-

nomenon," in that the number of tilings invariant under 180

�

rotation is

obtained by evaluating the q-count at q = �1: The fourth chapter discusses

a construction used by Elnitsky and by Destainville et al, and rigorously de-

�nes a method for enumerating tilings of a zonotope Z with \more zones"

given the set of tilings for a �xed subzonotope Z

0

of Z with \fewer zones."

This method relies on an oriented matroid construction of Sturmfels and

Ziegler [SZ].

The �fth chapter introduces the counting methods which will be used to

enumerate the set of rhombohedral tilings of a given zonotope Z; and gives a

careful demonstration of these methods in the case of d-zonotopes generated

by multiple copies of (d+ 1) vectors. The �fth chapter also contains a proof

that this class of zonotopes satis�es the generalized Baues conjecture, in that

a certain space of all zonotopal tilings of a zonotope in this class is homotopy

equivalent to an (n� d� 1)-sphere.

The �nal two chapters contain a partial classi�cation of those three-

dimensional zonotopes Z which have the property that all rhombohedral

tilings of Z are coherent, and enumeration formulas for several in�nite classes.

The approach for this classi�cation is straightforward, following the work
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done by Edelman and Reiner [ER] in their classi�cation of two-dimensional

zonotopes with this property. Given a zonotope Z; we

a) Enumerate all tilings of Z:

b) Enumerate the coherent tilings of Z:

c) Compare.

To count all tilings of Z requires an oriented matroid argument, which

includes a theorem of Las Vergnas [LV] and lattice-path enumerations along

the lines of the one given on page 1.

To enumerate the coherent tilings of Z = Z(V ); we use the aforemen-

tioned result of Billera and Sturmfels, which states that these tilings are in

bijective correspondence with the chambers of the discriminantal arrange-

ment D(V ): By a result of Zaslavsky [Za1], this enumeration may be accom-

plished by �nding the roots of the characteristic polynomial �(D(V ); t) for

D(V ): Since it happens that D(V ) is a free arrangement (see [Te]) for all

zonotopes Z(V ) under consideration, these roots are simply the exponents

of D(V ); by a result of Terao [OT]. The proof that the necessary classes of

arrangements are free is given in the �nal chapter, using the notion of gain

graphs introduced by Zaslavsky [Za3].

In summary, the main results of the paper are

� A new instance of Stembridge's \q = �1 phenomenon" (Corollary 3.3).

� Justi�cation for an idea of Destainville et al [DMB] for recursively

counting tilings of a d-zonotope for arbitrary d (Theorem 4.4).

� An a�rmative answer for the case of the generalized Baues problem

concerning tilings of d-zonotopes generated by multiple copies of (d+1)

vectors (Theorem 5.7).
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� Characterization of the free, factored, inductively factored and su-

persolvable hyperplane arrangements among a certain family of gain-

graphic arrangements (Theorems 7.3 and 7.8).

� Classi�cation of those 3-zonotopes generated by multiple copies of 5

vectors for which all tilings are coherent, and formulas enumerating

their tilings (see Figures 3, 4 and 5).

r

1

1

1

1

Figure 3: A zonotope with 2(r+ 4)!=4! distinct rhombohedral tilings (Theo-

rem 6.1)
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1

1

r

1

s

Figure 4: A zonotope with 2(r + s+ 1)!(r + s+ 2)!=(s+ 2)!(r + 2)! distinct

rhombohedral tilings (Theorem 6.3)

t

1

s
2

r

Figure 5: A zonotope with 2(r + s + t)!(r + s + t + 1)!=(r + 1)!(s + t + 1)!

distinct rhombohedral tilings (Theorem 6.4)
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2 Background

A d-zonotope Z with n zones may be thought of either as the image of

the n-cube under some a�ne projection into R

d

; or as (a translate of) the

Minkowski sum of some n-set V of vectors in R

d

which contains a basis. The

set V is actually a multiset, as vectors may appear with multiplicity. Let V

be the underlying set of V (that is, the maximal subset of distinct vectors

in V ). The set V is called the generating set of Z = Z(V ); and we say that

V generates Z: It is clear that if Z is given, the elements of V correspond

to extreme 1-cells of Z; and so V may be recovered. Therefore one may

identify a zonotope Z = Z(V ) with its generating set V: Note also that

both de�nitions immediately imply that every face of a zonotope is again a

zonotope.

Our main objects of study are rhombohedral tilings of zonotopes. Given a

zonotope Z = Z(V ); a subzonotope of Z is any zonotope Z

0

= Z(V

0

); where

V

0

is a subset of V: A tiling T of a d-zonotope Z is the decomposition of Z

into a union of d-subzonotopes, called the tiles of T; such that any two tiles

t

1

; t

2

intersect in a proper face of each. A tiling T is a rhombohedral tiling if

each tile t is generated by a subset of V forming a basis of R

d

:

Figure 6: A rhombohedral tiling of a 2-zonotope

The principal tools we will use to study tilings are arrangements of hy-

perplanes (or simply arrangements) and oriented matroids. A d-arrangement

A is a �nite collection of codimension-one linear subspaces of R

d

(see [OT]).
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We do not rule out the possibility that the hyperplanes in an arrangement

A might appear with multiplicity, and the reader should be aware that such

collections are more commonly referred to as multiarrangements. The hyper-

planes in A intersect in some linear subspace S of rank 0 � s � d�1: De�ne

the rank of a d-arrangement A to be d � s: If s = 0; then A is an essential

arrangement. One classic arrangement which will appear frequently in the

sequel is the braid arrangement A

n�1

; a rank n�1 arrangement in R

n

de�ned

by the hyperplanes normal to

fe

i

� e

j

j 1 � i < j � ng

where fe

i

g is the collection of standard basis vectors in R

n

:

By taking normals, there is a natural correspondence between vector sets

V in R

d

and d-arrangements A(V ); and so consequently there is a natural

bijection between arrangements and zonotopes. In fact, for a �xed vector

set V; the zonotope Z(V ) and the arrangement A(V ) are geometrically polar

duals to one another in the sense that each (d� 1)-face of Z(V ) corresponds

to a unique 1-ray arising as the intersection of hyperplanes in A(V ): To make

this correspondence precise, we turn to oriented matroids.

We will not de�ne oriented matroids formally, but rather introduce only

those elements of oriented matroid theory which are necessary for the work

which is to follow. The standard reference for oriented matroids is the book

by Bj�orner et al [BLSWZ]. A discussion of oriented matroids which is spe-

ci�c to polytopes and zonotopes appears in chapters 6 and 7 of Ziegler's book

[Zi]. Oriented matroids have many guises, but the one which is most useful

here is the view of oriented matroids as a generalization of arrangements.

To demonstrate how oriented matroids generalize arrangements, we �rst de-

scribe how to obtain the set of covectors L = L(V ) of the oriented matroid

M = M(V ) associated with a particular d-arrangement A = A(V ); where
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the n elements of V are given an arbitrary ordering. The arrangement A

decomposes R

d

into a disjoint union of cones, where each k-cone is deter-

mined by some subarrangement of A with rank d�k: To each of these cones

is associated a particular n-tuple in f0;+;�g

n

: Speci�cally, the n-tuple X

corresponding to the cone C is de�ned by X

i

= sign(c � v

i

); where c is any

point in C and v

i

is the i

th

generating vector for A: The collection of all such

n-tuples is the set of covectors L(V ) for the oriented matroid M(V ) asso-

ciated with the arrangement A(V ): Figure 7 illustrates this correspondence

for a 2-arrangement.

1

3

2

(0;0;0)

(0;+;�)

(�;0;�)

(�;�;0)

(0;�;+)

(+;0;+)

(+;+;0)

(+;+;�) (�;+;�)

(�;�;�)

(�;�;+)(+;�;+)

(+;+;+)

Figure 7: The covectors for the oriented matroid of a 2-arrangement

Oriented matroids allow one to distill an arrangement (vector con�gura-

tion, zonotope) to its combinatorial essence. For example, it is easy to see

that up to oriented matroid equivalence, there is exactly one 2-arrangement

11



on m distinct vectors for any positive integer m: This allows the use of a

convenient shorthand notation for discussing rank 2 vector con�gurations

(arrangements, zonotopes), in that one may discuss \the" (r

1

; r

2

; r

3

; : : : ; r

m

)

2-zonotope, where jV j = m and r

i

indicates the multiplicity with which the

ith vector in V appears. Implicit in this notation is the understanding that

if one begins with the vector v

1

2 V and proceeds clockwise, one encounters

v

2

; v

3

; : : : ; v

m

in order. The notation becomes somewhat more complicated

for 3-zonotopes.

With the notion of covectors for M(V ) in place, we can now explicitly

de�ne the correspondence between cones in the decomposition of R

d

induced

by A(V ) and the faces of Z(V ): Speci�cally, suppose C is a cone induced by

A with covector X. De�ne

X

�

= fi jX

i

= �g X

0

= fi jX

i

= 0g X

+

= fi jX

i

= +g:

Then the face of Z corresponding to C will be the Minkowski sum of those

vectors v

i

2 V with i 2 X

0

; translated by

X

i2X

+

v

i

�

X

i2X

�

v

i

: This construction

also demonstrates how to determine the covectors of M(V ) directly from

Z(V ):

It is important to point out that although every vector con�guration V

determines an oriented matroidM(V ); not all oriented matroids arise in this

way. Rather, any collection L of sign vectors L � f0;+;�g

n

is the set of

covectors of some oriented matroidM if a short list of axioms is satis�ed. To

list these axioms requires the de�nition of some terminology for sign vectors.

Given two sign vectors X and Y; their composition X � Y is de�ned by

(X � Y )

i

=

(

X

i

when X

i

6= 0;

Y

i

otherwise.

The separation set S(X; Y ) is the set of indices i such that X

i

= �Y

i

6= 0:

12



Any collection of sign vectors L � f0;+;�g

n

is the set of covectors of some

oriented matroid provided the following four conditions are satis�ed:

0) 0 2 L:

1) X 2 L if and only if �X 2 L:

2) If X and Y are in L; then X � Y 2 L:

3) If X and Y are in L and j 2 S(X; Y ); then there exists W 2 L such

that W

j

= 0 and W

i

= (X � Y )

i

for all i =2 S(X; Y ):

It only requires the consideration of some few small examples to see that

these covector axioms e�ciently encode the essential combinatorial structure

of a vector con�guration. Nevertheless, a list of covectors is not yet minimal

information for this task. One may de�ne a partial order

+

0

�

on each covector component, and extend it to a partial order on L by the

product partial order X � Y if and only if X

i

� Y

i

for all i: The minimal

nonzero covectors under this partial order are the cocircuits C

�

of the oriented

matroid. Thus in Figure 7, the set of cocircuits is

C

�

= f (0;+;�); (�; 0;�); (�;�; 0); (0;�;+); (+; 0;+); (+;+; 0) g:

Given the set of cocircuits C

�

of an oriented matroidM; the entire collection

of covectors L can be recovered. Note that by covector axiom 1), only half

of the given information is necessary. Thus we will usually consider only half

of the cocircuits of a given oriented matroid. Also note that by the polar

13



duality mentioned on page 12, cocircuits of M(V ) correspond to maximal

dimensional faces of Z(V ):

Any oriented matroid whose cocircuits may be obtained as the cocircuits

of a vector con�guration is said to be realizable. However, there are other

types of topological arrangements, involving pseudohyperplanes or pseudo-

spheres, which also give rise to oriented matroids. Often the oriented ma-

troids arising from such arrangements are not realizable. A projectivized pic-

ture of the non-Pappus arrangement, the classic example of a non-realizable

oriented matroid, is given in Figure 8.

Figure 8: The non-Pappus arrangement

The line arrangement in Figure 8, excluding the dotted line, represents

the intersection of a particular 3-arrangement with the upper half of a sphere.

Thus one may assign a positive and negative side to all the lines and obtain

the collection of covectors of an oriented matroid as in Figure 7. Each point

where two or more lines intersect corresponds to a cocircuit. It is also true

that if one includes a positive and negative side for the dotted line, the re-

sult is again the collection of cocircuits for an oriented matroidM: However,

14



Pappus' theorem states that the three black dots are collinear in every line

arrangement which is combinatorially equivalent to the one in Figure 8. Thus

there is no vector con�guration which will have M as its oriented matroid.

This example demonstrates that not all oriented matroids arise from hyper-

plane arrangements. However, Folkman and Lawrence [FL] have shown that

all oriented matroids do arise from pseudosphere arrangements such as the

one in Figure 8.

A subset S of the d-sphere S

d

will be called a pseudosphere if S is home-

omorphic to S

d�1

: An arrangement of pseudospheres A = (S

e

)

e2E

is a �nite

set of pseudospheres in S

d

such that

1) Every nonempty intersection S

A

= \

e2A

S

e

is (homeomorphic to) a

sphere of some dimension, for A � E:

2) For every non-empty intersection S

A

and every e 2 E such that S

A

*

S

e

; the intersection S

A

\S

e

is a pseudosphere in S

A

with sides S

A

\S

+

e

and S

A

\ S

�

e

:

The following partial statement of Folkman and Lawrence's result appears

in [BLSWZ]:

Theorem 2.1 [The Topological Representation Theorem] Let L � f+;�; 0g

E

:

Then the following conditions are equivalent:

i) L is the set of covectors of an oriented matroid of rank d+ 1:

ii) L = L(A) for some signed arrangement A = (S

e

)

e2E

of pseudospheres

in S

d+1+k

; such that dim(\

e2E

S

e

) = k:

We next consider zonotopal tilings. Suppose Z = Z(V ) is a d-zonotope.

Up to choice of coordinates, it is possible to add a (d+ 1)st coordinate l

v

to

15



each v 2 V and add the basis vector e

d+1

to V to obtain the generating set

V

0

for a (d + 1)-zonotope Z

0

= Z(V

0

): Let F denote the collection of upper

facets of Z

0

; those rank d faces corresponding to cocircuits with value + or

0 on e

d+1

; or informally, the rank d faces which are \visible" from a point

with very large d+1

st

coordinate. Let �

d+1

denote the projection of Z

0

along

the basis vector e

d+1

: Then the collection f�

d+1

(F ) jF 2 Fg constitutes a

tiling of Z: If a tiling T of a d-zonotope Z can be obtained in this manner

for some choice of fl

v

g

v2V

; then T is coherent (see Figure 9). Otherwise, T

is incoherent. Similarly, if Z is such that T is coherent for all tilings T; then

we say that Z itself is coherent, otherwise incoherent.

Figure 9: A coherent tiling of a hexagon is obtained by \looking at" a 3-

zonotope

The principal tool for studying coherent rhombohedral tilings of a zono-

tope Z(V ) is the discriminantal arrangementD(V ) (see [Ba]). Let v

1

; v

2

; : : : ; v

n

be an arbitrary ordering of the elements of V: Then D(V ) is an n-arrangement

de�ned by the minimally dependent sets of V as follows. The hyperplane

(a

1

; a

2

; : : : ; a

n

)

?

is in D(V ) if and only if the set V

0

= fv

i

j a

i

6= 0g satis�es

X

v

i

2V

0

a

i

v

i

= 0

and V

00

is independent for all proper subsets V

00

of V

0

:

Billera and Sturmfels showed [BS]
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Theorem 2.2 Let V be a vector con�guration. The set of coherent rhombo-

hedral tilings of Z(V ) is in bijective correspondence with the set of chambers,

or open cones of maximal dimension, in the arrangement D(V ):

V :

1;2

3

4

D(V ) :

x

1

�x

2

=0

�2x

2

+x

3

�x

4

=0 �2x

1

+x

3

�x

4

=0

1

2

2

1

2

1

2

1

1

2

1

2

Figure 10: For a given vector con�guration V; the chambers of D(V ) corre-

spond to the distinct rhombohedral tilings of Z(V ):

Given the ordering v

1

; v

2

; : : : ; v

n

of the elements of V; let l

i

be the (d+1)st

coordinate appended to v

i

to obtain v

0

i

; and let T be the coherent tiling of Z

obtained under the projection �

d+1

: The vector (l

1

; l

2

; : : : ; l

n

) 2 R

n

is called

the lifting vector for T; since it describes precisely how to \lift" each element

of V into R

d+1

: Suppose J � V is a minimal dependent set of cardinality

jJ j � d + 1 (since Z(V ) is a d-zonotope, J cannot be any larger). Further,

suppose that the lifting vector (l

1

; l

2

; : : : ; l

n

) is such that this dependence

is preserved for J

0

= fv

0

j v 2 Jg: Then there exists a (possibly empty)

collection of vectors K

0

� V

0

such that jJ

0

[K

0

j = d + 1 and some extreme

facet F of Z

0

is a translate of Z(J

0

[ K

0

): Consequently, in the coherent

tiling T obtained by �

d+1

; the tile �

d+1

(F ) is generated by (d + 1) elements

of V; and so T is not a rhombohedral tiling. This shows that when passing

from V to V

0

; one must take care to avoid lifting vectors which preserve

any minimal dependence among the elements of V: This is the essence of
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Theorem 2.2: to obtain a coherent rhombohedral tiling T of Z(V ); the lifting

vector (l

1

; l

2

; : : : ; l

n

) must not lie in any hyperplane de�ned by a minimal

dependence among the elements of V: Rather, it must lie in some chamber

de�ned by D(V ):

In a similar vein, if T is a coherent tiling of a d-zonotope Z = Z(V )

obtained from Z

0

= Z(V

0

); then the oriented matroid M(V

0

) is a single-

element lifting of M(V ): However, Z may also have an incoherent tiling T

(the hexagonal tiling on page 2 is incoherent, for example). Bohne and Dress

[BD] showed by passing to pseudosphere arrangements that T nevertheless

corresponds to a single-element lifting M

0

of the oriented matroid M =

M(V ) :

Theorem 2.3 [The Bohne-Dress Theorem] Let Z = Z(V ) be a zonotope.

There is a bijection between the tilings of Z and single-element liftings of

M(V ):

These last two theorems are some of the principal tools used to determine

a partial classi�cation of all coherent 3-zonotopes in Chapter 5. For the

remainder of the paper, the term tiling will mean a rhombohedral tiling

unless explicitly stated otherwise.
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3 Stembridge's \q = �1 phenomenon" for an

(r; 1; s; 1) octagon

3.1 Introduction

One of the classic problems of enumeration is to count the numberN(r; s; t) of

distinct ways of tiling a hexagon of integral side lengths r, s; t with rhombi of

unit side length. It is well known that this problem is equivalent to counting

the number of r by s plane partitions with parts bounded by t; which are

weakly decreasing along rows and down columns.

As was previously mentioned, the answer, along with a q-analogue, was

originally given by MacMahon [Mac] in 1899:

N(r; s; t) =

H(r + s+ t)H(r)H(s)H(t)

H(r + s)H(r + t)H(s+ t)

where H(n) = (n� 1)!(n� 2)! : : : 2! is the hyperfactorial function.

In the years since MacMahon, people have been interested in a number

of di�erent questions concerning such tilings, among them

1) Counting the collection of such tilings which are invariant under certain

group actions.

2) Obtaining a q-count of tilings invariant under these group actions,

where the statistic measures the distance from a distinguished \base"

tiling.

In 1992, Stembridge [Ste] made the observation that in all cases which involve

the group action of complementation (�rst de�ned in [MRR]), an answer to

the second question yields an answer to the �rst. That is to say, for any group

action involving complementation, the number of tilings invariant under that

action may be computed by substituting q = �1 in a particular q-count (for
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a summary of the current results in the attempt to complete the classi�cation

of these tilings, see [Ste]).

