Name:	
ignature:	

Math 5651 Lecture 003 (V. Reiner) Midterm Exam II Thursday, March 31, 2016

S

This is a 115 minute exam. No books, notes, calculators, cell phones, watches or other electronic devices are allowed. You can leave answers as fractions, with binomial or multinomial coefficients unevaluated.

There are a total of 100 points. To get full credit for a problem you must show the details of your work. Answers unsupported by an argument will get little credit. Do all of your calculations on this test paper.

Problem	Score
1.	
2.	
3.	
4.	
5.	
6.	
Total:	

Reminders:
$$\mathbf{Pr}(A_1 \cup \dots \cup A_n) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \leq i_1 < \dots < i_k \leq n} \mathbf{Pr}(A_{i_1} \cap \dots \cap A_{i_k})$$

$$S = \sqcup_{i=1}^n B_i \Rightarrow \mathbf{Pr}(A) = \sum_{i=1}^n \mathbf{Pr}(A \cap B_i) = \sum_{i=1}^n \mathbf{Pr}(A|B_i)\mathbf{Pr}(B_i) \text{ and } \mathbf{Pr}(B_i|A) = \mathbf{Pr}(A|B_i)\mathbf{Pr}(B_i)/\mathbf{Pr}(A)$$

$$\mathrm{cdf} \ F(x) := \mathbf{Pr}(X \leq x), \mathrm{while} \ \mathrm{pdf} \ f(x) = \frac{\partial}{\partial x} F(x)$$

$$g_1(x|y) = f(x,y)/f_2(y), \quad g_2(y|x) = f(x,y)/f_1(x)$$

$$f_1(x) = \int_{y=-\infty}^{y=+\infty} f(x,y) dy, \quad f_2(y) = \int_{x=-\infty}^{x=+\infty} f(x,y) dx$$

$$\mathrm{When} \ \underline{Y} = \underline{r}(\underline{X}) \Leftrightarrow \underline{X} = \underline{s}(\underline{Y}), \ \mathrm{then} \ f(\underline{x}), g(\underline{y}) \ \mathrm{satisfy} \ g(\underline{y}) = f(\underline{s}(y)) \cdot |J| \ \mathrm{where} \ J := \det\left(\frac{\partial s_i}{\partial y_j}\right)$$

$$\mathbf{E} X = \begin{cases} \sum_k k \cdot f(k) & X \ \mathrm{discrete}, \\ \int_{-\infty}^{+\infty} x f(x) dx & X \ \mathrm{continuous}. \end{cases}$$

X	p.f. $f(k)$	$\mathbf{E}X$
Bin(n,p)	$\binom{n}{k} p^k (1-p)^{n-k}$ for $k \in \{0, 1, \dots, n\}$	pn
Hypergeom (A, B, n)	$\binom{A}{k} \binom{B}{n-k} / \binom{A+B}{n}$ for $k \in \{0, 1, \dots, \min\{A, n\}\}$	$\frac{A}{A+B}n$
$\operatorname{Poi}(\lambda)$	$e^{-\lambda} \frac{\lambda^k}{k!}$ for $k \in \{0, 1, 2, \ldots\}$	λ

Problem 1. (20 points) Let X_1, X_2 be random variables with joint pdf

$$f(x_1, x_2) = \begin{cases} 2x_1 & \text{if } 0 < x_1 < 1 \text{ and } 0 < x_2 < 1, \\ 0 & \text{otherwise.} \end{cases}$$

a. (10 points) Are X_1, X_2 independent? You must justify your answer.

b. (10 points) Defining the random variable $Y := X_1 - X_2$, compute the pdf g(y) for Y for all y in \mathbb{R} .

Problem 2. (15 points) Assume that a 20 person committee is chosen from among 75 women and 25 men, with all possible choices equally likely. Let X denote the number of women on the committee, and Y the number of men on the committee.

a. (5 points) Calculate $\mathbf{E}X$.

b. (10 points) Calculate $\mathbf{E}(X - Y)$.

Problem 3. (15 points) Let X be a discrete random variable whose values lie in $\{0, 1, 2, \ldots, n\}$. Prove that

$$\mathbf{E}X = \mathbf{Pr}(X \ge 1) + \mathbf{Pr}(X \ge 2) + \dots + \mathbf{Pr}(X \ge n - 1) + \mathbf{Pr}(X \ge n)$$

Problem 4. (20 points) Let X be a continuous random variable with pdf

$$f(x) = \begin{cases} c(x^2 - 4) & \text{if } -2 < x < 2, \\ 0 & \text{otherwise,} \end{cases}$$

where c is some constant lying in \mathbb{R} .

- a. (5 points) Find the value of c.
- b. (5 points) Compute $\mathbf{E}X$.
- c. (5 points) Compute the cdf F(x) for X.

d. (5 points) If X_1, X_2 are independent and identically distributed, both with the same distribution as X, then what is $\mathbf{Pr}(X_1 < X_2)$? You only need to write down an explicit integral that calculates it—do not evaluate the integral.

Problem 5. (15 points total) Let X be a continuous random variable, uniformly distributed on the interval [0,3].

a. (10 points) Let Y be a continuous random variable chosen uniformly on the interval [0, x] after knowing the value X = x. Compute the conditional pdf $g_1(x|y=1) = g_1(x|1)$ for all values of x.

b. (5 points) Compute the pdf g(z) for $Z = X^7$.

Problem 6. (15 points total) A group of n people walk into a restaurant, hand their hat to the hat-check attendant, and after dinner, the attendant hands back one of the hats uniformly at random to each person.

Let X be the random variable which is the number of people that receive their own hat. Compute $\mathbf{E}X$.

(Hint: Try writing X as a sum of simpler indicator random variables, that is, random variables that take on values 0 or 1..)