Name:
Signature:

Math 5651. Lecture 001 (V. Reiner) Final Exam Friday, December 17, 2010

This is a 120 minute exam. No books, notes, calculators, cell phones or other electronic devices are allowed. There are a total of 100 points. To get full credit for a problem you must show the details of your work. Answers unsupported by an argument will get little credit. Do all of your calculations on this test paper.
Problem Score

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
Total: \qquad

Problem 1. (15 points total; 5 points each) Recall that a Poisson random variable X with mean λ is one that has probability function $f(k)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}$, and that its variance is also λ.

Assume that traffic accidents occur at a certain intersection according to a Poisson process that averages one accident every 10 days.
a. (5 points) What is the probability of no accidents in a given year?
b. (5 points) What is the probability of at least two accidents in a given year. Express your answer without any summation symbols.
c. (5 points) What is the standard deviation in the number of accidents that occur in a given year?

Problem 2. (15 points total)
a. (8 points) Let X be the sum of 100 rolls of a fair 6 -sided die having $1,2,3,4,5,6$ on its sides. Compute the central limit theorem's approximation to the probability that this sum is at least 400. Express your answer in terms of the (cumulative) distribution function $\Phi(x)$ for a standard normal random variable.
(Hint: $1+2+3+4+5+6=21$ and $1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}=91$.)
b. (7 points) If X_{1}, X_{2}, X_{3} are independent and identically distributed normal random variables of mean 10 and standard deviation 1 , what is the probability that $2 X_{1}+4 X_{2}>5 X_{3}$? Again, express your answer in terms of $\Phi(x)$.

Problem 3. (15 points total; 5 points each) Recall that an exponentially distributed random variable X with parameter β has probability density function $f(x)=\beta e^{-\beta x}$ for $x>0$ and 0 for $x \leq 0$.
a. (5 points) Compute the median for such a random variable, as a function of the parameter β.
b. (5 points) Assume $X_{1}, X_{2}, \ldots, X_{n}$ are independent and identically distributed random variables having such an exponential distribution with parameter β, and let $Y=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Compute the cumulative distribution function $F(y)=\operatorname{Pr}(Y \leq y)$ explicitly, as a function of y, n, β.
c. (5 points) Compute the probability density function $f(y)$ for Y explicitly, as a function of y, n, β.

Problem 4. (15 points) Recall that a random variable X having a gamma distribution with parameters α, β has moment generating function $\psi_{X}(t)=\left(\frac{\beta}{\beta-t}\right)^{\alpha}$.
a. (7 points) Compute the third moment $\mu_{3}(X)=E\left(X^{3}\right)$ for such a random variable, as a function of α, β.
b. (8 points) Recall that the $\alpha=1$ special case of the gamma distribution is the exponential distribution with parameter β.

Prove that if $X_{1}, X_{2}, \ldots, X_{n}$ are independent and identically distributed with exponential distribution of parameter β, then their sample mean $\bar{X}_{n}=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)$ has a gamma distribution with some parameters $\bar{\alpha}, \bar{\beta}$. Say exactly what these parameters $\bar{\alpha}, \bar{\beta}$ are explicitly in terms of n and β.

Problem 5. (15 points) Prove the following statement, called the Robbins Lemma, for a Poisson ${ }^{1}$ random variable X of mean λ : any random variable of the form $f(X)$ for a function f will satisfy

$$
E(X \cdot f(X-1))=\lambda \cdot E f(X)
$$

(NOTE: During the exam, there was a typo that omitted the factor of X on the left side, making the statement entirely wrong, and so I did not grade this problem. Unfortunately, during the exam when people were pointing out that something had to be wrong, I didn't notice what the real problem was, and I tried to fix it incorrectly. It was only after the exam that we discovered the real problem.)

[^0]Problem 6. (20 points total) Recall that a random variable X having a beta distribution with parameters α, β has probability density function $f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$ for $x \in(0,1)$, and 0 for $x \notin(0,1)$

Your friend pulls a coin from her pocket, and claims that it was produced in a factory where the heads probability $P=p$ of the coins produced follows a beta distribution with parameters $\alpha=\beta=2$. She tells you that she intends to flip the coin 100 times and count the number of heads as a random variable X.
a. (4 points) What is the marginal p.d.f. $f_{1}(p)$ for P ?
b. (4 points) What is the conditional p.d.f $g_{2}(x \mid p)$ for X given $P=p$?
c. (4 points) What is the joint p.d.f. $f(p, x)$ for (P, X) ?
d. (8 points) She then flips the coin 100 times, and heads appears 20 times total. Show that the conditional density $g_{1}(p \mid X=20)$ for the heads probability P given that $X=20$ again has a beta distribution for some parameters $\hat{\alpha}, \hat{\beta}$, and explicitly identify these parameters.