Of course, a hexagon of integral side lengths r, s; t (hereafter referred to

as an (r; s; t) hexagon) is just one example of a two dimensional zonotope.

Edelman and Reiner [ER] and Elnitsky [El] have given coherence results and

enumeration formulas for other two dimensional zonotopes. The goal in this

chapter is to provide a q-count N

q

(r; 1; s; 1) for the tilings of an (r; 1; s; 1)

octagon and to show that Stembridge's \q = �1 phenomenon" holds in this

case.

3.2 Complementation and q-counts

The notion of complementation and the statistic for the q-count N

q

(r; 1; s; 1)

are the essential de�nitions for this chapter. Since the case of an (r; s; t)

hexagon partially motivates the study of more general two dimensional zono-

topes, we use the example of the (r; s; t) hexagon to motivate our de�nition

of these terms.

One of the most useful tools in the study of zonotopal tilings is to view

a tiling of a d-zonotope as the result of projecting some higher-dimensional

geometric object into R

d

: In the case of an (r; s; t) hexagon, the higher-

dimensional object is a stack of cubes inside the box [0; r]� [0; s] � [0; t] in

R

3

; stacked in such a way that they are ush into the \corner" de�ned by

the coordinate axes. There is an obvious bijection between such a stack of

cubes and r by s plane partitions with parts bounded by t (see Figure 2).

Using this correspondence, we de�ne the action of complementation on a

tiling of a 2-zonotope. Let H be an (r; s; t) hexagon with tiling T: Let S be

the corresponding stack of cubes in an r � s� t box. The complement S

c

of

this stack of cubes is de�ned to be the collection of additional cubes necessary
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to completely �ll the box. To obtain a legal stack of cubes (that is, one which

is in the corner de�ned by the coordinate axes), reect S

c

through the point

(r=2; s=2; t=2): Finally, projecting this stack of cubes along the vector (1; 1; 1)

results in a tiling T

c

of H: An example of complementation is given in Figure

11 for a (2; 2; 2) hexagon.

T T

c

Figure 11: A tiling of a (2; 2; 2) hexagon and its complement

Note that, for a given S; the corresponding tiling T of H is determined by

the 2-dimensional surface obtained by \looking at" the stack from a point in

general position. This surface has been called the membrane of the tiling by

Destainville, Mosseri and Bailly [DMB]. Since the membrane is precisely the

intersection of S and S

c

; it also determines T

c

: Furthermore, it is clear that

reection through the point (r=2; s=2; t=2) is equivalent to a 180

�

rotation of

the membrane. Thus for the remainder of this chapter, the complement T

c

of a tiling T of a 2-zonotope Z will be de�ned as the tiling obtained via a

180

�

rotation of Z:

In N

q

(r; s; t); the coe�cient of q

n

counts the number of tilings which

correspond to a stack of cubes containing exactly n cubes. For example, in

Figure 2, the tiling contributes a term of q

3+2+2+3+2+1+1

= q

14

: In Figure 11,

the tilings T and T

c

contribute terms q

2

and q

6

; respectively.

Note that if a single cube is removed from a stack of cubes, then a hexagon

ip occurs in the corresponding hexagon tiling. This is quickly veri�ed by
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considering the two tilings of the (1; 1; 1) hexagon.

Figure 12: An example of a hexagon ip

Thus an equivalent method for obtaining N

q

(r; s; t) is to let the coe�cient

of q

n

count the number of tilings which are obtained from the base tiling T

0

via a minimal sequence of n hexagon ips, where T

0

corresponds to the stack

of zero cubes. We will use this interpretation of the statistic when deriving

N

q

(r; 1; s; 1):

T

0 Distance 1 Distance 2

Figure 13: Hexagon ips in a tiling of a (4; 1; 3; 1) octagon

3.3 The case of an (r; 1; s; 1) octagon

An (r; 1; s; 1) octagon is one in which one views successively sides of length r;

1; s; and 1 in a walk around the perimeter of the octagon, where r and s are

any positive integers. In particular, they are distinct from (r; s; 1; 1) octagons

(see Figure 14), for which Elnitsky [El] has already veri�ed Stembridge's

\q = �1 phenomenon."

Elnitsky has also computed N(r; 1; s; 1) :
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(4; 1; 3; 1) (4; 3; 1; 1)

Figure 14: The di�erence between an (r; 1; s; 1) octagon and an (r; s; 1; 1)

octagon

N(r; 1; s; 1) =

X

a+b=r

c+d=s

�

a+ c

a

��

b+ c

b

��

a+ d

a

��

b+ d

b

�

:

Elnitsky [El] states that no closed form for this sum is known, but that

P. Brock [Str] has determined the following recurrence for N(r; 1; s; 1):

Proposition 3.1

N(r; 1; s; 1)�N(r; 1; s� 1; 1)�N(r � 1; 1; s; 1) =

�

r + s

r

�

2

:

We will derive a q-count for these tilings which immediately specializes to

Elnitsky's result when q = 1:

Elnitsky points out that there is a natural bijection between tilings of

an (r; 1; s; 1) octagon and pairs of once-crossing paths in an r by s grid,

where the point of intersection (called the root) is distinguished. Figure 15

demonstrates this bijection for a (4; 1; 3; 1) octagon O: The key observation

is that there is a unique way to contract O on each of the zones z

1

; z

2

corresponding to the vectors with multiplicity one. Performing a single such

contraction de�nes a unique path in a (4; 3; 1) hexagon. Performing both
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contractions de�nes a unique pair of once-crossing paths on a 4 by 3 grid.

The distinguished root vertex corresponds to the unique tile in O where z

1

and z

2

cross. In Figure 15, the root is located at (2; 1):

Note that the crossing paths on the resulting r by s grid must be such

that one path begins at (0; 0) and ends at (r; s) and the other path begins at

(0; s) and ends at (r; 0):

Figure 15: Tilings of (r; 1; s; 1) octagons correspond to pairs of once-crossing

paths on an r � s grid, together with a choice of \root"

It is a routine matter to verify, in terms of once-crossing paths on an r by

s grid, that complementation is equivalent to a 180

�

rotation of the grid, and

a hexagon ip corresponds either to \moving a path across a square" (if the

root is not involved), or to moving the root along both paths. For example,

in Figure 15, there is exactly one possible hexagon ip which involves the

tile de�ned by the intersection of z

1

and z

2

; performing this hexagon ip is

equivalent to moving the root to the position (2; 0) in the 4 by 3 grid.

Figure 16: The base tiling T

0

and the corresponding pair of once-crossing

paths
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It is now a relatively straightforward matter to obtain N

q

(r; 1; s; 1): We

begin by obtaining a q-count for all tilings which have their root at a �xed

vertex (x

0

; y

0

); and then sum over all possible locations of root vertex. Note

that moving the root from (0; 0) to (x

0

; y

0

) requires x

0

+ (r + 1)y

0

hexagon

ips, and thus contributes a factor of q

x

0

+(r+1)y

0

: Once the root is �xed, the

grid is e�ectively broken up into four quadrants, of sizes x

0

by y

0

; r � x

0

by

y

0

; x

0

by s� y

0

; and r� x

0

by s� y

0

: All that remains is to choose a path in

each of the four smaller grids. It is well known that the number of possible

paths from (0; 0) to (x; y) in an x by y grid is q-counted by

�

x+y

y

�

q

; where

[n] = 1 + q + q

2

+ � � �+ q

n�1

and [n]! = [n][n� 1] : : : [2][1]

and

�

n

k

�

q

=

[n]!

[k]![n� k]!

:

Therefore, the q-count for tilings which have their root at (x

0

; y

0

) is given by

q

x

0

+(r+1)y

0

�

x

0

+ y

0

x

0

�

q

�

(r � x

0

) + y

0

(r � x

0

)

�

q

�

x

0

+ (s� y

0

)

x

0

�

q

�

(r � x

0

) + (s� y

0

)

(r � x

0

)

�

q

:

Summing over all possible choices of root, and making a convenient sub-

stitution of variable, yields

Theorem 3.2

N

q

(r; 1; s; 1) =

X

a+b=r

c+d=s

q

a+(r+1)c

�

a+ c

a

�

q

�

b + c

b

�

q

�

a + d

a

�

q

�

b + d

b

�

q

:

From the theorem follows the corollary

Corollary 3.3 Stembridge's \q = �1" phenomenon holds in the case of an

(r; 1; s; 1) octagon. Namely, the number of tilings of an (r; 1; s; 1) octagon in-

variant under 180

�

rotation is obtained by evaluating the limit of N

q

(r; 1; s; 1)

as q ! �1:
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Proof: Using the bijection between tilings of an (r; 1; s; 1) octagon and

once-crossing paths on an r by s grid, it is easy to see that the following

statements characterize tilings invariant under 180

�

rotation:

� r and s must both be even.

� The root must be located at position (r=2; s=2):

� The two once-crossing paths are determined by the paths in any two

adjacent quadrants of the grid.

These conditions together imply that when r and s are even, there are

�

a+c

a

�

2

tilings of an (r; 1; s; 1) octagon which are invariant under 180

�

rotation,

where a = r=2 and c = s=2; and when either r or s is odd the numbers of

such tilings is zero.

WhenN

q

(r; 1; s; 1) is evaluated at q = �1; the symmetry of the q-binomial

coe�cients guarantees that the sum vanishes unless r and s are even. If r is

odd, then the terms corresponding to a will cancel the terms corresponding

to r � a; so r must be even. If r is even and s is odd, then the terms

corresponding to c will cancel the terms corresponding to s � c; so s must

be even also. Additionally, the reader can verify that the following lemma

holds:

Lemma 3.4 Taking the limit as q ! �1; the q-binomial coe�cient

�

n

k

�

q

is

equal to

�

n=2

k=2

�

for n even, k even

�

(n� 1)=2

k=2

�

for n odd, k even

0 for n even, k odd

�

(n� 1)=2

(k � 1)=2

�

for n odd, k odd
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Thus when taking the limit of N

q

(r; 1; s; 1) as q ! �1; the sum breaks

into three pieces:

N(r; 1; s; 1)

q

j

q=�1

=

X

w even

in[0;r]

X

y even

in[0;s]

�

w+y

2

w

2

��

x+y

2

x

2

��

w+z

2

w

2

��

x+z

2

x

2

�

�

X

w even

in[0;r]

X

y odd

in[1;s�1]

�

w+y�1

2

w

2

��

x+y�1

2

x

2

��

w+z�1

2

w

2

��

x+z�1

2

x

2

�

�

X

w odd

in[1;r�1]

X

y even

in[0;s]

�

w+y�1

2

w�1

2

��

x+y�1

2

x�1

2

��

w+z�1

2

w�1

2

��

x+z�1

2

x�1

2

�

where w + x = r and y + z = s: Substituting a = r=2 and c = s=2 gives:

N(r; 1; s; 1)

q

j

q=�1

=

X

m

1

+n

1

=a

X

k

1

+l

1

=c

�

m

1

+ k

1

m

1

��

n

1

+ k

1

n

1

��

m

1

+ l

1

m

1

��

n

1

+ l

1

n

1

�

�

X

m

2

+n

2

=a

X

k

2

+l

2

=c�1

�

m

2

+ k

2

m

2

��

n

2

+ k

2

n

2

��

m

2

+ l

2

m

2

��

n

2

+ l

2

n

2

�

�

X

m

3

+n

3

=a�1

X

k

3

+l

3

=c

�

m

3

+ k

3

m

3

��

n

3

+ k

3

n

3

��

m

3

+ l

3

m

3

��

n

3

+ l

3

n

3

�

= N(a; 1; c; 1)�N(a; 1; c� 1; 1)�N(a� 1; 1; c; 1)

=

�

a + c

a

�

2

:

The �nal equality holds by Proposition 3.1. �

Direct calculation shows that Stembridge's \q = �1 phenomenon" fails

in the case of a (2; 2; 2; 1) octagon. This suggests that the phenomenon has a

threshold, based on the complexity of the oriented matroid of Z(V ); beyond

which it fails. This is similar to the properties of coherence of Z(V ) and

freeness of D(V ); as discussed in [ER].
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The \q = �1 phenomenon" and complementation also make sense for

an arbitrary d-zonotope Z(V ): The statistic measures distance from some

chosen base tiling in the mutation graph for Z(V ) (choice of base tiling is

arbitrary), and complementation is de�ned as follows. For a tiling T; let �

T

be the localization for M(V

�

) corresponding to T (see chapter 5). Then T

c

is the tiling corresponding to ��

T

: The q = �1 phenomenon for tilings of

d-zonotopes with d > 2 remains largely unexplored.
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4 Tilings of zonotopes from tilings of sub-

zonotopes

4.1 Introduction

In the �rst chapter, we demonstrated the correspondence between plane par-

titions and rhombic tilings of a hexagon:

3 2 2

3 2 0

1 1 0

Figure 17: Figure 2 revisited

One may ask whether such a correspondence exists between stacks of

(d+1)-dimensional cubes in an r

1

�r

2

�� � ��r

d+1

box and rhombic tilings of

a d-zonotope. This question will be answered in chapter 5. One might also

ask whether any similar correspondence exists for 2-zonotopes Z(V ) with

jV j > 3; or for arbitrary zonotopes in any dimension.

A �rst step toward answering this question is to notice that there is a

di�erent way to obtain the same correspondence between rhombic tilings of

the hexagon and plane partitions. If the integer entries in an r by s plane

partition are 0; 1; : : : ; t; then there is a unique way to introduce t worms into

the depiction of the plane partition. If one then \fattens the worms" along a

�xed direction vector v; the result is a tiling of an (r; s; t) hexagon. Since v

is speci�ed, it is clear that this approach de�nes a bijective correspondence.

Figure 18 illustrates this idea, where the �xed direction vector is v = (�1; 1):

The �rst worm follows the boundary between zero entries and nonzero
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3 2 2

3 2 0

1 1 0

Figure 18: \Worms" de�ne a bijection between plane partitions and tilings

entries (for this purpose, we consider the southeast corner of the unbounded

region to have the entry 0; while the northwest corner has entry t). The

second worm de�nes the boundary between those cells with entries 1 or less

and the remaining cells, the third worm de�nes the boundary between those

cells with entries 2 or less and the remaining cells, etc. It is easy to see that

the resulting tiling is identical to the one obtained in Figure 17, modulo a

45

�

rotation and a slight deformation.

This view of the correspondence between partitions and tilings suggests

a method for generalizing the correspondence, one which appears in work

by Destainville, Mosseri and Bailly [DMB]. Speci�cally, the initial plane

partition in Figure 18 is a partition on a tiling, in that it is the trivial tiling

of a (3; 3) 2-zonotope, with integer entries on the tiles satisfying a partial

order induced by v: The integer entries are weakly decreasing along v; and

allow one to de�ne a unique tiling of a (3; 3; 3) 2-zonotope. Moreover, it is

clear that every tiling of a (3; 3; 3) hexagon corresponds to a tiling of a (3; 3)

square, together with a unique choice of integer entries on each tile which

obey the partial order induced by some direction vector v:

Taking this view, let (Z; T;v) be a triple, where Z is an (r

1

; : : : ; r

m

) 2-

zonotope, T is a tiling of Z; and the direction vector v is not a scalar multiple
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of any of the generating vectors of Z: A unique tiling of an (r

1

; : : : ; r

m

; r

m+1

)

2-zonotope Z

0

is obtained by placing integer entries in f0; : : : ; r

m+1

g on the

tiles of T in accordance with the partial order induced by v: An example of

this generalized correspondence is given in Figure 19.

3

3

3

3

3

2

1

2

1 0

0

Figure 19: A partition on a tiling of a (3; 2; 1) hexagon de�nes a unique tiling

of a (3; 3; 2; 1) octagon

To make this correspondence precise, and to carry this technique to

higher-dimensional zonotopes, requires a suitable de�nition of the partial

order � on tiles induced by v: This in turn requires an oriented matroid

argument �rst presented by Sturmfels and Ziegler [SZ].

4.2 Oriented matroids and tilings

Most of the work in this section, with the exception of Theorem 4.4, is es-

sentially a restatement of work done by Sturmfels and Ziegler ([SZ], section

3). Let Z = Z(V ) be a d-zonotope with tiling T: By the Bohne-Dress The-

orem (Theorem 2.3), T corresponds to a unique single-element lifting of the

oriented matroidM(V ) of V by some element g: LetM denote the oriented

matroid obtained as the result of this lifting. The pair (M; g) is an a�ne

oriented matroid.

By the Topological Representation Theorem of Folkman and Lawrence

(Theorem 2.1), the oriented matroid M may be represented as an arrange-
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ment A

M

of signed (d � 1)-pseudospheres on the d-sphere in R

d+1

: Let S

g

be the (d� 1)-pseudosphere corresponding to g: Then S

g

determines a pos-

itive hemisphere S

+

g

of the d-sphere, and the a�ne oriented matroid (M; g)

may be viewed as the collection of all cocircuits Y of M satisfying Y

g

= +:

Cocircuits satisfying Y

g

= 0 are said to be at in�nity.

Recall that coherent tilings of a d-zonotope arise from \viewing" a (d+1)-

zonotope. In essence, the Bohne-Dress Theorem says that, given M(V )

and g; one obtains the corresponding tiling T of Z by \viewing" the a�ne

pseudosphere arrangement (M; g): An example is given in Figure 20 for a

hexagon with side length three.

1;2;3

4;5;6 7;8;9

Figure 20: An a�ne pseudosphere arrangement for a lifting ofM(Z) induces

a tiling of Z:

Notice that under this correspondence, the tiles of T correspond to 0-cells
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in the pseudosphere arrangement, which in turn correspond to cocircuits of

M: In particular, a tiling T of a d-zonotope Z is rhombohedral if and only if

each 0-cell in the pseudosphere arrangement is determined by the intersection

of exactly d pseudospheres.

Having established this correspondence, we next consider worms. For a

given oriented matroid M; a single-element extension of M is simply the

addition of a single pseudosphere to the arrangement A

M

: In particular,

the addition of a single worm in a zonotopal tiling induces a single-element

extension not only of the oriented matroidM(V ) associated with Z(V ); but

also of M; the oriented matroid obtained as a result of the single-element

lifting ofM(V ) by g (since the worm inuences the tiling of Z as well). Thus

what we wish to consider are single-element extensions of the a�ne oriented

matroid (M; g); which in turn arise from single-element extensions of M:

When an oriented matroid M is extended by an element f; each cocir-

cuit Y 2 C

�

naturally receives a signature �

f

(Y ) 2 f+;�; 0g; depending

on whether Y lies in S

+

f

; S

�

f

; or on S

f

: Any cocircuit signature � : C

�

!

f+;�; 0g which corresponds to a single-element extension is called a local-

ization. Las Vergnas [LV] showed that a cocircuit signature � is a localization

for the oriented matroidM if and only if the restriction �j

R

is a localization

for every rank 2 contraction R of M: A rank 2 contraction of an oriented

matroid may be thought of as a collection of cocircuits which are contained

in a 1-pseudosphere in the arrangement A

M

:

Theorem 4.1 Let M be an oriented matroid, and

� : C

�

! f+;�; 0g

a cocircuit signature, satisfying �(�Y ) = ��(Y ) for all Y 2 C

�

: Then the

following statements are equivalent:
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1) � is a localization: there exists a single-element extension

f

M of M

such that

f(Y; �(Y ))jY 2 C

�

g �

e

C

�

:

2) � de�nes a single-element extension on every contraction of M of rank

2. That is, the signature on every rank 2 contraction is one of the types

I, II and III shown in Figure 21.

