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Math 5651. Lecture 001 (V. Reiner) Final Exam
Friday, December 17, 2010

This is a 120 minute exam. No books, notes, calculators, cell phones
or other electronic devices are allowed. There are a total of 100 points.
To get full credit for a problem you must show the details of your work.
Answers unsupported by an argument will get little credit. Do all of
your calculations on this test paper.
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Problem 1. (15 points total; 5 points each) Recall that a Poisson
random variable X with mean λ is one that has probability function

f(k) = e−λ · λk

k!
, and that its variance is also λ.

Assume that traffic accidents occur at a certain intersection accord-
ing to a Poisson process that averages one accident every 10 days.

a. (5 points) What is the probability of no accidents in a given year?

b. (5 points) What is the probability of at least two accidents in a given
year. Express your answer without any summation symbols.

c. (5 points) What is the standard deviation in the number of accidents
that occur in a given year?
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Problem 2. (15 points total)

a. (8 points) Let X be the sum of 100 rolls of a fair 6-sided die having
1, 2, 3, 4, 5, 6 on its sides. Compute the central limit theorem’s approx-
imation to the probability that this sum is at least 400. Express your
answer in terms of the (cumulative) distribution function Φ(x) for a
standard normal random variable.
(Hint: 1 + 2 + 3 + 4 + 5 + 6 = 21 and 12 + 22 + 32 + 42 + 52 + 62 = 91.)

b. (7 points) If X1, X2, X3 are independent and identically distributed
normal random variables of mean 10 and standard deviation 1, what
is the probability that 2X1 + 4X2 > 5X3? Again, express your answer
in terms of Φ(x).
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Problem 3. (15 points total; 5 points each) Recall that an exponen-
tially distributed random variable X with parameter β has probability
density function f(x) = βe−βx for x > 0 and 0 for x ≤ 0.

a. (5 points) Compute the median for such a random variable, as a func-
tion of the parameter β.

b. (5 points) Assume X1, X2, . . . , Xn are independent and identically
distributed random variables having such an exponential distribution
with parameter β, and let Y = max{X1, . . . , Xn}. Compute the cumu-
lative distribution function F (y) = Pr(Y ≤ y) explicitly, as a function
of y, n, β.

c. (5 points) Compute the probability density function f(y) for Y ex-
plicitly, as a function of y, n, β.
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Problem 4. (15 points) Recall that a random variable X having a
gamma distribution with parameters α, β has moment generating func-

tion ψX(t) =
(

β
β−t

)α
.

a. (7 points) Compute the third moment µ3(X) = E(X3) for such a
random variable, as a function of α, β.

b. (8 points) Recall that the α = 1 special case of the gamma distribu-
tion is the exponential distribution with parameter β.

Prove that if X1, X2, . . . , Xn are independent and identically dis-
tributed with exponential distribution of parameter β, then their sam-
ple mean Xn = 1

n
(X1 + · · ·+Xn) has a gamma distribution with some

parameters α, β. Say exactly what these parameters α, β are explicitly
in terms of n and β.
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Problem 5. (15 points) Prove the following statement, called the
Robbins Lemma, for a Poisson1 random variable X of mean λ: any
random variable of the form f(X) for a function f will satisfy

E (X · f(X − 1)) = λ · E f(X).

(NOTE: During the exam, there was a typo that omitted the factor of
X on the left side, making the statement entirely wrong, and so I did
not grade this problem. Unfortunately, during the exam when people
were pointing out that something had to be wrong, I didn’t notice what
the real problem was, and I tried to fix it incorrectly. It was only after
the exam that we discovered the real problem.)

1... whose definition was recalled in Problem 1.
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Problem 6. (20 points total) Recall that a random variable X having
a beta distribution with parameters α, β has probability density func-

tion f(x) = Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1 for x ∈ (0, 1), and 0 for x 6∈ (0, 1)

Your friend pulls a coin from her pocket, and claims that it was
produced in a factory where the heads probability P = p of the coins
produced follows a beta distribution with parameters α = β = 2. She
tells you that she intends to flip the coin 100 times and count the num-
ber of heads as a random variable X.

a. (4 points) What is the marginal p.d.f. f1(p) for P?

b. (4 points) What is the conditional p.d.f g2(x|p) for X given P = p?

c. (4 points) What is the joint p.d.f. f(p, x) for (P,X)?
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d. (8 points) She then flips the coin 100 times, and heads appears 20
times total. Show that the conditional density g1(p|X = 20) for the
heads probability P given that X = 20 again has a beta distribution
for some parameters α̂, β̂, and explicitly identify these parameters.
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Brief solutions

1.The number of accidents X per year should be Poisson with mean
λ = 1

10
· 365 = 36.5. Hence one has...

(a) Pr(X = 0) = e36.5 36.50

0!
= e36.5.

(b)

Pr(X ≥ 2) = 1− Pr(X = 0)− Pr(X = 1)

= 1− e−36.5 36.50

0!
− e−36.5 36.51

1!
= 1− e−36.537.5

(c) X has variance also λ = 36.5, so its standard deviation is
√

36.5.