Brief solutions

1.The number of accidents X per year should be Poisson with mean $\lambda=\frac{1}{10} \cdot 365=36.5$. Hence one has...
(a) $\operatorname{Pr}(X=0)=e^{36.5 \frac{36.5^{0}}{0!}}=e^{36.5}$.
(b)

$$
\begin{aligned}
\operatorname{Pr}(X \geq 2) & =1-\operatorname{Pr}(X=0)-\operatorname{Pr}(X=1) \\
& =1-e^{-36.5} \frac{36.5^{0}}{0!}-e^{-36.5} \frac{36.5^{1}}{1!} \\
& =1-e^{-36.5} 37.5
\end{aligned}
$$

(c) X has variance also $\lambda=36.5$, so its standard deviation is $\sqrt{36.5}$.
2.(a) $X=X_{1}+\cdots+X_{100}$ where the X_{i} are i.i.d. with

$$
\begin{aligned}
E X_{i} & =\frac{1}{6}(1+2+3+4+5+6)=\frac{21}{6}=\frac{7}{2} \\
E\left(X_{i}^{2}\right) & =\frac{1}{6}\left(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}\right)=\frac{91}{6} \\
\operatorname{Var}\left(X_{i}\right) & =E\left(X_{i}^{2}\right)-\left(E X_{i}\right)^{2}=\frac{91}{6}-\left(\frac{7}{2}\right)^{2}=\frac{35}{12}
\end{aligned}
$$

Hence

$$
E X=100 \cdot \frac{7}{2}=350
$$

and

$$
\operatorname{Var}(X)=100 \cdot \frac{35}{12}, \quad \sigma(X)=10 \sqrt{\frac{35}{12}}=5 \sqrt{\frac{35}{3}}
$$

The central limit theorem says X is approximately normally distributed, with the above mean and standard deviation, so

$$
\begin{aligned}
\operatorname{Pr}(X \geq 400) & =\operatorname{Pr}(X-350 \geq 50) \\
& =\operatorname{Pr}\left(\frac{X-350}{5 \sqrt{\frac{35}{3}}} \geq \frac{50}{5 \sqrt{\frac{35}{3}}}\right) \\
& \approx \operatorname{Pr}\left(Z \geq \frac{50}{5 \sqrt{\frac{35}{3}}}\right) \text { for a standard normal } Z \\
& =1-\operatorname{Pr}\left(Z \leq \frac{10}{\sqrt{\frac{35}{3}}}\right) \\
& =1-\Phi\left(\frac{10}{\sqrt{\frac{35}{3}}}\right)
\end{aligned}
$$

(b) $\operatorname{Pr}\left(2 X_{1}+4 X_{2}>5 X_{3}\right)=\operatorname{Pr}\left(2 X_{1}+4 X_{2}-5 X_{3}>0\right)$. So define

$$
Y=2 X_{1}+4 X_{2}-5 X_{3}
$$

which is normal with

$$
\begin{gathered}
E Y=2 \cdot 10+4 \cdot 10-5 \cdot 10=10 \\
\operatorname{Var}(Y)=2^{2} \cdot 1+4^{2} \cdot 1+(-5)^{2} \cdot 1=45, \quad \sigma(Y)=\sqrt{45}=3 \sqrt{5}
\end{gathered}
$$

Hence

$$
\begin{aligned}
\operatorname{Pr}(Y \geq 0) & =\operatorname{Pr}(Y-10 \geq-10) \\
& =\operatorname{Pr}\left(\frac{Y-10}{3 \sqrt{5}} \geq \frac{-10}{3 \sqrt{5}}\right) \\
& =\operatorname{Pr}\left(Z \geq \frac{-10}{3 \sqrt{5}}\right) \text { for a standard normal } Z \\
& =1-\operatorname{Pr}\left(Z \leq \frac{-10}{3 \sqrt{5}}\right) \\
& =1-\Phi\left(\frac{-10}{3 \sqrt{5}}\right)\left(=\Phi\left(\frac{10}{3 \sqrt{5}}\right)\right)
\end{aligned}
$$

3. (a) We need to solve for m in

$$
\begin{aligned}
\frac{1}{2} & =\int_{-\infty}^{m} \beta e^{-\beta x} d x=\left[e^{-\beta x}\right]_{-\infty}^{m}=1-e^{-\beta m} \\
\text { so one has } \quad \frac{1}{2} & =e^{-\beta m}
\end{aligned}
$$

$$
\begin{aligned}
\log \left(\frac{1}{2}\right) & =-\beta m \\
m & =\frac{\log \left(\frac{1}{2}\right)}{-\beta}=\frac{\log 2}{\beta}
\end{aligned}
$$