3) The signature � produces none of the three excluded subcon�gurations

(minors) of rank 2 on three elements, as given by Figure 22. �

0

0

0

0

0

0

0

0

I

+

�

0

0

�

+

�

+

II

+

�

+

�

�

+

�

+

III

Figure 21: The three types of allowable cocircuit signature for a rank 2

oriented matroid

Let

f

M be the single-element extension ofM by an element f; and let �

f

be the corresponding localization in M: The triple (

f

M; g; f) is an oriented

matroid program. For any oriented matroid M with g an element of M;

the contraction M=g may be thought of as the collection of cocircuits Y

of M with Y

g

= 0: In the pseudosphere picture, M=g corresponds to the

pseudosphere arrangement in S

g

de�ned by the collection of all intersections

S

f

\ S

g

with f 2 M; f 6= g: The extension set E(

f

M; g; f) of (

f

M; g; f)

34



�

+

�

+

�

+

�

+

�

0

0

+

�

+

0

0

0

0

Figure 22: The three forbidden rank 2 cocircuit signatures

consists of all extensions M[ f

0

of M by an element f

0

such that

f

M=g =

(M[ f

0

)=g; or equivalently, S

f

\ S

g

= S

f

0

\ S

g

in A

M

: The key point is that

�

f

(X) = �

f

0

(X) for all cocircuits S in

f

M=g: Informally, E(

f

M; g; f) is the

collection of all possible worms which may be added to T (including worms

whose addition results in a non-rhombohedral tiling!), where the image of

f (equivalently of f

0

) in

f

M=g = (M [ f

0

)=g plays the same role in this

construction that v does, above.

De�ne the graph G

f

of

f

M as follows. The vertices of G

f

are the cocircuits

Y ofM with Y

g

= +: These correspond to the 0-cells of the arrangement A

M

which lie in the a�ne space S

+

g

: Two such vertices (Y

0

; Y

1

) are connected by

an edge E in G

f

if and only if they are connected by a 1-cell L in A

M

(that

is, if Y

0

and Y

1

determine a rank 2 contraction ofM). Two more cocircuits

Z and �Z exist at the two points in A

M

at which S

g

and L intersect. Either

�

f

is zero on both Z and �Z; or �

f

(Z) = ��

f

(�Z) 6= 0: If the latter case

holds, then direct E in the direction of increasing �

f

; otherwise, consider E

to be a bidirected edge. Since adjacent vertices in G

f

correspond to adjacent

tiles in the tiling T; it is easy to see that G

f

must be connected.

A path in G

f

is a sequence of vertices P = (Y

0

; Y

1

; : : : ; Y

k

) such that

the edge between Y

i�1

and Y

i

is either directed toward Y

i

or a bidirected
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edge. A path P is directed if at least one edge in P is directed, and undirected

otherwise.

Two vertices Y and Y

0

of G

f

are said to be equivalent if there is a

path from Y to Y

0

and a path from Y

0

to Y: A strong component of G

f

is the induced subgraph of an equivalence class of vertices. A strong compo-

nent is said to be very strong if it contains at least one directed edge. Let

SC = SC(

f

M; g; f) denote the set of strong components, and let VSC =

VSC(

f

M; g; f) be the subset of very strong components. There is a natural

partial order on SC. For two strong components c and c

0

; set c < c

0

when-

ever there exists a directed path from a vertex Y in c to a vertex Y

0

in c

0

.

The set VSC is a subposet of SC, with the induced partial order. Figure

23 illustrates the posets of strong components corresponding to the tilings in

Figures 17 and 18.

Figure 23: SC for the tilings in Figure 18 (left) and Figure 19

For both of these cases, the set VSC is empty and each individual tile is

a strong component. This is always the case for 2-zonotopes Z for which v

is distinct from the generating vectors of Z ([SZ], Corollary 4.5). Examples

of 3-zonotopes with nonempty VSC set appear in Example 3.5 of [SZ] and

Example 10.4.1 in [BLSWZ]. The following sequence of lemmas relates the

extension space of an oriented matroid program (

f

M; g; f) to the order ideals
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in its poset SC of strong components.

Lemma 4.2 ([SZ Lemma 3.6]) Let � 2 E(

f

M; g; f) and c 2 SC.

1) The localization � has the same value on each cocircuit in c, so that

�(c) is well de�ned.

2) The sets I

0

:= fc 2 SCj�(c) = �g and I := fc 2 SCj�(c) 6= +g are

order ideals in the poset SC.

3) For each very strong component c 2 VSC, we have �(c) 6= 0:

Proof: By Theorem 4.1, one may conclude that � is constant on bidi-

rected edges and weakly increasing (in the order � � 0 � +) along directed

edges of G

f

: This proves parts (1) and (2). Furthermore, if � assigns the

signature 0 to any pair of cocircuits Y

0

; Y

1

which are adjacent in G

f

; then

necessarily � is identically zero on all cocircuits in the rank 2 contraction

containing Y

0

and Y

1

: In particular, the edge connecting Y

0

and Y

1

is bidi-

rected. This observation, together with part (1), proves part (3). �

Lemma 4.3 ([SZ Lemma 3.7]) Let I

0

� I be order ideals of SC such that

InI

0

is an antichain in SC which does not intersect VSC. Then there is a

unique localization � 2 E(

f

M; g; f) such that, for all c 2 SC,

�(c) =

8

>

<

>

:

� if c 2 I

0

;

0 if c 2 InI

0

;

+ otherwise.

Proof: The localization � is determined by the requirements that

�(Y ) =

8

>

>

>

<

>

>

>

:

Y

f

if Y

g

= 0;

� if Y

g

= + and [Y ] 2 I

0

;

0 if Y

g

= + and [Y ] 2 InI

0

;

+ if Y

g

= + and [Y ] =2 I;
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where [Y ] 2 SC denotes the equivalence class of the cocircuit Y: By construc-

tion, � is a localization on every rank 2 contraction ofM; and so by Theorem

4.1, � is a localization onM: The assumptions on InI

0

are equivalent to the

fact that there is no directed edge both of whose vertices are in InI

0

: �

Lemmas 4.2 and 4.3 demonstrate that there is a bijection between ele-

ments of E(

f

M; g; f) (worms which induce a tiling of a single-element exten-

sion Z

0

of Z from a tiling of Z) and pairs of order ideals (I; I

0

) in SC. Further-

more, since we are only concerned with rhombohedral tilings, we only wish to

consider those elements of E(

f

M; g; f) corresponding to localizations � which

are never equal to zero, or equivalently to pairs (I; I

0

) with I = I

0

: Thus

there is a bijection between uniform elements of E(

f

M; g; f) (those worms

which result in a rhombohedral tiling of Z

0

) and order ideals in SC. All that

remains is to discuss a convenient notation for the addition of multiple worms

to a tiling T:

Given a poset P; Stanley [Sta3] de�nes a P -partition of n to be an order-

reversing map � : P ! N satisfying

P

i2P

�(i) = n: For the sake of conve-

nience, we will de�ne our P -partitions to be order-preserving. P -partitions

generalize partitions in that if P is a p-element chain, then a P -partition of

n is an ordinary partition of n into at most p parts.

Theorem 4.4 [cf. Section 2.4 of [DMB]] Let (Z;Z

0

; T;v) be a quadruple,

where

1) Z(V ) is a d-zonotope,

2) Z

0

= Z(V

0

) is a d-zonotope such that V

0

= V [ fvg;

3) T is a rhombohedral tiling of Z; and

4) v is a �xed element of R

d

which is not a scalar multiple of the generating

vectors of Z:
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Suppose v occurs with multiplicity r in V

0

; and let SC = SC(

f

M; g; f) be as

described in the above construction, where in particular, f=g = v: There is

a bijection between SC-partitions of r and tilings T

0

of Z

0

with the property

that contraction of Z

0

along all zones parallel to v results in the original tiling

T of Z:

Proof: Suppose � is an SC-partition of r: Let I be the order ideal in

SC de�ned by I := fc 2 SC j�(c) � r � 1g: Lemmas 4.2 and 4.3 show that

I de�nes a uniform extension of M by a unique element f

1

of E(

f

M; g; f)

| or equivalently, a unique tiling T

1

of the zonotope Z

1

= Z(V

1

); where

V

1

= V [ ff

1

=gg = V [ fvg: Let G

f

1

be the graph corresponding to the

oriented matroid program (

f

M

1

; g; f); where M

1

=M[ f

1

:

Let G

f

1

� G

f

denote the induced subgraph of G

f

1

on vertices not in

G

f

: Since G

f

1

is obtained from G

f

by adding the pseudosphere S

f

1

to the

arrangement A

M

; and since by construction S

f

1

\ S

g

= S

f

\ S

g

; any two

adjacent \new" vertices will be joined by a bidirected edge. Moreover, since

all vertices in G

f

1

� G

f

correspond to tiles which are all in the same zone

of Z

1

; the induced subgraph on G

f

1

� G

f

is connected. Thus all vertices

of the induced subgraph on G

f

1

� G

f

lie in the same strong component

c

1

of SC

1

=SC(

f

M

1

; g; f): Since f

1

is a uniform extension, it is clear that

if (

f

M

1

; g; f) is extended by an additional copy of f

1

; then c

1

receives the

signature zero while all other strong components receive a nonzero signature.

Therefore we must conclude that c

1

:= fY 2 C

�

1

jY

f

1

= 0g; where C

�

1

is the set

of cocircuits of M

1

: Finally, since all directed edges from elements c

0

2 I to

elements c

00

=2 I must pass through S

f

1

; it is clear that c � c

1

in SC

1

if and

only if c 2 I as an element of SC, and similarly c � c

1

in SC

1

if and only if

c =2 I as an element of SC.

Essentially, given an element f

1

; one obtains the poset SC

1

by adding
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an articulation point c

1

which lies below all elements of I

c

and above all

elements of I:

a

b

c d

e

f

a

b c

c

1

e d

f

Figure 24: Passing from SC to SC

1

Given SC

1

; it is clear that the SC-partition � of r induces an SC

1

-

partition �

1

of r � 1 as follows.

�

1

(c) =

(

r � 1 if c =2 I

�(c) otherwise.

This description includes �

1

(c

1

) = r�1; since c

1

=2 I: It is clear that one may

iterate this process to obtain a unique sequence (f

1

; f

2

; : : : ; f

r

) of successive

single-element extensions and consequently a uniquely determined tiling T

0

of Z

0

as described in the statement of the theorem.

Conversely, given a tiling T

0

of Z

0

; it is easy to see how to obtain a unique

SC-partition of r simply by contracting along each of the r zones parallel

to v in turn, and for each tile of T

0

which does not have a copy of v as a

Minkowski summand, keeping track of the number of times it lies \above" a

contracted zone. �

Corollary 4.5 Let Z; Z

0

; v be as in the statement of Theorem 4.4, where

v has multiplicity r in V

0

: Then the set T

0

of rhombohedral tilings of Z

0

decomposes
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T

0

=

a

tilings T

of Z

T

0

T

where T

0

T

is the subset of rhombohedral tilings of Z

0

which yield the tiling T

of Z when all zones of Z

0

corresponding to v are deleted. Furthermore, T

0

T

is

in bijective correspondence with the set of SC(

f

M; g; f)-partitions of r; where

(

f

M; g; f) is the oriented matroid program corresponding to (Z; T;v):

Stanley [Sta3] shows how to decompose P -partitions according to linear

extensions of P; leading to the formula

jfP -partitions of rgj =

X

!2L(P )

�

p + r � des(!)� 1

p

�

where L(P ) is the Jordan-H�older set of P (see [Sta3], section 3.12), des(!)

denotes the cardinality of the descent set of the permutation !; and p = jP j:

Combining this with Corollary 4.5 gives a formula for counting tilings similar

to the one given in the Descent Theorem in section 5.5.2 of [DMB].
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5 MacMahon zonotopes

5.1 Introduction

In this chapter and the next, we describe a method for determining whether

a particular d-zonotope is coherent, and illustrate this method for several

classes of zonotopes. The technique used is quite straightforward; given a

d-zonotope Z:

a) Enumerate all tilings of Z using the Bohne-Dress Theorem (Theorem

2.3) and Las Vergnas' localization theorem (Theorem 4.1),

b) Enumerate the coherent tilings of Z using the result of Billera and

Sturmfels (Theorem 2.2), along with techniques for counting chambers

in hyperplane arrangements,

c) Compare.

Although this is the same technique employed by Edelman and Reiner [ER]

in their classi�cation of coherent 2-zonotopes, they had the advantage that

the tiling counts for step (a) were already extant in the literature. This is the

�rst time that the computational technique in step (a) has been explained,

together with sample computations. It is also, so far as we know, the �rst

time the Las Vergnas result has been used to solve such a problem.

In this chapter, we focus on the class of d-zonotopes Z = Z(V ) with the

property that V consists of d + 1 vectors in general position. We call them

MacMahon zonotopes because they generalize the zonotopes arising from the

plane partitions MacMahon studied. The case of MacMahon zonotopes serves

as a gentle introduction to the counting methods used in step (a), and as

an added bonus, the high degree of structure and symmetry in MacMahon

zonotopes allows us to use the construction of Sturmfels and Ziegler [SZ]
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introduced in the last chapter to demonstrate that they satisfy the Baues

conjecture (see [BKS]) | namely, that the Baues poset on the zonotopal

tilings of a MacMahon zonotope has the homotopy type of a sphere.

5.2 Counting tilings and coherent tilings

Enumerating the coherent tilings of a d-zonotope Z = Z(V ) is relatively

straightforward. By Theorem 2.2, the set of all coherent tilings of Z(V ) is in

bijective correspondence with the chambers of D(V ): In all cases considered

below, D(V ) is free with exponents b

1

; b

2

; : : : ; b

m

: Terao showed [Te] that these

exponents are the roots of the characteristic polynomial �(D(V ); t) of D(V ):

Zaslavsky [Za1] showed that the number of chambers in an arrangement A

is computed by j�(A;�1)j: Thus we have

Theorem 5.1 If D(V ) is a free arrangement, then the number of coherent

tilings of Z(V ) is counted by

Y

(1 + b

i

);

where fb

1

; b

2

; : : : ; b

m

g are the exponents of D(V ):

In most cases presented below, D(V ) lies in one of two in�nite classes of free

arrangements. One of these families was shown to be free by Athanasiadis

[Ath]. The other family will be proven free in the �nal chapter.

Enumerating all tilings of Z is somewhat more complicated. Recall that

a d-zonotope Z = Z(V ) generated by n vectors (n � d) may be thought of as

the image of the n-cube C under some a�ne projection �: In particular, we

may take � to be a linear map of the n-cube into some rank d subspace W of

R

n

; and so � may be represented as a d� n matrix. Then the columns of �

may be taken for the generating set V of Z(V ) (up to projective equivalence).

Let U be the orthogonal complement of W in R

n

; and let �

?

be the linear
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map of C into U satisfying � ��

?

= �

?

�� = 0: Then �

?

may be represented

as an (n� d)�n matrix. Denote the columns of �

?

by V

�

: The image of �

?

is an (n� d)-zonotope Z

�

= Z(V

�

); the dual zonotope to Z:

Not only are Z and Z

�

dual in the obvious (geometric) sense, but they are

also dual in that the corresponding oriented matroidsM(V ) andM(V

�

) are

dual in the oriented matroid sense. Speci�cally, the circuits C of the oriented

matroid M(V ) are the cocircuits C

�

of the oriented matroid M(V

�

); and

there is a bijective correspondence between single-element liftings T ofM(V )

and single-element extensions � ofM(V

�

): By Theorem 2.3, we may conclude

that there is a bijection between (not necessarily rhombohedral) tilings of the

zonotope Z = Z(V ) and single-element extensions of the oriented matroid

M(V

�

): As noted in the last chapter, rhombohedral tilings correspond to

uniform localizations, those localizations � satisfying �(X) 6= 0 for all X 2

C

�

:

Therefore, what is required to enumerate the set of all tilings of Z is to

i) Determine all rank 2 contractions of M(V

�

);

ii) For each rank 2 contraction R; determine a complete list of uniform

localizations for the cocircuits of R;

iii) Use this collection of rank 2 localizations to determine a complete list of

uniform localizations for the entire collection C

�

of cocircuits ofM(V

�

):

By Theorem 4.1, the set of cocircuit signatures � which induce a local-

ization on every rank 2 contraction R is exactly the set of localizations for

C

�

:

A rank 2 contraction of a realizable rank m oriented matroidM =M(V )

is a rank 2 subspace of the arrangement A(V ) which arises from the inter-

section of (m � 2) independent elements of A(V ) (here we assume A(V ) is
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essential). For any pair X; Y of cocircuits in C

�

; de�ne O

X;Y

to be the set

of indices i such that X

i

= Y

i

= 0: De�ne V

�

X;Y

to be the set of vectors

fv

i

2 V

�

j i 2 O

X;Y

g: Then X and Y de�ne a rank 2 contraction R of the

oriented matroid M(V

�

) if and only if span(V

�

X;Y

) = n� d� 2:

Thus in order to determine the rank 2 contractions ofM(V

�

); it is neces-

sary to compute V

�

: Since V and V

�

arise from mutually orthogonal projec-

tions � and �

?

of the n-cube C; it is clear that the rows of � must be pairwise

orthogonal with the rows of �

?

: Given V; this orthogonality uniquely deter-

mines V

�

up to (projective and) oriented matroid equivalence. Therefore,

given a rank d vector con�guration V with jV j = n; we may take V

�

to

be any rank (n � d) con�guration of n vectors such that, when viewed as

matrices, the rows of V and V

�

are pairwise orthogonal to one another.

5.3 Coherent MacMahon zonotopes

A d-zonotope Z(V ) is a MacMahon zonotope if V consists of d + 1 distinct

vectors in general position. It is clear that V is projectively equivalent to

the frame in R

d

; namely the standard basis vectors together with the vector

(1; 1; : : : ; 1): Thus any MacMahon d-zonotope Z is uniquely determined by

the multiplicities of its generating vectors, and it is reasonable to discuss

\the" fr

1

; r

2

; : : : ; r

d+1

g MacMahon d-zonotope, where V is the frame.

Theorem 5.2 The MacMahon fr

1

; r

2

; : : : ; r

d+1

g d-zonotope Z is coherent if

and only if

� r

i

� 2 for at most three indices i; and

� r

i

� 3 for at most two indices.

Furthermore, the MacMahon fr; s; 2; 1; : : : ; 1g d-zonotope has exactly

2(r + s+ 1)!(r + s)!

(r + 1)!(s+ 1)!
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tilings, and the MacMahon fr; s; 1; : : : ; 1g d-zonotope has exactly (r + s)!

tilings.

We begin by showing that the set of all tilings of the fr

1

; r

2

; : : : ; r

d+1

g

MacMahon d-zonotope is in bijection with the number of ways of stacking

(d + 1)-cubes \ush into the corner" of an r

1

� r

2

� � � � � r

d+1

hyperbox.

Speci�cally, we show

Proposition 5.3 The collection of tilings of the fr

1

; r

2

; : : : ; r

d+1

g MacMa-

hon d-zonotope is in bijection with the set

J

 

d+1

Y

i=1

[r

i

]

!