2.(a) X = X1 + · · ·+X100 where the Xi are i.i.d. with

EXi =
1

6
(1 + 2 + 3 + 4 + 5 + 6) =

21

6
=

7

2

E(X2
i ) =

1

6

(
12 + 22 + 32 + 42 + 52 + 62

)
=

91

6

Var(Xi) = E(X2
i )− (EXi)

2 =
91

6
−
(

7

2

)2

=
35

12

Hence

EX = 100 · 7

2
= 350

and

Var(X) = 100 · 35

12
, σ(X) = 10

√
35

12
= 5

√
35

3
.
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The central limit theorem says X is approximately normally dis-
tributed, with the above mean and standard deviation, so

Pr(X ≥ 400) = Pr (X − 350 ≥ 50)

= Pr

X − 350

5
√

35
3

≥ 50

5
√

35
3


≈ Pr

Z ≥ 50

5
√

35
3

 for a standard normal Z

= 1− Pr

Z ≤ 10√
35
3


= 1− Φ

 10√
35
3


(b) Pr(2X1 + 4X2 > 5X3) = Pr(2X1 + 4X2 − 5X3 > 0). So define

Y = 2X1 + 4X2 − 5X3

which is normal with

EY = 2 · 10 + 4 · 10− 5 · 10 = 10

Var(Y ) = 22 · 1 + 42 · 1 + (−5)2 · 1 = 45, σ(Y ) =
√

45 = 3
√

5.

Hence

Pr(Y ≥ 0) = Pr (Y − 10 ≥ −10)

= Pr

(
Y − 10

3
√

5
≥ −10

3
√

5

)
= Pr

(
Z ≥ −10

3
√

5

)
for a standard normal Z

= 1− Pr

(
Z ≤ −10

3
√

5

)
= 1− Φ

(
−10

3
√

5

)(
= Φ

(
10

3
√

5

))
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3. (a) We need to solve for m in

1

2
=

∫ m

−∞
βe−βxdx =

[
e−βx

]m
−∞ = 1− e−βm

so one has
1

2
= e−βm

log

(
1

2

)
= −βm

m =
log
(

1
2

)
−β

=
log 2

β

(b)

F (y) = Pr(Y ≤ y)

= Pr(X1 ≤ y and · · · and Xn ≤ y)

= Pr(X1 ≤ y) · · ·Pr(Xn ≤ y)

and

Pr(Xi ≤ y) =

∫ y

−∞
βe−βxdx = 1− e−βy

for y ≥ 0 and 0 otherwise, so

F (y) =
(
1− e−βy

)n
for y ≥ 0 and 0 otherwise.
(c) Y has pdf

f(y) =
d

dy
F (y) = n

(
1− e−βy

)n
(βe−βy)

4.

ψX(t) =

(
β

β − t

)α
= βα · (β − t)−α

ψ′X(t) = αβα · (β − t)−α−1

ψ′′X(t) = α(α + 1)βα · (β − t)−α−2

ψ′′′X(t) = α(α + 1)(α + 2)βα · (β − t)−α−3

so that µ3(X) = E(X3) = ψ′′′X(t = 0)

= α(α + 1)(α + 2)βα (β)−α−3

=
α(α + 1)(α + 2)

β3
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(b)

ΨXn
(t) = Ψ 1

n
X1+···+Xn

(t)

= ΨX1+···+Xn

(
t

n

)
= ΨX1

(
t

n

)
· · ·ΨXn

(
t

n

)
=

(
β

β − t
n

)n
=

(
nβ

nβ − t

)n
which is the moment generating function for a gamma distribution with
parameters α = n and β = nβ.

5. This problem was not graded, but here is the solution to the cor-
rected statement:

E (Xf(X − 1)) =
∞∑
k=0

kf(k − 1)e−λ
λk

k!

=
∞∑
k=1

kf(k − 1)e−λ
λk

k!
since the k = 0 term vanishes

=
∞∑
k=1

f(k − 1)e−λ
λ · λk−1

(k − 1)!

= λ
∞∑
`=0

f(`)e−λ
λ`

`!
reindexing ` := k − 1

= λEf(X)

6. (a)

f1(p) =
Γ(2 + 2)

Γ(2)Γ(2)
p2−1(1− p)2−1f1(p) =

Γ(4)

Γ(2)Γ(2)
p(1− p)

for p in (0, 1), and 0 otherwise.
(b)

g2(x|p) =

(
100

x

)
px(1− p)100−x
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for x = 0, 1, 2, . . . , 100.
(c)

f(p, x) = g2(x|p)f1(p)

=
Γ(4)

Γ(2)Γ(2)
p(1− p) ·

(
100

x

)
px(1− p)100−x

=
Γ(4)

Γ(2)Γ(2)

(
100

x

)
px+1(1− p)101−x

for p in (0, 1) and x = 0, 1, 2, . . . , 100, and 0 otherwise.
(d)

g1(p|x = 20) =
f(p, x)

f2(20)

=
Γ(4)

Γ(2)Γ(2)f2(20)

(
100

20

)
p21(1− p)81

for p in (0, 1). Since this conditional density is proportional to a beta

distribution having parameters α̂ = 22 and β̂ = 82, it must actually
equal such a distribution, that is, the constant in front must normalize
it properly.