(b)

$$
\begin{aligned}
F(y) & =\operatorname{Pr}(Y \leq y) \\
& =\operatorname{Pr}\left(X_{1} \leq y \text { and } \cdots \text { and } X_{n} \leq y\right) \\
& =\operatorname{Pr}\left(X_{1} \leq y\right) \cdots \operatorname{Pr}\left(X_{n} \leq y\right)
\end{aligned}
$$

and

$$
\operatorname{Pr}\left(X_{i} \leq y\right)=\int_{-\infty}^{y} \beta e^{-\beta x} d x=1-e^{-\beta y}
$$

for $y \geq 0$ and 0 otherwise, so

$$
F(y)=\left(1-e^{-\beta y}\right)^{n}
$$

for $y \geq 0$ and 0 otherwise.
(c) Y has pdf

$$
f(y)=\frac{d}{d y} F(y)=n\left(1-e^{-\beta y}\right)^{n}\left(\beta e^{-\beta y}\right)
$$

4.

$$
\begin{aligned}
\psi_{X}(t) & =\left(\frac{\beta}{\beta-t}\right)^{\alpha}=\beta^{\alpha} \cdot(\beta-t)^{-\alpha} \\
\psi_{X}^{\prime}(t) & =\alpha \beta^{\alpha} \cdot(\beta-t)^{-\alpha-1} \\
\psi_{X}^{\prime \prime}(t) & =\alpha(\alpha+1) \beta^{\alpha} \cdot(\beta-t)^{-\alpha-2} \\
\psi_{X}^{\prime \prime \prime}(t) & =\alpha(\alpha+1)(\alpha+2) \beta^{\alpha} \cdot(\beta-t)^{-\alpha-3} \\
\text { so that } \mu_{3}(X) & =E\left(X^{3}\right)=\psi_{X}^{\prime \prime \prime}(t=0) \\
& =\alpha(\alpha+1)(\alpha+2) \beta^{\alpha}(\beta)^{-\alpha-3} \\
& =\frac{\alpha(\alpha+1)(\alpha+2)}{\beta^{3}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\Psi_{\bar{X}_{n}}(t) & =\Psi_{\frac{1}{n} X_{1}+\cdots+X_{n}}(t) \\
& =\Psi_{X_{1}+\cdots+X_{n}}\left(\frac{t}{n}\right) \\
& =\Psi_{X_{1}}\left(\frac{t}{n}\right) \cdots \Psi_{X_{n}}\left(\frac{t}{n}\right) \\
& =\left(\frac{\beta}{\beta-\frac{t}{n}}\right)^{n} \\
& =\left(\frac{n \beta}{n \beta-t}\right)^{n}
\end{aligned}
$$

which is the moment generating function for a gamma distribution with parameters $\bar{\alpha}=n$ and $\bar{\beta}=n \beta$.
5. This problem was not graded, but here is the solution to the corrected statement:

$$
\begin{aligned}
E(X f(X-1)) & =\sum_{k=0}^{\infty} k f(k-1) e^{-\lambda} \frac{\lambda^{k}}{k!} \\
& =\sum_{k=1}^{\infty} k f(k-1) e^{-\lambda} \frac{\lambda^{k}}{k!} \quad \text { since the } k=0 \text { term vanishes } \\
& =\sum_{k=1}^{\infty} f(k-1) e^{-\lambda} \frac{\lambda \cdot \lambda^{k-1}}{(k-1)!} \\
& =\lambda \sum_{\ell=0}^{\infty} f(\ell) e^{-\lambda} \frac{\lambda^{\ell}}{\ell!} \quad \text { reindexing } \ell:=k-1 \\
& =\lambda E f(X)
\end{aligned}
$$

6. (a)

$$
f_{1}(p)=\frac{\Gamma(2+2)}{\Gamma(2) \Gamma(2)} p^{2-1}(1-p)^{2-1} f_{1}(p)=\frac{\Gamma(4)}{\Gamma(2) \Gamma(2)} p(1-p)
$$

for p in $(0,1)$, and 0 otherwise.
(b)

$$
g_{2}(x \mid p)=\binom{100}{x} p^{x}(1-p)^{100-x}
$$

for $x=0,1,2, \ldots, 100$.
(c)

$$
\begin{aligned}
f(p, x) & =g_{2}(x \mid p) f_{1}(p) \\
& =\frac{\Gamma(4)}{\Gamma(2) \Gamma(2)} p(1-p) \cdot\binom{100}{x} p^{x}(1-p)^{100-x} \\
& =\frac{\Gamma(4)}{\Gamma(2) \Gamma(2)}\binom{100}{x} p^{x+1}(1-p)^{101-x}
\end{aligned}
$$

for p in $(0,1)$ and $x=0,1,2, \ldots, 100$, and 0 otherwise.
(d)

$$
\begin{aligned}
g_{1}(p \mid x=20) & =\frac{f(p, x)}{f_{2}(20)} \\
& =\frac{\Gamma(4)}{\Gamma(2) \Gamma(2) f_{2}(20)}\binom{100}{20} p^{21}(1-p)^{81}
\end{aligned}
$$

for p in $(0,1)$. Since this conditional density is proportional to a beta distribution having parameters $\hat{\alpha}=22$ and $\hat{\beta}=82$, it must actually equal such a distribution, that is, the constant in front must normalize it properly.

[^0]: ${ }^{1}$... whose definition was recalled in Problem 1.