�

d+1

Y

i=1

S

r

i

;

where [r

i

] denotes the poset chain of length r

i

; J (P ) denotes the set of order

ideals of the poset P; and S

n

is the symmetric group on n elements.

The product of symmetric groups appears because two tilings t

1

; t

2

which

\look" the same are considered distinct if one is obtained from the other

by reordering parallel zones. We will continue to enumerate tilings in this

manner for the remainder of the paper.

Proof: Order the elements of V such that v

1

; v

2

; : : : ; v

d

are the standard

basis vectors for R

d

; and v

d+1

= (1; 1; : : : ; 1): Then V may be represented by

the d� n matrix:

V =

r

1

z }| {

r

2

z }| {

r

d

z }| {

r

d+1

z }| {

0

B

B

B

B

B

@

1 1 1 � � � 1 0 0 0 � � � 0 � � � � � � 0 0 0 � � � 0 1 1 1 � � � 1

0 0 0 � � � 0 1 1 1 � � � 1 � � � � � � 0 0 0 � � � 0 1 1 1 � � � 1

.

.

.

.

.

.

.

.

. � � �

.

.

.

.

.

.

.

.

.

.

.

. � � �

.

.

. � � � � � �

.

.

.

.

.

.

.

.

. � � �

.

.

.

.

.

.

.

.

.

.

.

. � � �

.

.

.

0 0 0 � � � 0 0 0 0 � � � 0 � � � � � � 0 0 0 � � � 0 1 1 1 � � � 1

0 0 0 � � � 0 0 0 0 � � � 0 � � � � � � 1 1 1 � � � 1 1 1 1 � � � 1

1

C

C

C

C

C

A
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The discriminantal arrangement D(V ) has as its set of de�ning vectors

the columns of

D(V ) = ( J

1

j J

2

j � � � j J

d+1

j A )

consisting of

d+1

X

i=1

�

r

i

2

�

+

d+1

Y

j=1

r

j

vectors in R

n

: Let h

i

denote the i

th

partial sum

P

i

j=1

r

j

(in particular, h

0

= 0

and h

d+1

= n). Then J

i

is the collection of all

�

r

i

2

�

possible vectors whose only

nonzero entries are a 1 and �1 located at distinct coordinates somewhere in

the interval [h

i�1

+ 1; h

i

] with 1 as the leading nonzero entry. The collection

A is the set of all possible Cartesian products of basis vectors

Q

d

j=1

e

i

j

�

(�e

i

d+1

); where fe

i

j

g; 1 � i

j

� r

j

; are the standard basis vectors for R

r

j

; 1 �

j � d+1: The reader can verify that (up to a reordering of the vector multiset

V ), this union of vector sets de�nes D(V ): For notational convenience, we

make a change of coordinates such that A may be taken as the set of all

products

Q

d+1

j=1

e

i

j

:

Due to the oriented matroid duality discussed above, the collection of sign

vectors C

�

of the columns of D(V ) are the cocircuits ofM(V

�

): Thus to prove

the proposition, we must show that every element in J

�

Q

d+1

i=1

[r

i

]

�

�

Q

d+1

i=1

S

r

i

corresponds to a unique uniform localization on C

�

; and that all uniform

localizations are obtained in this manner.

Recall that a uniform localization � is simply a cocircuit signature � :

C

�

! f+;�g with special properties. Speci�cally, for each rank 2 contraction

R of M(V

�

); � must assign a signature to the cocircuits in R in a realizable

manner. That is, � must be a signature of the type in Figure 21(III) or

equivalently, � must avoid the uniform signature in Figure 22. We will

consider only rank 2 contractions which contain three or more cocircuits,
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since that is the minimum number of cocircuits required for the obstructions

in Figure 22. To determine the set R of such rank 2 contractions R; we must

�nd all rank 2 spaces de�ned by pairs of cocircuits X; Y in C

�

such that V

�

X;Y

has span n� d� 2; where n =

P

r

i

:

First, we must �nd V

�

: Recall that, up to oriented matroid equivalence,

any collection of n vectors in R

(n�d)

which are pairwise row orthogonal with

V and which has full row rank will serve as V

�

: Thus the computation of V

�

is relatively straightforward. Simply reorder the columns of V to write

V = ( I

d

j M ) :

Then one may compute

V

�

=

�

�M

T

j I

(n�d)

�

:

However, since row and column multiplication only reorient the corre-

sponding oriented matroid, and do not alter any of the properties of concern

to us, �M

T

may be replaced by M

T

: Since the rows of D(V ) are indexed by

the columns of V; and since the rows of sign(D(V )) = C

�

are indexed by the

columns of V

�

; it is important that the column ordering of V

�

correspond

to the column ordering of V: Therefore, we rearrange the columns of V

�

to

correspond to the column ordering of V given on page 46, to obtain the block

matrix

V

�

=

0

B

B

B

B

B

@

B

1

0 � � � 0 0

0 B

2

� � � 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 � � � B

d

0

L

1

L

2

� � � L

d

I

r

d+1

1

C

C

C

C

C

A

where

B

i

=

0

B

@

1

.

.

.

1

�

�

�

�

�

�

I

r

i

�1

1

C

A
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and L

i

is the r

d+1

� r

i

matrix whose only nonzero entries are all ones in the

�rst column.

In the case of D(V ); the only relevant rank 2 contractions (those con-

taining three or more cocircuits) are those which are de�ned by a triple of

vectors in some J

i

; or by a triple of vectors, two of which are in A; and the

third in some J

i

: See Figure 25.

e

p

�e

q

X

Y

Figure 25: A rank 2 contraction containing three cocircuits

Here X; Y 2 A; e

p

�e

q

2 J

i

for some 1 � i � d+1; and (e

p

�e

q

)+Y = X:

For notational convenience, all future rank 2 contractions will be presented

as

X

1

_X

2

_ � � � _X

m

to indicate that X

1

; X

2

; : : : ; X

m

all lie in a common rank 2 contraction R;

and that for each triple (i � 1; i; i + 1); there exist positive scalars a; b such

that aX

i�1

+ bX

i+1

= X

i

: We say that a cocircuit signature � respects R if

�j

R

is a localization on R:

Let R

0

denote the collection of rank 2 contractions arising from triples

of cocircuits X

1

_ X

2

_ X

3

; where X

1

; X

2

; X

3

2 J

i

for some i; and let R

1

denote the collection of rank 2 contractions of the kind shown in Figure 25.

It is a routine matter to verify that this catalogues all rank 2 contractions.

If � respects all rank 2 contractions in R

0

; then � induces an ordering on the
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coordinates of R

r

i

for 1 � i � d+ 1: This ordering is de�ned by

�(e

p

� e

q

) = + if and only if e

p

> e

q

:

Since � respects all R 2 R

0

; these pairwise order relations may be extended

to a linear order on the coordinates e

1

; e

2

; : : : ; e

r

i

(cycles cannot occur). Con-

versely, it is clear that every such coordinate ordering corresponds to a co-

circuit signature � which respects all R 2 R

0

: Thus we may �x an ordering

on the coordinates of R

r

i

for each i and multiply the localization count by

r

1

!r

2

! � � � r

d+1

!: It remains to show that for each coordinate ordering � in

Q

S

r

i

; there are J (

Q

[r

i

]) distinct localizations which induce �:

Without loss of generality, suppose the order relation on the coordinates

of R

r

i

is �xed to be e

p

> e

q

if and only if p < q: Then each cocircuit X

i

2 J

i

has �(X

i

) = + for all 1 � i � d+ 1: Consequently, when considering rank 2

contractions in R

1

; it follows that

(�) �(e

p

� e

q

) = + implies �(X) � �(Y )

(in the ordering + > 0 > �), where e

p

� e

q

; X and Y are as in Figure 25.

To see how this yields a bijection with elements of J (

Q

d+1

i=1

[r

i

]); we adopt

a di�erent notation for the elements of A: Recall A is the collection of all

Cartesian products of the form

d+1

Y

j=1

e

i

j

where e

i

j

is any standard basis vector in R

r

j

: There is an obvious bijection

between elements of A and (d+1)-tuples (u

1

; u

2

; : : : ; u

d+1

); where 1 � u

i

� r

i

denotes the position of a unique nonzero entry among the coordinates in the

interval [h

i�1

+ 1; h

i

]: Then the condition (�) is equivalent to the statement:

�((u

1

; u

2

; : : : ; u

i�1

; u

i

; u

i+1

; : : : ; u

d+1

)) � �((u

1

; u

2

; : : : u

i�1

; u

i

; u

i+1

; : : : ; u

d+1

))

50



if and only if u

i

� u

i

:

Taking the set of such relations where u

i

= u

i

+ 1 for all 1 � i � d + 1;

we obtain the cover relations for the lattice

Q

d+1

i=1

[r

i

]: In particular, those

cocircuits X with �(X) = + form an order ideal I in the lattice. Thus for a

�xed ordering � of the coordinates, each localization � is determined by an

order ideal I of cocircuits in

Q

d+1

i=1

[r

i

] satisfying �(X) = + for all X 2 I: �

Since the tilings of a MacMahon zonotope are well-behaved, it is a fairly

straightforward matter to determine which MacMahon zonotopes are coher-

ent. One nice property of incoherent zonotopes is that they must always

contain some \minimal" incoherent zonotope.

Lemma 5.4 The zonotope Z = Z(V ) is coherent if and only if Z

0

= Z(V

0

)

is coherent for every V

0

� V:

Proof: The su�ciency is immediate. To show necessity, suppose Z

0

is a

subzonotope of Z and let T

0

be an incoherent tiling of Z

0

: Using the results of

chapter 4 (Theorem 4.4), T

0

may be \expanded" to some tiling T of Z: If Z is

coherent, then there exists a zonotope

b

Z = Z(

b

V ) which induces T: Moreover,

the generating set

b

V of

b

Z is obtained via the lifting vector (l

1

; l

2

; : : : ; l

jV j

):

Let E = f(v; l

v

) 2

b

V j v 2 V

0

g: Then Z(E) is a zonotope which induces the

tiling T

0

; contradicting the hypothesis that T

0

is incoherent. �

Notice that Lemma 5.4 is true even if Z and Z

0

are zonotopes of dif-

ferent dimensions. As a consequence, one can dismiss large in�nite families

of zonotopes as incoherent once some few relatively small obstructions are

found.

Lemma 5.5 Suppose Z is an fr

1

; r

2

; : : : ; r

d+1

g MacMahon d-zonotope. Z is

incoherent if r

i

� 3 for three distinct values of i:
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Proof: To show that a localization � yields an incoherent tiling requires

proving that no chamber of D(V ) corresponds to �: Chambers in D(V ) yield

signatures in the following manner. Recall that C

�

may be obtained as the

sign vectors of the columns of D(V ): Let (X

1

; X

2

; : : : ; X

m

) be an ordering of

the elements of C

�

; and l = (l

1

; l

2

; : : : ; l

n

) a lifting vector. Then the signature

�

l

induced by l is given by �

l

(X

i

) = sign(l � c

i

); where c

i

is the ith column

of D(V ):

If Z is the fr

1

; r

2

; : : : ; r

d+1

g MacMahon d-zonotope with r

i

� 3 for three

distinct values of i; then by Proposition 5.3 �[r

i

] contains a sublattice iso-

morphic to [3] � [3] � [3]: Therefore assume without loss of generality that

�[r

i

] = [3] � [3] � [3] and consider the class of localizations � which induce

the order on coordinates within each R

r

i

of e

p

> e

q

if and only if p < q:

There is a tiling/localization � corresponding to the order ideal

I = < (1; 3; 2); (2; 1; 3); (3; 2; 1); (2; 2; 2)>

in J ([3]� [3]� [3]) (this is the tiling shown in Figure 2). That is, �(X) = +

for allX 2 I: If � is coherent, then there is a chamber in D(V ) corresponding

to �: That is, there is a chamber C in D(V ) such that for every c 2 C; there

are coordinates fc

1

; c

2

; : : : ; c

9

g corresponding to the cocircuits in �[r

i

]; for

which following inequalities hold:

c

1

+ c

6

+ c

8

> 0 corresponding to (1; 3; 2)

c

2

+ c

4

+ c

9

> 0 corresponding to (2; 1; 3) )

P

c

i

> 0:

c

3

+ c

5

+ c

7

> 0 corresponding to (3; 2; 1)

However, since � may also be de�ned by the complementary �lter

I

c

= < (3; 1; 2); (2; 3; 1); (1; 2; 3) >;

a similar set of inequalities implies

P

c

i

< 0: Thus no chamber of the dis-

criminantal arrangement corresponds to the localization �; and so � is an

incoherent tiling/localization. �
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A similar argument, this time using the order ideal and complementary

�lter

I =< (1; 1; 2; 2); (2; 2; 1; 1); (2; 1; 1; 2)>;

I

c

=< (1; 2; 1; 2); (2; 1; 2; 1); (1; 2; 2; 1)>

gives

Lemma 5.6 Suppose Z is a fr

1

; r

2

; : : : ; r

d+1

g MacMahon d-zonotope. Z is

incoherent if r

i

� 2 for four distinct values of i:

All that remains is to show that all fr; s; 2; 1; 1; : : : ; 1g MacMahon d-

zonotopes are coherent, where possibly r; s � 2: Since the elements of V

are in general position, it makes no di�erence which vectors appear with

multiplicity. For such a zonotope Z; Proposition 5.3 states that there are

jJ ([r]� [s]� [2])� S

r

� S

s

� S

2

j

total tilings of Z; since the additional singleton zones do not contribute any

factors to the count. By MacMahon's original formula (see page 2), this

number is

(r + s+ 1)!(r + s)!

(r + 1)!(s+ 1)!r!s!

� 2r!s! =

2(r + s+ 1)!(r + s)!

(r + 1)!(s+ 1)!

:

The discriminantal arrangement of Z is projectively equivalent to one of

the arrangements studied by Athanasiadis [Ath], which interpolate between

the cone over the braid arrangement of type A

r+s�1

and the cone over the Shi

arrangement of type A

r+s�1

: In particular, D(V ) corresponds to a complete

bipartite transitive gain graph on vertex sets K

r

and K

s

(see chapter 7).

Athanasiadis has shown (Corollary 7.10) that this class of arrangements is

free with exponents

f0; 1; r + 1; r + 2; : : : ; r + s� 1; s+ 1; s+ 2; : : : ; r + sg:
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By Theorem 5.1, we conclude that all tilings of Z are coherent.

By Lemma 5.4, the MacMahon fr; s; 1; : : : ; 1g d-zonotope Z

0

is coherent

as well. All tilings of Z

0

are counted by

jJ ([r]� [s])j � r!s!;

and it was shown on page 1 that J ([r] � [s]) has cardinality

�

r+s

s

�

: This

completes the proof of Theorem 5.2. �

5.4 The Baues problem for MacMahon zonotopes

The Baues problem for a zonotope Z asks whether a certain poset structure

on the set T of all zonotopal tilings of Z has the homotopy type of a sphere.

The goal of this section is to answer this question a�rmatively for MacMahon

zonotopes Z: The only other family of zonotopes in arbitrary dimension d

with arbitrarily many zones for which this is known is the family of cyclic

zonotopes ([SZ]). We begin with a careful statement of the Baues problem

for zonotopes.

The Bohne-Dress Theorem (Theorem 2.3) states that the collection T of

(zonotopal, not necessarily rhombohedral) tilings of a d-zonotope Z(V ) is in

bijection with the collection E(M(V

�

)) of single-element extensions of the

oriented matroid M(V

�

) of the dual vector con�guration V

�

: Las Vergnas'

theorem (Theorem 4.1), in turn, states that the collection E(M(V

�

)) is in

bijection with the collection of localizations � : C

�

! f+;�; 0g: There is a

partial order on localizations given by

�

1

� �

2

if and only if �

1

(Y ) 2 f0; �

2

(Y )g for all Y 2 C

�

:

Thus T may be given a poset structure by the rule T

1

� T

2

if and only if

�

T

1

� �

T

2

; where �

T

i

is the localization corresponding to T

i

: We exclude the
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localization which gives the signature 0 to each cocircuit in C

�

: It may be

checked that this corresponds to the partial order on tilings of Z(V ) under

re�nement.

For any given poset P; a chain of length m in P is a collection p

1

� p

2

�

� � � � p

m

of elements in P: There is a simplicial complex �(P ) associated with

P; called the order complex of P: The order complex �(P ) is the abstract

simplicial complex with vertex set equal to set of elements of P; and the set

of simplices given by the chains in P:

The generalized Baues problem (see [BKS]) for zonotopes asks whether

the simplicial complex �(T ) has the homotopy type of a sphere. We will

use the construction of Sturmfels and Ziegler [SZ] introduced in chapter 4 to

prove

Theorem 5.7 Suppose Z is an fr

1

; r

2

; : : : ; r

d+1

gMacMahon d-zonotope. Then

the order complex �(T ) associated to the poset T of tilings of Z has the ho-

motopy type of an (n� d� 1) sphere, where n =

P

r

i

:

A few additional de�nitions are required before presenting the proof of

the theorem. First, an oriented matroid program (

f

M; g; f) is euclidean if

for every cocircuit Y of M =

f

Mn f with Y

g

6= 0 there exists an extension

� 2 E(

f

M; g; f) with �(Y ) = 0: As a result of Lemmas 4.2 and 4.3, the

following proposition is immediate ([EM]):

Proposition 5.8 An oriented matroid program (

f

M; g; f) is euclidean if and

only if its poset of very strong components VSC is empty.

An oriented matroid M is strongly euclidean if it has rank 1, or if it

possesses an element g such thatM=g is strongly euclidean and the program

(

f

M; g; f) is euclidean for every extension

f

M =M[f: Sturmfels and Ziegler

show the following:
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Theorem 5.9 ([SZ] Theorem 1.2) Let M be a strongly euclidean rank r

oriented matroid. Then the extension poset E(M) is homotopy equivalent to

the (r � 1)-sphere.

Thus by dualizing the generating set V for the MacMahon fr

1

; r

2

; : : : ; r

d+1

g

d-zonotope, we may apply Theorem 5.9 to the poset E(M(V

�

)) of the rank

(n� d) oriented matroidM(V

�

) to determine that �(T ) has the homotopy

type of an (n� d� 1)-sphere.

Let V be the vector con�guration which generates an fr

1

; r

2

; : : : ; r

d+1

g

MacMahon d-zonotope, and let M = M(V

�

) be the oriented matroid for

V

�

: Recall that the graph G

f

of an oriented matroid program G

f

has a very

strong component c if for any two vertices X

1

; X

2

in c, there is a directed

path from X

1

to X

2

; and from X

2

to X

1

(possibly along bidirected edges),

and there is at least one pair of vertices in c joined by a unidirected edge.

In particular, the induced subgraph on the vertices in c has a directed cycle

(X

1

; X

2

; : : :X

m

) such that at least one of the edges in the cycle is unidirected.

In what follows, we will often identify cocircuits of M with the column

vectors of D(V ) corresponding to them. We recall the collection of de�ning

vectors for each of V

�

and D(V ):

V

�

=

0

B

B

B

B

B

@

B

1

0 � � � 0 0

0 B

2

� � � 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 � � � B

d

0

L

1

L

2

� � � L

d

I

r

d+1

1

C

C

C

C

C

A

where

B

i

=

0

B

@

1

.

.

.

