Name:
Signature:

Math 5651 Lecture 002 (V. Reiner) Midterm Exam II

Thursday, March 31, 2016
This is a 115 minute exam. No books, notes, calculators, cell phones, watches or other electronic devices are allowed. You can leave answers as fractions, with binomial or multinomial coefficients unevaluated.

There are a total of 100 points. To get full credit for a problem you must show the details of your work. Answers unsupported by an argument will get little credit. Do all of your calculations on this test paper.

Problem Score

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad

Total: \qquad

Reminders:

$$
\begin{aligned}
\operatorname{Pr}\left(A_{1} \cup \cdots \cup A_{n}\right) & =\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \operatorname{Pr}\left(A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right) \\
S=\sqcup_{i=1}^{n} B_{i} \Rightarrow \operatorname{Pr}(A) & =\sum_{i=1}^{n} \operatorname{Pr}\left(A \cap B_{i}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(A \mid B_{i}\right) \operatorname{Pr}\left(B_{i}\right) \text { and } \operatorname{Pr}\left(B_{i} \mid A\right)=\operatorname{Pr}\left(A \mid B_{i}\right) \operatorname{Pr}\left(B_{i}\right) / \operatorname{Pr}(A) \\
\text { cdf } F(x) & :=\operatorname{Pr}(X \leq x), \text { while pdf } f(x)=\frac{\partial}{\partial x} F(x) \\
g_{1}(x \mid y) & =f(x, y) / f_{2}(y), \quad g_{2}(y \mid x)=f(x, y) / f_{1}(x) \\
f_{1}(x) & =\int_{y=-\infty}^{y=+\infty} f(x, y) d y, \quad f_{2}(y)=\int_{x=-\infty}^{x=+\infty} f(x, y) d x
\end{aligned}
$$

When $\underline{Y}=\underline{r}(\underline{X}) \Leftrightarrow \underline{X}=\underline{s}(\underline{Y})$, then $f(\underline{x}), g(\underline{y})$ satisfy $g(\underline{y})=f(\underline{s}(y)) \cdot|J|$ where $J:=\operatorname{det}\left(\frac{\partial s_{i}}{\partial y_{j}}\right)$
$\mathbf{E} X= \begin{cases}\sum_{k} k \cdot f(k) & X \text { discrete }, \\ \int_{-\infty}^{+\infty} x f(x) d x & X \text { continuous. }\end{cases}$

X	p.f. $f(k)$	$\mathbf{E} X$
$\operatorname{Bin}(n, p)$	$\binom{n}{k} p^{k}(1-p)^{n-k}$ for $k \in\{0,1, \ldots, n\}$	$p n$
Hypergeom (A, B, n)	$\binom{A}{k}\binom{B}{n-k} /\binom{A+B}{n}$ for $k \in\{0,1, \ldots, \min \{A, n\}\}$	$\frac{A}{A+B} n$
$\operatorname{Poi}(\lambda)$	$e^{-\lambda} \frac{\lambda^{k}}{k!}$ for $k \in\{0,1,2, \ldots\}$	λ

Problem 1. (20 points) Let X_{1}, X_{2} be random variables with joint pdf $f\left(x_{1}, x_{2}\right)= \begin{cases}2 x_{2} & \text { if } 0<x_{1}<1 \text { and } 0<x_{2}<1, \\ 0 & \text { otherwise } .\end{cases}$
a. (10 points) Are X_{1}, X_{2} independent? You must justify your answer.
b. (10 points) Defining the random variable $Y:=X_{1}-X_{2}$, compute the pdf $g(y)$ for Y for all y in \mathbb{R}.

Problem 2. (15 points) Assume that a 10 person committee is chosen from among 60 women and 30 men, with all possible choices equally likely. Let X denote the number of women on the committee, and Y the number of men on the committee.
a. (5 points) Calculate $\mathbf{E} X$.
b. (10 points) Calculate $\mathbf{E}(X-Y)$.

Problem 3. (15 points) Let X be a discrete random variable whose values lie in $\{0,1,2, \ldots, n\}$. Prove that
$\mathbf{E} X=\operatorname{Pr}(X \geq 1)+\operatorname{Pr}(X \geq 2)+\cdots+\operatorname{Pr}(X \geq n-1)+\operatorname{Pr}(X \geq n)$

Problem 4. (20 points) Let X be a continuous random variable with pdf $f(x)= \begin{cases}c\left(x^{2}-1\right) & \text { if }-1<x<1, \\ 0 & \text { otherwise },\end{cases}$ where c is some constant lying in \mathbb{R}.
a. (5 points) Find the value of c.
b. (5 points) Compute $\mathbf{E} X$.
c. (5 points) Compute the $\operatorname{cdf} F(x)$ for X.
d. (5 points) If X_{1}, X_{2} are independent and identically distributed, both with the same distribution as X, then what is $\operatorname{Pr}\left(X_{1}>X_{2}\right)$? You only need to write down an explicit integral that calculates it- do not evaluate the integral.

Problem 5. (15 points total) Let X be a continuous random variable, uniformly distributed on the interval $[0,4]$.
a. (10 points) Let Y be a continuous random variable chosen uniformly on the interval $[0, x]$ after knowing the value $X=x$. Compute the conditional pdf $g_{1}(x \mid y=1)=g_{1}(x \mid 1)$ for all values of x.
b. (5 points) Compute the pdf $g(z)$ for $Z=X^{5}$.

Problem 6. (15 points total) A group of n people walk into a restaurant, hand their hat to the hat-check attendant, and after dinner, the attendant hands back one of the hats uniformly at random to each person.

Let X be the random variable which is the number of people that receive their own hat. Compute $\mathbf{E} X$.
(Hint: Try writing X as a sum of simpler indicator random variables, that is, random variables that take on values 0 or 1.)

