Math 8201 Graduate abstract algebra- Fall 2013, Vic Reiner Final exam - Due Wednesday December 11, in class

Instructions: This is an open book, library, web, notes, take-home exam, but you are *not* to collaborate. The instructor is the only human source you are allowed to consult. Indicate outside sources used.

1 (15 points) Let G be a finite group, and let n be an integer with gcd(|G|, n) = 1. Show that for every g in G there exists a unique n^{th} root $x = \sqrt[n]{g}$ in G, that is, a unique x with $x^n = g$. (Hint: You might try reasoning about the set map $x \mapsto x^n$ on G.)

2. (15 points total) Let (a, b, c) lie in $\{1, 2, \ldots\}$, with b dividing ac.

(a)(5 points) Prove that the map

$$\begin{array}{cccc} \mathbb{Z}/a\mathbb{Z} & \xrightarrow{\varphi} & \mathbb{Z}/b\mathbb{Z} \\ x \bmod a & \longmapsto & cx \bmod b \end{array}$$

is well-defined and a group homomorphism.

(b)(5 points) Under what conditions on (a, b, c) is φ surjective?

(c)(5 points) Under what conditions on (a, b, c) is φ injective?

3. (10 points) Exhibit a group G along with three normal subgroups $N_1, N_2, N_3 \triangleleft G$ such that $N_1 \cap N_2 \cap N_3 = 1$ and $G = N_1 N_2 N_3$, but $G \not\cong N_1 \times N_2 \times N_3$.

(Hint: It can be done with G finite, abelian.)

4. (15 points) Show that any family $\{\varphi_i\}_{i \in I}$ of linear operators $V \xrightarrow{\varphi_i} V$ on a finite-dimensional \mathbb{C} -vector space V that *pairwise commute*

$$\varphi_i \varphi_j = \varphi_j \varphi_i \quad \text{ for all } i, j \in I,$$

can be simultaneously triangularized. That is, show that there exists a single basis (v_1, \ldots, v_n) for V in which the matrices that represent the $\{\varphi_i\}_{i \in I}$ are simultaneously all upper triangular.

5. (15 points) Let A in $\mathbb{C}^{n \times n}$ be a diagonalizable matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$ in \mathbb{C} . Prove that the following matrix B in $\mathbb{C}^{3n \times 3n}$

$$B = \begin{bmatrix} 0 & 0 & A \\ A & 0 & 0 \\ 0 & A & 0 \end{bmatrix}$$

is also diagonalizable, and write down its list of 3n eigenvalues in \mathbb{C} .

6. (15 points) Consider finite-dimensional F-vector spaces

V with ordered basis (v_1, \ldots, v_n) ,

W with ordered basis (w_1, \ldots, w_m) .

Recall that every t in $V \otimes W$ can be written uniquely as

(1)
$$t = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i,j} \ v_i \otimes w_j,$$

and that t is called *decomposable* if $t = v \otimes w$ for some $v \in V, w \in W$. Show that t is decomposable if and only if the matrix of coefficients $A = (a_{ij})$ in $\mathbb{F}^{n \times m}$ that appear in (1) has rank(A) at most one.

7. (15 points) Given a linear operator $V \xrightarrow{\varphi} V$, where $\dim_{\mathbb{F}} V = n$, let c_k be the coefficient of t^k in its characteristic polynomial:

$$\det(t \cdot 1_V - \varphi) = c_0 + c_1 t^1 + c_2 t^2 + \dots + c_{n-1} t^{n-1} + c_n t^n.$$

(a)(10 points) Prove that

$$c_n = 1,$$

$$c_{n-1} = -\text{Tr}(\varphi),$$

$$c_0 = (-1)^n \det(\varphi).$$

(b)(5 points) Prove more generally that

$$c_{n-k} = (-1)^k \operatorname{Tr}(\wedge^k \varphi)$$

where recall that $\wedge^k \varphi$ is defined by

$$\bigwedge^{k} V \xrightarrow{\wedge^{k} \varphi} \bigwedge^{k} V v_{1} \wedge \dots \wedge v_{k} \longmapsto \varphi(v_{1}) \wedge \dots \wedge \varphi(v_{k}).$$

(If you do part (b) correctly, no need to do part (a) separately.)