1

�

�

�

�

�

�

I

r

i

�1

1

C

A

56



and L

i

is the r

d+1

� r

i

matrix whose only nonzero entries are all ones in the

�rst column. Also

D(V ) = ( J

1

j J

2

j � � � j J

d+1

j A )

where J

i

is the collection of all

�

r

i

2

�

possible vectors whose only nonzero

entries are a 1 and �1 located at distinct coordinates somewhere in the

interval [h

i�1

+ 1; h

i

] with 1 as the leading nonzero entry, and the collection

A is the set of all possible Cartesian products of basis vectors

Q

d+1

j=1

e

i

j

; where

fe

i

j

g; 1 � i

j

� r

j

; are the standard basis vectors for R

r

j

; 1 � j � d+ 1:

Proof (of Theorem 5.7): Consideration of V

�

demonstrates that one may

use an inductive argument. If one chooses g to be any of the basis vectors

e

i

2 R

n�d

; then the oriented matroid of the contraction M=g is either

� Dual to the oriented matroid of a MacMahon fr

1

; r

2

; : : : ; r

i�1

; r

i

�

1; r

i+1

; : : : ; r

d+1

g d-zonotope for some r

i

; or

� Dual to the oriented matroid for the trivial fr

1

; r

2

; : : : ; r

i�1

; r

i+1

; : : : ; r

d+1

g

zonotope in the case r

i

= 1:

In the �rst case,M=g is strongly euclidean by induction. In the second case,

it is clear that M=g is dual to an r

1

� r

2

� � � � � r

i�1

� r

i+1

� � � � � r

d+1

box. It will easily follow from the arguments below that M=g is strongly

euclidean in this case as well. Thus it is su�cient to show that for some

choice of coordinate vector g = e

i

; the directed graph G

f

corresponding to

the oriented matroid program (

f

M; g; f) has no directed cycle for every choice

of extension f:

We will choose g = e

n

: Consider the structure of the undirected graph

G underlying G

f

: Since the choice of f only determines the direction of the

edges in the graph, it is clear that for �xed g; the undirected graph G is
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independent of f: The vertices of G correspond to the collection of cocircuits

X satisfying X

g

= +: After replacing columns of D(V ) with their negatives

as necessary, the vertices of G may be partitioned into two classes:

A := fe

n

� e

p

j p 2 [h

d

+ 1; h

d+1

� 1]g

B :=

(

d

Y

j=1

e

i

j

� e

n

j1 � i

j

� r

j

)

:

and all other cocircuits lie in S

g

; the pseudosphere at in�nity. Let f be any

element such that

f

M = M [ f is a single-element extension of M: The

approach for showing that G

f

has no directed cycle for every f is as follows:

� Show that the induced subgraph A

f

on the vertex set A contains no

directed cycle,

� Show that the induced subgraph B

f

on the vertex set B contains no

directed cycle,

� Show that there is no directed cycle (X

1

; X

2

; : : : ; X

m

) containing ver-

tices from both A

f

and B

f

:

An important observation arising from considering the collections R

0

;

R

1

of rank 2 contractions for M (see page 49) is that every vertex in A is

adjacent to every other vertex of G: In particular, A is a complete graph on

r

d+1

� 1 vertices.

Lemma 5.10 For every single-element extension f; the induced subgraph A

f

on the vertex set A contains no directed cycle.

Proof: Suppose A

f

contains a directed cycle  = (X

1

; X

2

; : : :X

m

): Then

A

f

must contain a directed cycle of length three. If m > 3; then up to
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relabeling the vertices, the directed edge in  is e : X

1

! X

2

: By the

above observation, there exists an edge e from X

2

to X

m

: If e is directed

e : X

2

! X

m

or is bidirected, then (X

1

; X

2

; X

m

) is a directed cycle of length

three. If e is directed e : X

m

! X

2

; then (X

2

; X

3

; : : :X

m

) is shorter than 

and a directed cycle of length three is obtained by iterating this process.

Thus it is su�cient to show that A contains no directed cycle of length

three. It is clear that up to isomorphism, there are three possibilities for a

directed cycle  = (X

i

; X

j

; X

k

) |  either contains zero, one or two bidi-

rected edges. Figure 26 shows the undirected induced subgraph  of G;

together with the pseudosphere at in�nity and the rank 2 contractions which

determine the edges of of :

�Y

k;j

Y

j;i

Y

k;i

Y

k;j

�Y

j;i

�Y

k;i

X

i

X

j

X

k

Figure 26: The induced subgraph  of G; together with the pseudosphere S

g

The cocircuits with labels X

p

denote cocircuits of the form e

n

� e

p

: The

cocircuits at in�nity with labels Y

p

1

;p

2

denote the cocircuits of the form e

p

1

�

e

p

2

: For any choice of extension f; the signatures �

f

(Y

p

1

;p

2

) determine how

the edges of  are directed. For example, �

f

(e

i

� e

j

) = + if and only if the

edge between X

i

and X

j

is directed toward X

i

:

Note that the cocircuits at in�nity also de�ne a rank 2 contraction R:We

will demonstrate that for any directed cycle ; the corresponding cocircuit
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signature on R is one of the forbidden signatures in Figure 22, and conse-

quently cannot occur as the signature arising from any extension f: Without

loss of generality, assume that the edge between vertices X

j

and X

k

is di-

rected toward X

k

: In Figure 27, the vector next to each cocircuit denotes

that cocircuit's signature for each of the four possible directed cycles.

(�;�;0;0)

(+;0;+;0)

(�;�;�;�)

(+;+;0;0)

(�;0;�;0)

(+;+;+;+)

Y

j;i

Y

k;i

Y

k;j

Figure 27: Every directed cycle  yields a forbidden cocircuit signature on R

The reader may verify that for any �xed coordinate in the sign vectors

above, the resulting cocircuit signature is one induced by a particular directed

cycle in ; and that it is one of the forbidden signatures given in Figure 22.

Thus for every choice of extension f; the induced subgraph A

f

of G

f

has no

directed cycle. �

Lemma 5.11 For every single-element extension f; the induced subgraph B

f

on the vertex set B contains no directed cycle.

Proof: In a manner similar to the collection of cocircuits in A in the proof

of Proposition 5.3, the collection of vertices inB is in bijective correspondence
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with elements in the poset

Q

d

j=1

[r

j

]: Moreover, there is an obvious bijection

between vertices in B and d-tuples (�

1

; �

2

; : : : ; �

d

); where 1 � �

j

� r

j

for

1 � j � d: We will identify vertices in B with this collection of d-tuples.

Furthermore, upon consideration of the collection R

1

of rank 2 contrac-

tions of M; it is easy to see that vertices b; b

0

are adjacent in B if and only

if

b = (�

1

; �

2

; : : : ; �

i�1

; �

i

; �

i+1

; : : : ; �

d

)

b

0

= (�

1

; �

2

; : : : ; �

i�1

; �

0

i

; �

i+1

; : : : ; �

d

)

that is, if and only if b and b

0

di�er in exactly one coordinate. In particular, let

K

�

1

;�

2

;:::;

^

�

i

;:::;�

d

denote a collection of vertices in B with all values of �

j

�xed

for j 6= i: It is clear that the induced subgraph on each such K

�

1

;�

2

;:::;

^

�

i

;:::;�

d

is a complete graph on r

i

vertices. Using the same argument as in the proof

of Lemma 5.10, it follows that no K

�

1

;�

2

;:::;

^

�

i

;:::;�

d

f

contains a directed circuit

for any choice of extension f:

Observation: Consider the elements

b

1

= (�

1

; �

2

; : : : ; �

i�1

; k

1

; �

i+1

; : : : ; �

d

)

and

b

2

= (�

1

; �

2

; : : : ; �

i�1

; k

2

; �

i+1

; : : : ; �

d

)

of B: As noted above, they are adjacent in B; and for any extension f; the

direction of the edge e from b

1

to b

2

in B

f

is determined by �

f

(e

k

1

� e

k

2

):

Note that the direction of the edge e

0

between

b

0

1

= (�

0

1

; �

0

2

; : : : ; �

0

i�1

; k

1

; �

0

i+1

; : : : ; �

0

d

)

and

b

0

2

= (�

0

1

; �

0

2

; : : : ; �

0

i�1

; k

2

; �

0

i+1

; : : : ; �

0

d

)
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is also determined by �

f

(e

k

1

� e

k

2

); and so e and e

0

are similarly directed.

In particular, then, suppose  = (b

1

; b

2

; : : : ; b

m

) is a directed cycle in B:

Without loss of generality, the edge e between b

1

and b

2

is directed e : b

1

!

b

2

; with b

1

; b

2

as above. That is, suppose b

1

and b

2

di�er only in the i

th

coordinate.

Suppose m > q � 2 is the least index for which the (possibly bidirected)

edge e

0

from b

q

to b

q+1

has the property that the change occurs in the i

th

coordinate. Speci�cally, suppose the i

th

coordinate of b

q

is k

2

and the i

th

coordinate of b

q+1

is k

3

: Then using the above observation, we conclude that

the edge between b

2

and

b

0

3

= (�

1

; �

2

; : : : ; �

i�1

; k

3

; �

i+1

; : : : ; �

d

)

is either directed from b

2

to b

0

3

; or is bidirected.

Continuing in this fashion yields a directed cycle 

0

= (b

1

; b

2

; b

0

3

; : : : b

0

s

)

in K

�

1

;�

2

;:::;

^

�

i

;:::;�

d

; which is a contradiction. So it follows that all vertices

b

2

; b

3

; : : : ; b

m

in  have the same i

th

coordinate. However, b

2

and b

m

are

each adjacent to b

1

; and therefore they each di�er from b

1

in exactly one

coordinate, which must be the i

th

coordinate. Since b

2

and b

m

agree on the

i

th

coordinate, we conclude that b

2

= b

m

and so the pair fb

1

; b

2

g constitute a

directed cycle, which is absurd. Thus B cannot contain a directed cycle. �

Lemma 5.12 For every single-element extension f; G

f

contains no directed

cycle with vertices from both A and B:

Proof: Suppose such a directed cycle  exists. Then  contains some

vertex a 2 A; and  = (a;X

1

; X

2

; : : : ; X

m

): As noted above, a is adjacent to

every X

j

: We claim that it is once again su�cient to consider only directed

cycles of length three.
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To see this, note that the directed cycle  contains at least one directed

edge e: First, suppose this edge is e : a ! X

1

: If the edge e

0

between a and

X

2

is directed e

0

: X

2

! a or is bidirected, then 

0

= (a;X

1

; X

2

) is a directed

cycle of length three. If e

0

is directed e

0

: a! X

2

; then 

0

= (a;X

2

; : : : ; X

m

)

is a shorter cycle and the claim follows by induction. A similar argument

follows if the directed edge in  is e : X

m

! a:

If the directed edge in  is e : X

i

! X

i+1

; then consider the edge e

0

between a andX

i

: If it is directed e

0

: a! X

i

; then 

0

= (a;X

i

; X

i+1

; : : : ; X

m

)

is a shorter cycle unless X

i

= X

1

; which returns to the earlier case. If e

0

is

directed e

0

: X

i

! a; then 

0

= (a;X

1

; : : : ; X

i

) is a shorter cycle. Similar

arguments apply if the edge e

00

between a and X

i+1

is directed. Finally, if

e

0

and e

00

are both bidirected, then (a;X

i

; X

i+1

) is a cycle of length three,

which completes the proof of the claim.

Therefore the proof of the lemma reduces to checking all possible directed

cycles  on three vertices which contain at least one vertex from each of A

and B: One possibility is presented in Figure 28, which has two vertices from

B: The other case may be checked by the reader.

�Y

i

2

Y

i

1

;i

2

Y

i

1

Y

i

2

�Y

i

1

;i

2

�Y

i

1

X

i

1

X

i

2

X

n;j

Figure 28: The induced subgraph  of G; together with the pseudosphere S

g

In Figure 28, cocircuits X

i

1

and X

i

2

correspond to adjacent elements of
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B which di�er in the i

th

position, with values i

1

and i

2

; respectively. The

vertex X

n;j

corresponds to the cocircuit e

n

�e

j

: The vertex Y

i

1

;i

2

corresponds

to the cocircuit e

i

1

� e

i

2

; and the vertices Y

i

1

and Y

i

2

correspond to those

elements of A which have all but their �nal coordinates equal to those of X

i

1

respectively X

i

2

; and the �nal nonzero coordinate for each lies in position

j 2 [h

d�1

+ 1; h

d

� 1]: As before, one only needs to verify that every possible

directed cycle on vertices X

i

1

; X

i

2

; X

j;n

implies the existence of a forbidden

cocircuit signature on the rank 2 contraction de�ned by Y

i

1

; Y

i

2

; Y

i

1

;i

2

: See

Figure 29. This completes the proof of Lemma 5.12. �

(�;�;�;�;0;0;0)

(+;0;+;0;+;0;+)

(�;�;0;0;�;�;0)

(+;+;+;+;0;0;0)

(�;0;�;0;�;0;�)

(+;+;0;0;+;+;0)

Y

i

1

;i

2

Y

i

1

Y

i

2

Figure 29: Every directed cycle  yields a forbidden cocircuit signature

Lemmas 5.10, 5.11 and 5.12 prove that if g = e

n

; then G

f

is euclidean for

every choice of extension f: This fact, together with Theorem 5.9, completes

the proof of Theorem 5.7. �
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6 A classi�cation of coherent 3-zonotopes on

�ve or fewer distinct generating vectors

6.1 Introduction

In 1996, Edelman and Reiner [ER] were able to give a completely combi-

natorial classi�cation of coherent 2-zonotopes Z = Z(V ) in terms of V and

the m-tuple (r

1

; r

2

; : : : ; r

m

) of multiplicities. The work in this chapter is a

start toward such a classi�cation for 3-zonotopes. Speci�cally, we provide

a completely combinatorial classi�cation of coherent 3-zonotopes Z = Z(V )

for those vector sets V with jV j � 5:

Along the way, we discover a number of beautiful families of 3-zonotopes

whose tilings are counted by simple product formulas like those of MacMahon

and Elnitsky. In higher dimensions, there are more oriented matroid equiv-

alence classes to consider, and so the convenient (r

1

; r

2

; : : : ; r

m

) notation is

no longer meaningful.

The oriented matroid equivalence classes for Z(V ) with jV j � 5 are as

follows:

� jV j = 4; which yields the MacMahon 3-zonotopes, as discussed in the

last chapter.

� jV j = 5 and the elements of V are in general position.

� jV j = 5 and V contains exactly one 3-subset of coplanar vectors.

� jV j = 5 and V contains exactly two 3-subsets of coplanar vectors, with

exactly one vector common to each 3-subset.

The remaining possibilities, in which four or �ve vectors in V are coplanar,

reduce to the rank 2 case.
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The method we will use to obtain the tiling counts which follow is identical

to the method used in the previous chapter. In the case where the elements of

V are in general position, it is possible to say something about the coherence

of a d-zonotope with jV j = d + 2 for arbitrary d: The remaining arguments

are only given for 3-zonotopes.

6.2 d+ 2 vectors in general position in R

d

Let Z = Z(V ) be a d-zonotope such that the d + 2 elements of V are in

general position. Since the oriented matroid M(V

�

) of the dual vector con-

�guration V

�

has rank 2, there is only one oriented matroid equivalence class

of such zonotopes. Thus there is no loss of generality in assuming that the

underlying set V for the generating multiset V of Z is the frame together

with (1; a

1

; a

2

; : : : ; a

d�1

); where 1 > a

1

> a

2

> � � � > a

d�1

� �1; and a

i

6= 0

for all i:

In this section, we prove that all such zonotopes are coherent if at most

one generating vector has multiplicity r > 1; and argue that this is a complete

classi�cation of coherent d-zonotopes in this class for d = 3:

Theorem 6.1 Suppose Z = Z(V ) is a d-zonotope such that V consists of

d + 2 vectors in general position. Then Z is coherent if at most one of

the generating vectors appears with multiplicity r > 1: If Z satis�es this

condition, then the tilings of Z are enumerated by

2(d+ r + 1)!

(d+ 1)!

Furthermore, if d = 3; then this condition is both necessary and su�cient to

characterize when Z is coherent.

Proof: Again, since the elements of V are in general position, it makes
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no di�erence which vector appears with multiplicity. We choose to have

(1; a

1

; a

2

; : : : ; a

d�1

) appear with multiplicity. Then V is:

V =

r

z }| {

0

B

B

B

B

B

@

1 0 0 � � � 0

0 1 0 � � � 0

0 0 1 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 � � � 1

�

�

�

�

�

�

�

�

�

�

�

1 1 1 � � � 1

1 a

1

a

1

� � � a

1

1 a

2

a

2

� � � a

2

.

.

.

.

.

.

.

.

. � � �

.

.

.

1 a

d�1

a

d�1

� � � a

d�1

1

C

C

C

C

C

A

the dual vector con�guration may be represented by the (r+1)� (r+ d+1)

matrix:

V

�

=

0

B

B

B

B

B

@

1 1 1 � � � 1

1 a

1

a

2

� � � a

d�1

.

.

.

.

.

.

.

.

. � � �

.

.

.

.

.

.

.

.

.

.

.

. � � �

.

.

.

1 a

1

a

2

� � � a

d�1

�

�

�

�

�

�

�

�

�

�

�

I

r+1

1

C

C

C

C

A

and the discriminantal arrangementD(V ) is the (r+d+1)�(1+r(d+1)+

�

r

2

�

)

matrix

D(V ) =

�

X j B

0

j B

1

j B

a

1

j B

a

2

j � � � j B

a

d�1

j A

0

r�1

�

where X denotes the minimal dependence among vectors in the frame, B

x

is the (r + d + 1) � r matrix whose columns are all possible products (1 �

x; a

1

� x; a

2

� x; : : : ; a

d�1

� x; x)� �e

i

for 1 � i � r; and A

0

r�1

denotes the

Cartesian product of 0 2 R

d+1

with the braid arrangement A

r�1

:

Let X

x

denote a cocircuit in B

x

for x 2 f0; 1; a

1

; : : : ; a

d�1

g; and in partic-

ular, let X

x;j

denote the unique cocircuit in B

x

with nonzero entry in position

d+ j + 1; so that 1 � j � r: Let e

p

� e

q

denote the appropriate cocircuit in

A

0

r�1

: For the moment, assume 1 > a

1

> a

2

> � � � > a

d�1

> 0: The following

is a complete list of rank 2 contractions:
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R

0

= f(e

p

� e

m

) _ (e

p

� e

q

) _ (e

m

� e

q

) j p; q;m 2 [d+ 2; d+ r + 1]g

R

1

= fX

1;j

_X

a

1

;j

_X

a

2

;j

_ � � � _X

a

d�1

;j

_X

0;j

_X j 1 � j � rg

R

2

= f(e

p

�e

q

)_X

x;q

_X

x;p

j x 2 f0; 1; a

1

; : : : ; a

d�1

g and p; q 2 [d+2; d+r+1]g:

In the cases where some a

i

are negative, a similar collection of rank 2

contractions arises. As before, any localization �; when restricted to the rank

2 contractions in R

0

; induces a linear order on the �nal r coordinates. Thus

we again restrict attention to those localizations which have �(e

p

�e

q

) = + for

all cocircuits corresponding to vectors in A

0

r�1

; and multiply the �nal count

by r!: The linear order imposed on the coordinates by the rank 2 contractions

in R

0

; together with the collection R

2

; implies �(X

x;i

) � �(X

x;j

) if and only

if i < j; within each B

x

: Furthermore, assume �(X) = +: This requires

doubling the �nal count.

