Math 8201 Graduate abstract algebra- Fall 2013, Vic Reiner Final exam - Due Wednesday December 11, in class

Instructions: This is an open book, library, web, notes, take-home exam, but you are not to collaborate. The instructor is the only human source you are allowed to consult. Indicate outside sources used.

1 (15 points) Let G be a finite group, and let n be an integer with $\operatorname{gcd}(|G|, n)=1$. Show that for every g in G there exists a unique $n^{t h}$ root $x=\sqrt[n]{g}$ in G, that is, a unique x with $x^{n}=g$.
(Hint: You might try reasoning about the set map $x \mapsto x^{n}$ on G.)
2. (15 points total) Let (a, b, c) lie in $\{1,2, \ldots\}$, with b dividing ac.
(a)(5 points) Prove that the map

\[

\]

is well-defined and a group homomorphism.
(b)(5 points) Under what conditions on (a, b, c) is φ surjective?
(c)(5 points) Under what conditions on (a, b, c) is φ injective?
3. (10 points) Exhibit a group G along with three normal subgroups $N_{1}, N_{2}, N_{3} \triangleleft G$ such that $N_{1} \cap N_{2} \cap N_{3}=1$ and $G=N_{1} N_{2} N_{3}$, but

$$
G \not \approx N_{1} \times N_{2} \times N_{3} .
$$

(Hint: It can be done with G finite, abelian.)
4. (15 points) Show that any family $\left\{\varphi_{i}\right\}_{i \in I}$ of linear operators $V \xrightarrow{\varphi_{i}} V$ on a finite-dimensional \mathbb{C}-vector space V that pairwise commute

$$
\varphi_{i} \varphi_{j}=\varphi_{j} \varphi_{i} \quad \text { for all } i, j \in I
$$

can be simultaneously triangularized. That is, show that there exists a single basis $\left(v_{1}, \ldots, v_{n}\right)$ for V in which the matrices that represent the $\left\{\varphi_{i}\right\}_{i \in I}$ are simultaneously all upper triangular.
5. (15 points) Let A in $\mathbb{C}^{n \times n}$ be a diagonalizable matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ in \mathbb{C}. Prove that the following matrix B in $\mathbb{C}^{3 n \times 3 n}$

$$
B=\left[\begin{array}{ccc}
0 & 0 & A \\
A & 0 & 0 \\
0 & A & 0
\end{array}\right]
$$

is also diagonalizable, and write down its list of $3 n$ eigenvalues in \mathbb{C}.
6. (15 points) Consider finite-dimensional \mathbb{F}-vector spaces

$$
\begin{aligned}
& V \text { with ordered basis }\left(v_{1}, \ldots, v_{n}\right) \text {, } \\
& W \text { with ordered basis }\left(w_{1}, \ldots, w_{m}\right)
\end{aligned}
$$

Recall that every t in $V \otimes W$ can be written uniquely as

$$
\begin{equation*}
t=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i, j} v_{i} \otimes w_{j} \tag{1}
\end{equation*}
$$

and that t is called decomposable if $t=v \otimes w$ for some $v \in V, w \in W$. Show that t is decomposable if and only if the matrix of coefficients $A=\left(a_{i j}\right)$ in $\mathbb{F}^{n \times m}$ that appear in (1) has $\operatorname{rank}(A)$ at most one.
7. (15 points) Given a linear operator $V \xrightarrow{\varphi} V$, where $\operatorname{dim}_{\mathbb{F}} V=n$, let c_{k} be the coefficient of t^{k} in its characteristic polynomial:

$$
\operatorname{det}\left(t \cdot 1_{V}-\varphi\right)=c_{0}+c_{1} t^{1}+c_{2} t^{2}+\cdots+c_{n-1} t^{n-1}+c_{n} t^{n}
$$

(a)(10 points) Prove that

$$
\begin{aligned}
& c_{n}=1 \\
& c_{n-1}=-\operatorname{Tr}(\varphi) \\
& c_{0}=(-1)^{n} \operatorname{det}(\varphi)
\end{aligned}
$$

(b)(5 points) Prove more generally that

$$
c_{n-k}=(-1)^{k} \operatorname{Tr}\left(\wedge^{k} \varphi\right)
$$

where recall that $\wedge^{k} \varphi$ is defined by

$$
\begin{aligned}
\wedge^{k} V & \xrightarrow{\wedge^{k} \varphi} \wedge^{k} V \\
v_{1} \wedge \cdots \wedge v_{k} & \longmapsto \varphi\left(v_{1}\right) \wedge \cdots \wedge \varphi\left(v_{k}\right) .
\end{aligned}
$$

(If you do part (b) correctly, no need to do part (a) separately.)