The rank 2 contractions in R

1

induce an order relation

�(X

1;j

) � �(X

a

1

;j

) � �(X

a

2

;j

) � � � � �(X

a

d�1

;j

) � �(X

0;j

)

among cocircuits in distinct blocks with the same nonzero entry in the �nal

r coordinates. Thus all information about � may be completely speci�ed

by a (d + 1) � r tableau L with rows indexed by 1; a

1

; a

2

; : : : ; a

d�1

; 0 and

columns indexed by 1; 2; : : : ; r: Entry L

x;j

is �(X

x;j

): The conditions from the

collectionsR

1

and R

2

imply that the entries of L must weakly increase along

rows and down columns (see Figure 30, in which shaded boxes correspond to

cocircuits X with �(X) = �). Thus the number of localizations � is given by

the number of such arrays, which is

�

r+d+1

r

�

: When this number is multiplied

by 2r! to allow for the possibility that �(X) = � and for other orderings of
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1

a

1

a

2

0

1 2 3 4 5

� � �

r

L =

Figure 30: The tableau of cocircuit signatures for d = 3; 1 > a

1

> a

2

> 0

the �nal r coordinates, we obtain the tiling count given in the statement of

the theorem.

To count the number of coherent tilings, we will show that D(V ) is free

by showing that it is supersolvable. A d-arrangement A of rank r is super-

solvable if it is possible to de�ne an ordered partition � = (�

1

; : : : ; �

r

) of its

hyperplanes such that the subarrangement A

r�1

= [

r�1

k=1

�

k

is supersolvable

of rank r�1 and the intersection of any two hyperplanes in �

r

is contained in

some hyperplane in A

r�1

: The sequence A = A

r

� A

r�1

� � � � � A

0

= ; is

called an M-chain. Supersolvable arrangements are a proper subclass of free

arrangements. Stanley [Sta1] showed that for a supersolvable arrangement

A with � = (�

1

; : : : ; �

r

); the roots of �(A; t) are given by fj�

i

jg: Thus we

may compute the number of coherent tilings of Z by exhibiting an M -chain

for D(V ):

Lemma 6.2 Let Z = Z(V ) be a d-zonotope such that V consists of d + 2

vectors in general position, and V is such that exactly one vector occurs with

multiplicity r � 1; and all other vectors occur with multiplicity 1. Then D(V )

is supersolvable with exponents

f1; d+ 1; d+ 2; : : : ; r + dg:
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Proof: After some row reduction, the discriminantal arrangement D(V )

may be written as the (r + 1)� (1 + r(d+ 1) +

�

r

2

�

) matrix

D(V ) �

�

e

1

j C

0

j C

1

j C

a

1

j C

a

2

j � � � j C

a

d�1

j A

0

r�1

�

where e

1

is the standard basis vector (1; 0; : : : ; 0) 2 R

r+1

; C

x

is the set of all

possible products (x) � �e

i

with e

i

2 R

r

; and here A

0

r�1

is identical to the

matrixA

0

r�1

given above, with the �rst d rows truncated. For the presentation

of theM -chain, we will view all column vectors of the above matrix as sums of

standard basis vectors in R

r+1

; and identify each hyperplane with its de�ning

normal vector.

The reader may verify that the following is an M -chain for the above

matrix:

�

1

= fe

1

g

�

2

= fe

2

; e

1

� e

2

; a

1

e

1

� e

2

; a

2

e

1

� e

2

; : : : ; a

d�1

e

1

� e

2

g

�

3

= fe

3

; e

2

� e

3

; e

1

� e

3

; a

1

e

1

� e

3

; : : : ; a

d�1

e

1

� e

3

; g

�

4

= fe

4

; e

2

� e

4

; e

3

� e

4

; e

1

� e

4

; a

1

e

1

� e

4

; : : : ; a

d�1

e

1

� e

4

g

.

.

.

�

k

= fe

k

; e

2

� e

k

; e

3

� e

k

; : : : ; e

k�1

� e

k

; e

1

� e

k

; a

1

e

1

� e

k

; : : : ; a

d�1

e

1

� e

k

g

.

.

.

�

r+1

= fe

r+1

; e

2

� e

r+1

; e

3

� e

r+1

; : : : ; e

r

� e

r+1

; e

1

� e

r+1

g

[ fa

1

e

1

� e

r+1

; : : : ; a

d�1

e

1

� e

r+1

g

This completes the proof of the lemma. �

By Stanley's result, the roots of �(D(V ); t) are f1; d+1; d+2; : : : ; r+dg;

and so D(V ) has

2(r + d+ 1)!

(d+ 1)!
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chambers.

All that remains is to demonstrate that Z = Z(V ) has an incoherent tiling

when d = 3 and exactly two of the generating vectors for Z have multiplicity

two or greater. We know of no elegant proof of this fact. However, this is

a su�ciently small obstruction that sets of tilings and coherent tilings may

be computed using symbolic manipulation packages like MAPLE and GAP

(code available from the author upon request). When d = 3 and exactly two

vectors have multiplicity two, Z has 632 total tilings. The total number of

coherent tilings is either 616, 620 or 624, depending on the choice of values

for the parameters a

1

and a

2

; but is always less than 632. By Lemma 5.4,

this completes the proof. �

6.3 Five vectors in R

3

containing a single 3-point line

Theorem 6.3 Let Z = Z(V ) be a 3-zonotope such that the arrangement

A(V ) is projectively equivalent to the projectivized picture given in Figure

31. Then Z is coherent if and only if at most two of the generating vectors

have multiplicities r; s > 1; and these vectors with multiplicity correspond

to one of the pairs f(1; 3); (1; 5); (2; 3); (2; 5); (3; 4); (4; 5)g: If Z satis�es this

condition, then the tilings of Z are enumerated by

2(r + s+ 1)!(r + s+ 2)!

(s+ 2)!(r + 2)!

The reason for the apparent asymmetry between hyperplanes 3, 4 and 5

is that hyperplanes 3 and 5 \separate" hyperplane 4 from the intersection

of hyperplanes 1 and 2. More precisely, let H

i

denote the i

th

hyperplane for

i = 1; : : : 5; and let l denote the intersection of H

1

and H

2

: Then any path

(point set homeomorphic to the unit interval) originating at l and terminating

at H

4

must also contain a point in either H

3

or H

5

:

71



1 2

3

4

5

Figure 31: Five vectors in R

3

with a single three-point line

Proof: Any arrangement in this class may be realized by the frame

together with the vector (a; 1; 1); where a 6= 0; 1; and so the arrangement in

Figure 31 corresponds to

V = ((0; 0; 1); (0; 1; 0); (1; 0; 0); (1; 1; 1); (a; 1; 1)):

For the rest of this section, we assume a < 1: The proof when a > 1 is similar

(but be careful! When a > 1; H

4

and H

5

switch position). By symmetry, it

is clear that there are two cases: where vectors 2 and 5 have multiplicity, and

where vectors 4 and 5 have multiplicity. We present the proof of the second

case; the proof of the �rst case is similar.

As before, we begin by computing D(V ) and V

�

: The vector (1; 1; 1)

occurs with multiplicity r and the vector (a; 1; 1) occurs with multiplicity s:

Then D(V ) is given by the (r + s+ 3)� [rs+ (1=2)(r + s)(r + s+ 1)] block

matrix

D(V ) =

0

@

B

1

B

2

B

3

B

4

0 0

I

r

0 I

r

aI

r

A

r�1

0

0 �I

s

�

�

I

s

�

�

I

s

0 A

s�1

1

A
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where

B

1

=

0

@

�1 � � � �1

�1 � � � �1

�1 � � � �1

1

A

B

2

=

0

@

a � � � a

1 � � � 1

1 � � � 1

1

A

B

3

=

0

@

a� 1 � � � a� 1

0 � � � 0

0 � � � 0

1

A

B

4

=

0

@

0 � � � 0

1� a � � � 1� a

1� a � � � 1� a

1

A

with the necessary row lengths, A

r�1

and A

s�1

are the matrices for the braid

arrangements of rank r�1 and s�1; respectively, and the block pairs I

r

��I

s

and aI

r

� �I

s

denote all possible Cartesian products of basis vectors e

i

or

ae

i

2 R

r

with basis vectors �e

j

2 R

s

; respectively.

The matrix V

�

is given by

V

�

=

r

8

>

>

>

<

>

>

>

:

s

8

>

<

>

:

0

B

B

B

B

B

B

B

B

B

@

1 1 1

1 1 1

.

.

.

.

.

.

.

.

.

1 1 1

a 1 1

.

.

.

.

.

.

.

.

.

a 1 1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

I

r+s

1

C

C

C

C

C

C

C

C

A

:

The columns of D(V ) may be partitioned into six blocks in the obvious

way, from left to right. Let C

�

i

denote the collection of cocircuits arising

from the columns in the i

th

block, and let X

i

j;k

denote the cocircuit in the i

th

block with nonzero entries in positions j + 3 and k + r + 3; so that j 2 [1; r]

and k 2 [1; s]: Cocircuits in C

�

1

and C

�

2

will be denoted by X

1

j

= X

1

j;0

and

X

2

k

= X

2

0;k

; respectively.

The reader can verify that the following is a complete list of rank 2 con-

tractions.

R

0

= f(e

p

�e

m

)_(e

p

�e

q

)_(e

m

�e

q

) j p; q;m 2 [4; r+3] or p; q;m 2 [r+4; r+s+3]g
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R

i

1

= fX

i

j;p

_X

i

j;q

_(e

p

�e

q

) j p; q 2 [r+4; r+s+3] and j 2 [0; r]g for i = 2; 3; 4

R

i

2

= fX

i

q;k

_X

i

p;k

_ (e

p

� e

q

) j p; q 2 [4; r + 3] and k 2 [0; s]g for i = 1; 3; 4

R

3

= fX

1

j

_X

3

j;k

_X

4

j;k

_X

2

k

g if 1 > a > 0:

A similar collection R

3

arises for other possible values of a:

As usual, when a localization � is restricted to R

0

; it corresponds to a

permutation in S

r

� S

s

: We will assume the ordering to be �(e

p

� e

q

) = +

for p < q; and multiply the �nal count by r!s!: This ordering, together with

the collections R

i

1

and R

i

2

; implies

�(X

i

j;p

) � �(X

i

j;q

) for r + 4 � p < q � r + s+ 3; and

�(X

i

p;k

) � �(X

i

q;k

) for 4 � p < q � r + 3:

The signatures of cocircuits in C

�

3

and C

�

4

may each be entered into an

r � s tableau of the kind given in Figure 32, with certain restrictions. The

collections R

3

1

;R

3

2

;R

4

1

; and R

4

2

dictate that the signatures for each of C

�

3

and

C

�

4

be weakly increasing along rows and weakly decreasing down columns. In

Figure 32, the path running from the upper left corner to the lower right

delineates the boundary between signatures + and signatures �:

In particular, the above inequalities hold for the cocircuits in C

�

1

and C

�

2

:

Let � 2 [0; r] be the greatest index such that �(X

1

�

) = + (if �(X

1

j

) = �

for all j; then � = 0), and let � 2 [0; s] be the greatest index such that

�(X

2

�

) = �: The signatures which have � < j � r and 1 � k � � must all be

�; by consideration of the collection R

3

; and similarly the signatures which

have 1 � j � � and � < k � s must be +:

The pair of tableaux for C

�

3

and C

�

4

account for all of the information in the

rank 2 contractions except for the relationship between �(X

3

j;k

) and �(X

4

j;k

)

given by the collection R

3

: When 1 � j � � and 1 � k � �; the inequality

+ = �(X

1

j

) � �(X

3

j;k

) � �(X

4

j;k

) � �(X

2

k

) = �
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1

2

.

.

.

�

.

.

.

r

1 2 : : :

�

: : : s

All

signatures

+

All signatures

�

Figure 32: The tableau of cocircuit signatures for cocircuits in C

�

3

or C

�

4

holds, so in particular �(X

3

j;k

) � �(X

4

j;k

): Similarly when � < j � r and � <

k � s; the collectionR

3

implies �(X

3

j;k

) � �(X

4

j;k

): Thus all information given

by the rank 2 contractions may be encoded by superimposing the tableaux for

C

�

3

and C

�

4

upon one another and enumerating the resulting pairs of paths in

an r�s tableaux. That is, we must enumerate all r�s tableaux which contain

a pair of monotonically decreasing paths from upper left to lower right, paths

which may be concurrent with one another at points, but cross only once at

a distinguished root de�ned by � and � (see Figure 33). Elnitsky [El] has

enumerated the collection of such paths in his study of (r; s; 1; 1) octagons.

There are

2(r + s+ 1)!(r + s+ 2)!

r!s!(r + 2)!(s+ 2)!

such tableaux. Multiplying this count by the factor r!s! yields the count

given in the statement of the theorem.

To count the coherent tilings, the reader can verify that D(V ) is projec-

tively equivalent to the (r + s)� [rs+ (1=2)(r + s)(r + s+ 1)] block matrix
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C

�

4

C

�

3

1

2

.

.

.

�

.

.

.

r

1 2 : : :

�

: : : s

All

signatures

+

All signatures

�

Figure 33: A tableau which encodes all information from the rank 2 contrac-

tions

D(V ) �

�

A

r+s�1

jI

r+s

jaI

r

��I

s

�

;

where, as above, the notation aI

r

��I

s

denotes all possible Cartesian prod-

ucts of elements ae

i

2 R

r

with elements �e

j

2 R

s

(note that all columns

of D(V ) are distinct since a 6= 0; 1). This is a TG-graphic arrangement cor-

responding to a complete bipartite transitive gain graph on vertex sets K

r

;

K

s

(see chapter 7). We demonstrate in chapter 7 (Corollary 7.6) that this

arrangement is free with exponents

f1; r + 2; r + 3; : : : ; r + s; s+ 2; s+ 3; : : : ; r + s; r + s+ 1g;

and so consequently, Z has the number of coherent tilings given in the state-

ment of the theorem.

It only remains to demonstrate that Z has an incoherent tiling in those

cases for which a pair of vectors with multiplicity r; s > 1 is not one of the
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pairs listed in the statement of the theorem. Again, we know of no elegant

proof of this fact. However, by the use of the programs MAPLE and GAP,

it is possible to show that if vectors 1 and 2 occur with multiplicity two,

and all other vectors singleton, then Z has 400 total tilings, 384 of which are

coherent. If the multiplicities are placed on any other forbidden pair, then

Z has 304 total tilings, either 296 or 300 of which are coherent, depending

on the choice of value for a: This fact, together with Lemma 5.4 �nishes the

proof. �

It is interesting to note that when the multiset of multiplicities is f2; 2; 1; 1; 1g

and the vectors with multiplicity two are any forbidden pair other than f1; 2g;

then D(V ) is free with exponents f1; 4; 4; 5g (unless a = 1=2). This is one of

the few known counterexamples to the tempting but false conjecture that if

D(V ) is free, then Z is coherent.

6.4 Five vectors in R

3

containing two 3-point lines

Finally, we consider the case in which the elements of V lie in two intersect-

ing planes, P

1

; P

2

; with a single vector v; called the common vector, common

to each. The remaining vectors, the frame vectors may naturally be parti-

tioned into pairs, called partnerships, such that the two vectors v

1

; v

2

of a

partnership de�ne a rank 2 space containing the common vector. For exam-

ple, in Figure 34, 4 is the common vector, while the frame vectors 1; 2; 3; 5

form the partnerships f1; 2g and f3; 5g: This will complete the classi�cation

of coherent 3-zonotopes Z = Z(V ) with jV j � 5:

Theorem 6.4 Let Z = Z(V ) be a 3-zonotope such that V is as given in

Figure 34.

Z is coherent if and only if at most two frame vectors v

1

; v

2

have multi-

plicity r; s � 3; some frame vector occurs with multiplicity one, and
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1

2

3 4 5

Figure 34: Five vectors lying on two three-point lines in R

3

1) If v

1

; v

2

form a partnership, then all other vectors, including the com-

mon vector, must have multiplicity 1. In this case, the tilings of Z are

enumerated by

2(r + s)!(r + s+ 1)!

(r + 1)!(s+ 1)!

2) If v

1

; v

2

do not form a partnership, then the common vector may occur

with arbitrary multiplicity t; and the multiplicities of the remaining

frame vectors must be at most 2 and 1.

a) In the case that the multiplicities are fr; s; t; 1; 1g; the tilings of Z

are enumerated by

(r + s+ t)!

b) In the case that the multiplicities are fr; s; t; 2; 1g; such that the

vector v

3

with multiplicity two forms a partnership with the vector

v

1

with multiplicity r; the tilings of Z are enumerated by

2(r + s+ t)!(r + s+ t+ 1)!

(r + 1)!(s+ t+ 1)!

78



Proof: One advantage to the restricted position of the vectors in this

case is that there is, up to projective equivalence, only one such vector con-

�guration in R

3

: Thus for the remainder of this section, set

V = ((0; 0; 1); (1; 1; 1); (1; 0; 0); (1; 1; 0); (0; 1; 0)):

For case (1) of the theorem, let (0; 0; 1) occur with multiplicity r and

(1; 1; 1) occur with multiplicity s: Then D(V ) is given by the (r + s + 3) �

[2rs+

�

r

2

�

+

�

s

2

�

+ 1] block matrix:

D(V ) =

0

@

I

r

I

r

A

r�1

0 0

�

�

I

s

�

�

I

s

0 A

s�1

0

B

1

B

2

0 0 B

3

1

A

where

B

1

=

0

@

0 � � � 0

1 � � � 1

1 � � � 1

1

A

B

2

=

0

@

1 � � � 1

0 � � � 0

0 � � � 0

1

A

B

3

=

0

@

�1

1

1

1

A

and all other entries are as described previously. The dual con�guration

Z(V

�

) is given by

Z(V

�

) =

0

B

B

B

B

B

B

B

B

B

@

1

.

.

.

1

1

.

.

.

1

0

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

I

r+s

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0 0

.

.

.

.

.

.

0 0

1 1

.

.

.

.

.

.

1 1

1 1

1

C

C

C

C

C

C

C

C

C

A

9

>

=

>

;

r � 1

9

>

=

>

;

s

As before, partition the cocircuits arising from D(V ) into collections C

�

1

;

C

�

2

; C

�

3

C

�

4

from left to right, and denote the cocircuit corresponding to the

rightmost vector by X: As before, let X

i

j;k

denote the cocircuit corresponding

to the vector in C

�

i

with nonzero entries in positions j and r+ k; where i = 1
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or 2; 1 � j � r and 1 � k � s: The reader may verify that the following is a

complete list of rank 2 contractions:

R

0

= f(e

p

�e

m

)_(e

p

�e

q

)_(e

m

�e

q

)jp; q;m 2 [1; r] or p; q;m 2 [r+1; r+s]g

R

i

1

= fX

i

q;k

_X

i

p;k

_ (e

p

� e

q

)j1 � p < q � r; k 2 [1; s]g for i = 1; 2

R

i

2

= fX

i

j;p

_X

i

j;q

_ (e

p

� e

q

)jj 2 [1; r]; 1 � p < q � sg for i = 1; 2

R

3

= fX

2

j;k

_X

1

j;k

_Xjj 2 [1; r]; k 2 [1; s]g

As usual, the elements ofR

0

correspond to an element in S

r

�S

s

: So again

we enumerate all signatures � which �x �(e

p

� e

q

) = + for 1 � p < q � r

and for r + 1 � p < q � r + s; and also �(X) = +: This contributes a factor

of 2r!s! to the �nal count.

As in the last section, the cocircuit signatures for cocircuits in C

�

1

and C

�

2

may be entered in r� s tableaux. The collections R

i

1

require that the entries

in each tableau must weakly decrease down columns, and the collections R

i

2

require that the entries in each tableau must weakly increase along rows.

Thus the cocircuit signatures for the collections C

�

i

; for i = 1; 2 are encoded

by a tableau like the one in Figure 35.

1

.

.

.

r

1 : : : s

�

+

Figure 35: The tableau of cocircuit signatures for cocircuits in C

�

1

or C

�

2
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All that remains is to take into account the elements of R

4

: Since �(X) =

+; it follows that �(X

2

j;k

) � �(X

1

j;k

) for all pairs fj; kg: Thus by superimpos-

ing the tableau for C

�

1

on the tableau for C

�

2

; all information given by the rank

2 contractions may be encoded in a single r � s array containing two non-

crossing paths from upper left to lower right. The collection of all possible

such non-crossing paths is given by

(r + s+ 1)!(r + s)!

r!s!(r + 1)!(s+ 1)!

(see [Sta3], Section 2.7). Multiplying by 2r!s! gives the count in the statement

of the theorem.

As for the coherent tilings, D(V ) is again projectively equivalent to the

Athanasiadis-type arrangement corresponding to a complete bipartite tran-

sitive gain graph on vertex sets K

r

and K

s

: Thus again by Corollary 7.10,

D(V ) is free with exponents

f0; 1; r + 1; r + 2; : : : ; r + s� 1; s+ 1; s+ 2; : : : ; r + sg:

Finally, Theorem 5.1 completes the proof of case (1).

To prove case (2), assume the vector (1; 0; 0) appears with multiplicity r;

(1; 1; 1) appears with multiplicity s; (1; 1; 0) appears with multiplicity t; and

(0; 1; 0) appears with multiplicity two. Then D(V ) is the (r + s + t + 3) �

(

�

r

2

�

+

�

s

2

�

+

�

t

2

�

+ 2rt+ 2rs+ st + 1) block matrix

D(V ) =

0

B

B

@

A

r�1

0 0 I

r

I

r

I

r

I

r

0 0

0 A

s�1

0 0 0 �

�

I

s

�

�

I

s

I

s

0

0 0 A

t�1

�

�

I

t

�

�

I

t

0 0 �

�

I

t

0

0 0 0 B

1

B

2

B

3

B

4

B

5

B

6

1

C

C

A

where
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B

1

=

0

@

0 � � � 0

1 � � � 1

0 � � � 0

1

A

B

2

=

0

@

0 � � � 0

0 � � � 0

1 � � � 1

1

A

B

3

=

0

@

1 � � � 1

1 � � � 1

0 � � � 0

1

A

B

4

=

0

@

1 � � � 1

0 � � � 0

1 � � � 1

1

A

B

5

=

0

@

�1 � � � �1

0 � � � 0

0 � � � 0

1

A

B

6

=

0

@

0

1

�1

1

A

and all other entries are as described above.

The dual con�guration Z(V

�

) is given by

Z(V

�

) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

.

.

.

1

1

.

.

.

1

1

.

.

.

1

0

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

I

r+s+t�1

0 � � � 0

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0 0 0

.

.

.

.

.

.

.

.

.

0 0 0

1 1 0

.

.

.

.

.

.

.

.

.

1 1 0

0 1 0

.

.

.

.

.

.

.

.

.

0 1 0

0 1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

9

>

=

>

;

r � 1

9

>

=

>

;

s

9

>

=

>

;

t

As above, the cocircuits arising from the column vectors of D(V ) may

be partitioned in a natural way into eight classes C

�

1

; : : : ; C

�

8

; with the �nal,

single cocircuit denoted by X: Let X

i

j;k;l

denote the cocircuit vector in C

�

i

with nonzero entries in positions j; r + k; and r + s + l; with j 2 [1; r];

k 2 [1; s] and l 2 [1; t]: If some cocircuit has a zero entry in all positions

in the interval [1; r]; for example, then set j = 0: So all elements of C

�

7

are

written in the form X

7

0;k;l

; and similarly for other C

�

i

: The reader may verify

that the following is a complete list of rank 2 contractions:

R

0

= f(e

p

�e

m

)_(e

p

�e

q

)_(e

m

�e

q

)jp; q;m 2 [1; r] or [r+1; r+s] or [r+s+1; r+s+t]g
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R

i

1

= fX

i

q;k;l

_X

i

p;k;l

_ (e

p

� e

q

) j p; q 2 [1; r]g for i = 4; 5; 6; 7

R

i

2

= fX

i

j;k;p

_X

i

j;k;q

_ (e

p

� e

q

) j p; q 2 [r + s+ 1; r+ s+ t]g for i = 4; 5; 8

R

i

3

= fX

i

j;p;0

_X

i

j;q;0

_ (e

p

� e

q

) j p; q 2 [r + 1; r + s]g for i = 6; 7

R

4

= fX

8

0;q;l

_X

8

0;p;l

_ (e

p

� e

q

) j p; q 2 [r + 1; r + s]g

R

i

5

= fX

i+1

j;k;l

_X

i

j;k;l

_Xg for i = 4; 6

R

i

6

= fX

i

j;k;0

_X

i�2

j;0;l

_X

8

0;k;l

g for i = 6; 7

Again, the elements of R

0

de�ne a permutation in S

r

� S

s

� S

t

: So we

will enumerate those localizations � which �x �(e

p

� e

q

) = + for p < q and

�(X) = +; and multiply this count by 2r!s!t!:

Once again, the cocircuit signatures for the cocircuits in the remaining

classes C

�

4

; : : : ; C

�

8

may be entered in tableaux with entries weakly increasing

along rows and weakly decreasing down columns. Furthermore, as in earlier

cases, certain similar cocircuit classes can be paired o�, with their tableaux

superimposed upon one another. The reader can verify that the collection of

tableaux in Figure 36 encodes the information from all rank 2 contractions

except R

6

6

and R

7

6

:

If L

r;t

; L

r;s

and L

s;t

encoded the information from all rank 2 contractions,

then the �nal count would be obtained by simply enumerating all possible

tableaux of each type and taking the product. However, the information

from the rank 2 contractions R

6

6

and R

7

6

still has to be taken into account.

It turns out that these rank 2 contractions may be used to de�ne a bijection

between the collection of localizations and a somewhat simpler collection of

tableaux.
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C

�

4

C

�

6

L

r;t

L

r;s

C

�

5

C

�

7

1

.

.

.

r

1 : : : t

1

.

.

.

r

1 : : : s

�

+

�

+

1

.

.

.

s

1 : : : t

C

�

8

L

s;t

�

+

Figure 36: The tableaux of cocircuit signatures for Z
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Each of the tableaux L

r;t

and L

r;s

may be thought of as an collection of

columns, ordered from left to right. Speci�cally, one may index each column

h of each tableau with an ordered pair (j

1

; j

2

); where j

1

is the greatest row

index of a cell in h lying above the dotted path, and j

2

is the greatest row

index of a cell lying above the solid path. One may then partially order a

collection of columns of the same size by the product partial order on pairs

(j

1

; j

2

); namely, (j

1

; j

2

) � (j

0

1

; j

0

2

) if and only if j

1

� j

0

1

and j

2

� j

0

2

: It is

clear that a tableau L contains two noncrossing, monotonically decreasing

paths if and only if the columns of L de�ne some linear extension of this

partial order. Let the columns of L

r;t

be indexed by (�

1

; �

2

; : : : ; �

t

); and the

columns of L

r;s

by (�

1

; �

2

; : : : ; �

s

):

The single path P in L

s;t

de�nes an interweaving of the columns �

a

2 L

r;t

and �

b

2 L

r;s

in the following manner. For each unit segment z of P; give z

the label �

l

; if z is a horizontal segment adjacent to cells with column index

l; and give z the label �

k

if s a vertical segment adjacent to cells with row

index k: By following P from the upper left corner of L

s;t

to the lower right

and reading o� the labels, one obtains an interweaving ! of the �

a

with the

�

b

which preserves the original linear order for each collection of columns.

Lemma 6.5 Let � be a cocircuit signature on the cocircuits of Z(V

�

) respect-

ing the restrictions imposed by R

0

;R

i

1

;R

i

2

;R

i

3

;R

4

and R

i

5

; and furthermore

satisfying �(e

p

� e

q

) = + for all possible p; q and �(X) = +:

Let L

r;t

; L

r;s

and L

s;t

be as described above. The cocircuit signature �

respects the rank 2 contractions of R

i

6

(and thus is a localization) if and

only if the interweaving ! orders the columns of L

r;t

and L

r;s

in a manner

consistent with the partial order on columns.

Proof: Suppose the path P in L

s;t

is such that one encounters the ad-

jacent labels �

l

and �

k

in order in a walk from the upper left corner to the
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lower right corner (they form a \northeast corner" in P ). In particular, this

implies that �(X

8

0;k;l

) = �: The interweaving ! implies �

l

� �

k

:

Suppose instead that either �

l

> �

k

or the two are incomparable under

the partial order on columns. This will happen if and only if the following

statement:

There exists an index j such that �(X

i�2

j;0;l

) > �(X

i

j;k;0

)

holds for at least one of i = 6 or i = 7: However, if � respects R

i

6

; then

this statement implies that �(X

8

0;k;l

) = +; which is a contradiction. This

demonstrates the necessity of the condition in the lemma.

To demonstrate su�ciency, suppose there exist indices j; k; l such that

(�) �(X

i

j;k;0

) = � �(X

i�2

j;0;l

) = + �(X

8

0;k;l

) = �

for i = 6 or i = 7: If the cell (k; l) of L

s;t

is bordered by P above and on the

right, then ! implies �

l

� �

k

: If the columns �

l

and �

k

satisfy this relation,

then necessarily �(X

i�2

j;0;l

) � �(X

i

j;k;0

) for all j and i = 6; 7: But this already

contradicts the assumption (*).

If the cell (k; l) is not bordered by P in the manner described above,

then it is still possible to move from the cell (k; l) to a cell (k

0

; l

0

) which is

bordered by P and satis�es a condition like the one given in (�): Since �

satis�es all rank 2 contractions except R

i

6

for i = 6; 7; moving from (k; l) in

the direction of decreasing k and increasing l preserves the signatures in (�):

Then the condition (�) for the cell (k

0

; l

0

) yields a contradiction also. This

demonstrates that if � is not a localization, then the ordering ! will not agree

with the natural ordering on the columns of L

r;t

and L

r;s

:�

As a result of Lemma 6.5, we now see that for a given localization �;

all necessary information from the rank 2 contractions may be encoded by
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taking a collection of tableaux as given in Figure 36 and interweaving the

columns of L

r;t

in L

r;s

to obtain a single r � (s+ t) tableau L such that the

columns of L de�ne a linear extension of the partial order on columns. In

particular, L must contain two noncrossing, monotonically decreasing paths.

An example of this interweaving is given in Figure 37.

�

1

�

2

�

3

�

1

�

2

�

3

�

4

L

s;t

=

! = �

1

; �

1

; �

2

; �

2

; �

3

; �

3

; �

4

L

r;t

=

�

1

�

2

�

3

�

4

L

r;s

=

�

1

�

2

�

3

L =

�

1

�

1

�

2

�

2

�

3

�

3

�

4

Figure 37: The rank 2 contractions R

i

6

de�ne an interweaving of the columns

of L

r;t

and L

r;s

Thus the total number of localizations is counted by multiplying the num-

ber of r� (s+ t) tableaux L containing two noncrossing paths by the number
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of ways of partitioning the columns of such a tableau L into sets of sizes s

and t: Again using the result of Stanley [Sta3], Section 2.7, this number is

(r + s+ t)!(r + s+ t + 1)!

r!(r + 1)!(s+ t)!(s+ t+ 1)!

�

(s+ t)!

s!t!

:

Multiplying this last number by 2r!s!t! gives the result in the statement of

the theorem.

To enumerate the coherent tilings of Z; the D(V ) corresponds to an

Athanasiadis-type complete bipartite transitive gain graph on vertex sets

K

r

and K

s+t

: Again, D(V ) is free with exponents

f0; 1; r + 1; r + 2; : : : ; r + s+ t� 1; s+ t + 1; s+ t + 2; : : : ; r + s+ tg;

by Corollary 7.10, and so Z has the desired number of coherent tilings as

well.

Next consider the case where two frame vectors have multiplicity one,

and the other multiplicities are r; s; t as in the statement of the theorem. By

Lemma 5.4, we already know that Z is coherent. Here D(V ) may be written

in block form as

D(V ) =

0

B

B

@

A

r�1

0 0 I

r

I

r

0

0 A

s�1

0 �

�

I

s

0 I

s

0 0 A

t�1

0 �

�

I

t

�

�

I

t

0 0 0 B

1

B

2

B

3

1

C

C

A

where

B

1

=

�

1 � � � 1

1 � � � 1

�

B

2

=

�

0 � � � 0

1 � � � 1

�

B

3

=

�

�1 � � � �1

0 � � � 0

�

:

The reader can verify that this arrangement is projectively equivalent to

the braid arrangement A

r+s+t�1

; which is known to be free with exponents

f1; 2; : : : ; r + s+ t� 1g:
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Finally, we must show that Z is incoherent in the case that the multiplic-

ities on its vectors do not satisfy the hypotheses of the theorem. Again, we

resort to brute force computation in GAP to show that this is the case.

First, if the vector multiplicities are f3; 3; 2; 1; 1g where the vectors with

multiplicity three form a partnership, then Z has 211680 tilings, 210816 of

which are coherent. This gives the necessity of the condition in part (1) of

the theorem. Furthermore, if all frame vectors have multiplicity two and the

common vector has multiplicity one, then Z has 25408 tilings, 23136 of which

are coherent. This demonstrates the necessity of the condition that one frame

vector have multiplicity one. Together, these conditions show the necessity

of the statement that at most two frame vectors may have multiplicities of

three or greater. This completes the proof of the theorem. �
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7 TG-graphic Arrangements

7.1 Introduction

A long-standing question in the theory of hyperplane arrangements has been

that of determining su�cient conditions under which the characteristic poly-

nomial �(A; t) of a hyperplane arrangement A factors with positive integer

roots. Several such conditions have been discovered | speci�cally, when

A is free, factored, inductively factored, or supersolvable (See [Sta1], [Te],

[JP],[OT]).

One particularly fruitful method for characterizing these properties for

large classes of arrangements is to consider families of arrangements which

correspond to (directed or undirected) graphs in a natural way (see [Za2]). It

turns out that some of the discriminantal arrangements arising in the zono-

tope classi�cation correspond in a natural way to a particular class of gain-

graphic arrangements which we call transitive-gain-graphic arrangements, or

TG-graphic arrangements for short. They correspond to a subclass of gain

graphs which we call simple gain graphs. In this chapter we provide a com-

plete gain-graphic characterization of those simple gain-graphic arrangements

which are free. This will complete the proof of Theorem 6.3. It turns out that

it takes very little additional work to determine that the simple gain-graphic

arrangements which are factored, inductively factored and supersolvable all

coincide, and to give a gain-graphic characterization of this subclass as well.

7.2 De�nitions and terminology

The de�nitions here follow Zaslavsky's terminology (see [Za3]). A graph is a

pair � = �(N;E); where N = N(�) is a collection of nodes, and E = E(�) is

a set of edges, together with an endpoint mapping �

�

; which assigns to each
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edge e a multiset of at most two nodes, not necessarily distinct. Note that

this de�nition allows for the possibility that � may have multiple edges or

loops. Here we restrict our attention to those graphs � with j�

�

(e)j = 2 for

all e 2 E: Zaslavsky calls such a graph an ordinary graph. An edge is a link

if it has two distinct endpoints, and a loop if it has two coincident endpoints.

Let X � N: Then the induced subgraph � : X of � is � : X = (X;E : X);

where

E : X = fe 2 E j �

�

(e) � Xg:

A gain graph (also known as a voltage graph) � = (�; �) consists of an

underlying graph k�k = � = (N;E) and a gain mapping � : E ! G from the

set of edges into a gain group G: In our case, set G = Z under addition. Also,

some links and all loops e of � will be directed, and it is understood that

�(e

�1

) = �(e)

�1

for directed edges e; where e

�1

means e with its direction

reversed. Figure 38 shows an example of a gain graph. A labeled edge

e : v ! w carries the label �(e); for unlabeled edges e; it is understood that

�(e) = 1:

x

1

x

2

x

3

x

4

x

5

3

5

Figure 38: A (loopless) gain graph

Let k be a �eld and a 2 k an element of in�nite multiplicative order.

Given a gain graph � on n nodes, the arrangement of hyperplanes A(�) in
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k

n

associated to � is de�ned by

A(�) := fx

i

= 0g

n

i=1

[fa

k

x

i

= x

j

j there exists e : x

i

! x

j

2 E with �(e) = kg

where a 2 k; a 6= 0; 1: All gain graphs we will consider implicitly contain all

possible loops e : x

i

! x

i

with �(e) = 1 and all possible links e : x

i

! x

j

with �(e) = 0; although these edges will be suppressed in the diagrams.

In particular, each A(�) � k

n

will contain the braid arrangement of type

A

n�1

: Also, since each loop corresponds to the hyperplane ax

i

= x

i

; A(�)

will always contain the Boolean arrangement of type n: For example, the gain

graph in Figure 38 corresponds to the arrangement of hyperplanes

fx

i

= 0g

5

i=1

[ fx

i

= x

j

g

1�i<j�5

[fax

1

= x

2

; ax

2

= x

3

; ax

3

= x

1

; a

3

x

4

= x

3

; a

5

x

4

= x

5

g:

For the remainder of the paper, we will identify a gain graph with its corre-

sponding arrangement of hyperplanes, saying that � is free or supersolvable if

and only if A(�) is. The principal focus of this section will be arrangements

corresponding to gain graphs with the properties that

� �(e) = 0 or �1 for all edges e:

� For each pair fv

1

; v

2

g of (not necessarily distinct nodes) in X; there is

at most one edge e 2 E with the property that �

�

(e) = fv

1

; v

2

g and

�(e) 6= 0:

If a gain graph � satis�es these conditions, then we call � simple.

One advantage to considering (gain-)graphic arrangements of hyperplanes

is the ease with which one can apply the Localization Theorem of Orlik and

Terao. For an arrangement A; the hyperplanes in the arrangement intersect

in a collection L = L(A) of subspaces of various dimension. The elements

of L may be partially ordered by reverse inclusion, with the ambient vector

space k

n

as the unique minimal element. Orlik and Terao's theorem is
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Theorem 7.1 [OT Theorem 4.37] If A is free then A

Y

is free for all Y 2

L(A); where

A

Y

:= fH 2 AjY � Hg:

The arrangement A

Y

is called the localization of A to the subspace Y:

If �

0

is an induced subgraph of a gain graph � on node set X; then the

arrangement A(�

0

) is simply the localization of A(�) to the subspace of k

n

which has all coordinates x

j

= 0 for x

j

2 X: Thus by considering induced

subgraphs of �; one may use Theorem 7.1 and an obstruction argument to

determine necessary conditions for A(�) to be free.

For an arrangement A and a subspace Y 2 L(A); de�ne the restriction

of A to Y to be

A

Y

:= fH \ Y jH 2 A�A

Y

g:

The sequence of arrangements (A;A

0

;A

00

) is called a triple if there exists a

hyperplane H 2 A such that A

0

= A�H and A

00

= A

H

: Orlik and Terao's

Addition-Deletion Theorem states

Theorem 7.2 [OT Theorem 4.51] Suppose (A;A

0

;A

00

) is a triple. Any two

of the following statements imply the third:

A is free with exponents fb

1

; : : : ; b

l�1

; b

l

g;

A

0

is free with exponents fb

1

; : : : ; b

l�1

; b

l

� 1g;

A

00

is free with exponents fb

1

; : : : ; b

l�1

g:

Once a class of forbidden subgraphs has been determined, an induction

argument together with Theorem 7.2 �nishes the proof that any gain graph

which avoids the forbidden subgraphs is in fact free.
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(i) (ii)

Figure 39: Two nonfree induced subgraphs which are an obstruction to free-

ness

7.3 TG-graphic arrangements

We now determine necessary and su�cient conditions for a simple gain graph

to be free. Terao [Te] showed that if an arrangement of hyperplanes A is free,

then its characteristic polynomial

�(A; t) =

X

Y 2L

�(Y )t

rank(Y )

factors with positive integer roots, where � is the M�obius function for L(A)

with the �rst variable held equal to k

n

: Using the fundamental recursion

([OT], section 2.3)

�(A; t) = �(A

0

; t)� �(A

00

; t)

to compute the characteristic polynomial of the two gain graphs shown in

Figure 39, it follows immediately that neither of the gain graphs in Figure 39

are free. The gain graph (i) has characteristic polynomial (t�1)(t

2

�7t+13);

and the gain graph (ii) has characteristic polynomial (t� 1)(t

2

� 8t+ 18):

It therefore follows that a necessary condition for a simple gain graph

to be free is that it be transitive. A transitive gain graph � satis�es the

property that if e

1

: x ! y 2 � and e

2

: y ! z 2 � with �(e

1

) = �(e

2

) = 1;

then there exists e

3

: x! z 2 � with �(e

3

) = 1:

To continue the characterization of free simple gain graphs requires con-

sideration of a slightly larger family of gain graphs, called augmented transi-
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tive gain graphs. We de�ne an augmented transitive gain graph to be a gain

graph �

�

= (�

�

; �

�

) with distinguished node v

�

such that

a) The gain graph � = (�; �) is a simple transitive gain graph, where �

is the induced subgraph �

�

: N(�

�

) n fv

�

g and � = �

�

j

E(�)

:

b) If e : v

�

! x 2 �

�

with �

�

(e) = k and e

0

: x ! y 2 � with �(e

0

) = 1;

then there exists e

00

: v

�

! y 2 �

�

with �

�

(e

00

) = k:

c) For all x 2 �; if there exists e : v

�

! x 2 �

�

with �

�

(e) = k; then there

exists a link e

0

: v

�

! x 2 �

�

with �

�

(e

0

) = k � 1; for all k � 1:

d) There exists some q 2 Z such that for each x 2 �; the maximum value

of �

�

(e) occuring for any link e : v

�

! x is either q or q � 1:

We make the further requirement that no two edges e

1

6= e

2

have the property

that (�

�

(e

1

); �(e

1

)) = (�

�

(e

2

); �(e

2

)):

An example of an augmented transitive gain graph is given in Figure 40.

It is convenient to use the label [q] to indicate that for vertices v

�

and x; and

for every j 2 [0; q]; there exists a link e : v

�

! x with �

�

(e) = j:

If �

�

is an augmented transitive gain graph, then for x 2 �; de�ne a

x

to

be the number of links of �

�

directed toward x: For example, in Figure 40,

a

x

= q + 2: The collection fa

x

g

x2�

is a multiset of cardinality n: Let fa

i

g

n

i=1

be any ordering of the multiset such that a

i

� a

j

for i < j: The following

theorem completely characterizes the free augmented transitive gain graphs.

Theorem 7.3 Let �

�

= (�

�

; �

�

) be an augmented transitive gain graph.

Then A(�

�

) is free if and only if �

�

does not contain an induced subgraph

of the kind shown in Figure 41 for any positive integer k: Furthermore, the

exponents of A(�

�

) are

f1g [ fa

i

+ i + 1g

n

i=1

:
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v

�

[q]

[q � 1]

[q]

[q]

[q � 1]

x

Figure 40: An augmented transitive gain graph

[k � 1]

[k]

[k � 1]

Figure 41: The induced subgraph which is the obstruction to freeness of an

augmented transitive gain graph

Note that any simple gain graph � on n vertices may be considered an

augmented transitive gain graph on n�1 vertices (since � is transitive, there

must exist some node v

�

with indegree zero). Thus the theorem immediately

implies

Corollary 7.4 Let � = (�; �) be a simple transitive gain graph on n vertices

such that the node v

�

has indegree zero. For nodes x 6= v

�

; de�ne a

x

and the

ordering fa

i

g

n�1

i=1

as above. Then A(�) is free if and only if � does not contain

an induced subgraph of the kind shown in Figure 41 for k = 1: In this case,
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the exponents of A(�) are

f1g [ fa

i

+ i+ 1g

n�1

i=1

:

Proof (of Theorem 7.3): To prove the necessity of the theorem, let H be

the augmented transitive gain graph shown in Figure 41. One may use the

fundamental recursion for the characteristic polynomial to compute

�(A(H); t) = (t� 1)(t� (k + 3))

�

(t� (k + 2))

2

� (t� (k + 2)) + 1

�

Setting X = t � (k + 2); it is clear that �(A(H); t) does not factor over Z;

and so A(H) is not free. By Theorem 7.1, no free augmented transitive gain

graph �

�

contains H as an induced subgraph.

To show su�ciency, we �rst need a lemma.

Lemma 7.5 Suppose � is a simple transitive gain graph which does not

contain a forbidden subgraph. For x 2 �; de�ne

U

x

:= fz 2 � j there exists e : z ! x 2 E(�) with gain 1 g:

Then for any pair x 6= y of elements in �; either U

x

� U

y

or U

y

� U

x

:

Proof: First, note that since the lemma does not consider augmented

transitive gain graphs, all links e have �(e) = 0 or 1: Now suppose x 6= y

are elements of �; and suppose there exist z

1

; z

2

2 � such that z

1

2 U

x

\ U

c

y

and z

2

2 U

c

x

\ U

y

: Then the induced subgraph on x; y; z

1

; z

2

is a forbidden

subgraph. �

We now proceed to show the su�ciency of the characterization in the

theorem. Let �

�

be an augmented transitive gain graph, and let q be the

maximum value of �

�

for any edge e: De�ne K to be the induced subgraph

on the node set fv

j

j there exists e : v

�

! v

j

2 E(�

�

) with gain qg: Lemma
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7.5 guarantees the existence of a node x

�

2 K such that U

x

�

� U

y

for all

y 2 K: Note that in particular, this implies that there is no link e : y ! x

�

of gain 1 in E(�) for any y 2 K:

The proof proceeds by use of induction, applying the Addition-Deletion

theorem to the link e : v

�

! x

�

with �(e) = q: It is �rst necessary to verify

that the gain graphs �

0

; �

00

satisfy the hypotheses of the theorem, where �

0

is the gain graph which results from the deletion of the link e and �

00

is the

gain graph which corresponds to restriction to the link e:

Deletion: Clearly removal of e does not a�ect the underlying simple gain

graph �: Also, since �(e) = q is maximal, and since there is no link e : y ! x

�

of gain 1 in E(�) for y 2 K; the deletion �

0

is again an augmented transi-

tive gain graph. All that remains is to check that �

0

avoids the forbidden

subgraph.

Removal of e can yield a forbidden subgraph in two possible ways:

[q � 1]

[q]

[q � 1]

[q � 1]

[q]

[q � 1]

(iii)

x

�

x

2

x

1

v

�

(iv)

x

2

x

�

x

1

v

�

If (iii) occurs as an induced subgraph of �

0

; then �

�

was not an augmented

transitive gain graph since e 2 �

�

and e : x

�

! x

2

of gain 1 is in �

�

but e

0

: v

�

! x

2

of gain q is not in �

�

: If (iv) occurs, then x

1

2 K; but

x

2

2 U

x

�

\ U

c

x

1

; contradicting the hypothesis U

x

�

� U

y

for all y 2 K:

Therefore we may conclude that �

0

satis�es the hypotheses of the theo-

rem.
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Restriction: To determine the result of restriction to the link e; we

partition the node set of � into three classes:

Class 1) The set of nodes x =2 K;

Class 2) The set of nodes x 2 K such that no edge e : x

�

! x with

�(e) = 1 exists,

Class 3) The set of nodes x 2 K such that e : x

�

! x with �(e) = 1

does exist.

To verify that �

00

is an augmented transitive gain graph, note that the

underlying simple transitive gain graph of �

00

is the induced subgraph ��x

�

of �: For the links incident to v

�

; it is a routine matter to verify that the

maximum gain for a link from v

�

to any node in Class 1 increases from q�1 to

q; the maximum gain for a link from v

�

to any node in Class 2 remains q; and

the maximum gain for a link from v

�

to any node in Class 3 increases from

q to q + 1: Since the de�nition of augmented transitive gain graph precludes

the possibility of an link e : x! x

0

2 E(�) of gain 1 with x in Class 3 and x

0

in Classes 1 or 2, �

00

is an augmented transitive gain graph. Moreover, since

the underlying simple graph � � x

�

does not contain a forbidden subgraph

by hypothesis, any forbidden subgraph in �

00

must involve v

�

:

[q]

[q + 1]

[q]

x

1

x

2

x

3

v

�

Figure 42: The possible obstruction to freeness for �

00
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What properties do the nodes x

1

; x

2

; and x

3

have in �

�

? Clearly x

3

2 K;

since the link e

3

: v

�

! x

3

with �(e

3

) = q + 1 exists in �

00

: If both x

1

=2 K

and x

2

=2 K; then the induced subgraph on nodes v

�

; x

1

; x

2

; x

3

in �

�

is of the

forbidden type. Thus it must be the case that at least one of x

1

; x

2

is in K;

and since �

�

is an augmented transitive gain graph and e

0

: x

1

! x

2

with

�(e

0

) = 1 is in �

�

; it follows that x

2

2 K:

However, it follows from Lemma 7.5 that either U

x

3

� U

x

2

or U

x

2

� U

x

3

in �

�

: If the former case holds, note that since e

3

2 �

00

it follows that x

�

2

U

x

3

� U

x

2

: But if x

�

2 U

x

2

; then e : v

�

! x

2

with �(e) = q + 1 is in �

00

and

there is no obstruction. If the latter case holds, then x

1

2 U

x

3

and again there

is no obstruction. So �

00

is again an augmented transitive gain graph which

avoids the forbidden induced subgraph, and thus satis�es the hypotheses of

the theorem.

So suppose fa

i

g

n

i=1

is the ordered multiset described on page 95, and

suppose a

j

is the indegree of x

�

: There is no loss of generality in assuming

that a

j

> a

j+1

; or that a

j

= a

n

in the case that a

j

is a minimum. Therefore

by induction, A(�

0

) is free with exponents

f1; a

1

+ 2; : : : ; a

j�1

+ (j � 1) + 1; a

j

+ j; a

j+1

+ (j + 1) + 1; : : : ; a

n

+ n+ 1g:

To determine the exponents ofA(�

00

); consider how restriction on e a�ects

the indegree of each node of �

�

: If x is in Class 1, it is clear that a

x

is replaced

by a

x

+ 1; with the addition of the an link e : v

�

! x with gain q: If x is in

Class 2, it is clear that a

x

is unchanged. Finally, if x is in Class 3, then the

link e : v

�

! x with gain q + 1 replaces the link e

0

: x

�

! x with gain 1, and

so a

x

remains unchanged.

Before we can write down the exponents of �

00

; however, we must consider

how the new a

x

are related to a

j

: Since restriction does not change a

x

for x

in Classes 2 or 3, it is enough to consider only x in Class 1.
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If x is in Class 1, so x =2 K; then in particular, no link e : x

�

! x with

gain 1 is in �

�

; for otherwise �

�

violates condition (b) in the de�nition of an

augmented transitive gain graph. Suppose U

x

�

is properly contained in U

x

:

Then there can be no link e : x ! x

�

with gain 1 in �

�

; for the existence

of such a link implies that U

x

is properly contained in U

x

�

: Furthermore,

there must exist some z 2 �

�

such that e

0

: z ! x with gain 1 is in �

�

but no e

00

: z ! x

�

with gain 1 is in �

�

: Since e

0

2 �

�

but x =2 K; then

z =2 K: But then the induced subgraph of �

�

on vertices v

�

; x

�

; x; z is the

forbidden subgraph shown in Figure 41. Consequently, for x in Class 1, the

containment U

x

� U

x

�

must hold. Furthermore, since x

�

2 K but x =2 K;

one may conclude that a

j

> a

x

: Therefore replacing a

x

with a

x

+ 1 upon

restriction does not alter the order on the multiset fa

i

g:

So A(�

00

) is free with exponents

f1; a

1

+ 2; : : : ; a

j�1

+ (j � 1) + 1; (a

j+1

+ 1) + j + 1; (a

j+2

+ 1) + (j + 1) + 1;

: : : ; (a

n

+ 1) + (n� 1) + 1g

or equivalently

f1; a

1

+2; : : : ; a

j�1

+(j�1)+1; a

j+1

+(j+1)+1; a

j+2

+(j+2)+1; : : : ; a

n

+n+1g

Thus by the Addition-Deletion theorem, A(�

�

) is free with exponents

f1; a

1

+2; : : : ; a

j�1

+(j� 1)+ 1; a

j

+ j +1; a

j+1

+(j +1)+ 1; : : : a

n

+n+1g:

This completes the proof of Theorem 7.3 and thus proves Corollary 7.4. �

A further corollary, which follows from Corollary 7.4, is

Corollary 7.6 Let � be a complete, transitive m-partite simple gain graph,

with parts K

1

; : : : ; K

m

and part sizes b

i

= jK

i

j for all 1 � i � m: Then A(�)

is free with exponents

f1; [2 +

^

S

1

; S]; [2 +

^

S

2

; 1 + S]; � � � ; [2 +

^

S

m

; 1 + S]g
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where

S =

m

X

j=1

b

j

and

^

S

i

=

X

j 6=i

b

j

and [p; q] denotes the interval of integers fp; p+ 1; p+ 2; : : : ; qg:

Finally, we characterize those simple gain-graphic arrangements which

are factored, inductively factored and supersolvable. Since an arrangement

in any of these classes has a characteristic polynomial with integer roots,

the graphs in Figure 39 and Figure 41 are obstructions in these classes as

well. Note that in particular, this implies that if a simple gain-graphic ar-

rangement is factored, it is also free (supersolvable and inductively factored

arrangements are free in general). Furthermore, consider the two gain graphs

pictured in Figure 43.

(v) (vi) (vii)

Figure 43: Three obstructions to supersolvability

By Corollary 7.4 the arrangement corresponding to (v) is free with expo-

nents f1; 4; 4g; the arrangement corresponding to (vi) is free with exponents

f1; 4; 4; 4g; and the arrangement corresponding to (vii) is free with expo-

nents f1; 4; 4; 5g: However, it is easy to check by trial and error that none of

these arrangements have an M -chain (see page 69) corresponding to these

exponents, and so none is supersolvable. Stanley [Sta2] showed that induced

subgraphs act as obstructions to supersolvability just as they do for freeness.
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Theorem 7.7 Let A be supersolvable. Then A

X

and A

X

are each supersolv-

able for all X 2 L(A):

A similar result holds for factored arrangements (see [JP]). Since the

TG-graphic arrangements corresponding to the graphs in Figure 43 are not

factored either (which also implies that they are not supersolvable), no fac-

tored, inductively factored or supersolvable simple transitive gain graph may

contain any of the graphs shown in Figure 43 as an induced subgraph. The

necessity of the characterization in the following theorem is immediate:

Theorem 7.8 The classes of factored, inductively factored and supersolvable

simple gain-graphic arrangements coincide. These classes are characterized

by those free simple gain-graphic arrangements whose gain graph � has the

property that all links e with gain 1 are directed toward a \star" node v:

Proof: To show su�ciency, let (v

1

; v

2

; : : : ; v

m

) be an arbitrary ordering

of those nodes distinct from v: Identify each hyperplane in A(�) with the

corresponding edge in � A moment's thought reveals that the following is an

M -chain for A(�):

fThose edges e such that v

m

2 �

�

(e)g;

fThose edges e such that v

m�1

2 �

�

(e)g;

.

.

.

fThose edges e such that v

1

2 �

�

(e)g;

fThe loop at vg:

Since all supersolvable arrangements are also inductively factored and

factored, this completes the proof. �

Remarkably, Christos Athanasiadis [Ath] uses the same class of gain

graphs to prove the freeness of a di�erent class of hyperplane arrangements, a
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class c

^

A

n;E

which interpolates between the cone over the braid arrangement

cA

n�1

and the cone over the Shi arrangement c

^

A

n

in R

n+1

: The cone over

the Shi arrangement is de�ned by

x

n+1

= 0

x

i

� x

j

= 0 for 1 � i < j � n;

(�) x

i

� x

j

� x

n+1

= 0 for 1 � i < j � n:

By choosing a particular subset of the hyperplanes listed in (�);Athanasiadis

de�nes the class c

^

A

n;E

of arrangements, where E corresponds to the edge

set of a particular gain graph. In particular, given a simple gain graph � on

n nodes with gain group Z; and edge set E with no loops, de�ne c

^

A

n;E

by

x

n+1

= 0

x

i

� x

j

= 0 for 1 � i < j � n;

x

i

� x

j

� x

n+1

= 0 for e : x

j

! x

i

2 E; �(e) = 1

Using techniques similar to those above, Athanasiadis shows ([Ath], The-

orem 4.1)

Theorem 7.9 If � is a simple gain graph with � = (N;E); where jN j =

n; then c

^

A

n;E

is free if and only if � is transitive and does not contain a

forbidden subgraph of the kind in Figure 41 for k = 1: In this case, c

^

A

n;E

has exponents

f0; 1g [ fa

i

+ ig

n�1

i=1

where fa

i

g

n�1

i=1

are as described above.

As above, the following corollary is immediate:
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Corollary 7.10 Let � be a complete, transitive m-partite simple gain graph

on n vertices with link set E; parts K

1

; : : : ; K

m

and part sizes b

i

= jK

i

j for

all 1 � i � m: Then c

^

A

n;E

is free with exponents

f0; 1; [1 +

^

S

1

; S � 1]; [1 +

^

S

2

; S]; � � � ; [1 +

^

S

m

; S]g

where

S =

m

X

j=1

b

j

and

^

S

i

=

X

j 6=i

b

j

:

The characterization of supersolvability for these arrangements also uses

the same gain graphs as in Theorem 7.8. Interestingly, Athanasiadis �rst

proved a statement about freeness for the a�ne arrangement

^

A

n;E

corre-

sponding to a gain graph �; obtained by restricting the arrangement c

^

A

n;E

to the hyperplane x

n+1

= 1: In this case, the exponents are f0g[fa

i

+ ig

n�1

i=1

:

In particular, they are obtained by subtracting 1 from each exponent for

the TG-graphic arrangement corresponding to the same gain graph �: It is

unclear whether any more meaningful relationship exists between these two

classes of arrangements.
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