Math 8201 Graduate abstract algebra- Fall 2013, Vic Reiner Midterm exam 2- Due Wednesday November 20, in class

Instructions: This is an open book, library, notes, web, take-home exam, but you are not to collaborate. The instructor is the only human source you are allowed to consult. Indicate outside sources used.

1. (20 points total; 5 points each part) Prove or disprove:
(a) (5 points) If there exists an element of order n in a quotient group G / N of a finite group G, then there will also exist an element of order n in G.
(b) (5 points) A vector space V over a field can be isomorphic to one of its own proper subspaces $U \subsetneq V$.
(c) (5 points) A subset $U \subset V$ of an \mathbb{R}-vector space V is an \mathbb{R}-subspace if and only if $(U,+)$ is a subgroup of the additive group $V^{+}:=(V,+)$.
(d) (5 points) If \mathbb{F}_{p} denotes the finite field $\mathbb{Z} / p \mathbb{Z}$ for a prime p, then a subset $U \subset V$ of an \mathbb{F}_{p}-vector space V is an \mathbb{F}_{p}-subspace if and only if $(U,+)$ is a subgroup of the additive group $V^{+}:=(V,+)$.
2. (15 points total; 5 points each part)
(a) (5 points) Given an exact sequence of finite-dimensional vector spaces over a field \mathbb{F}

$$
0 \longrightarrow V_{\ell} \xrightarrow{f_{\ell}} V_{\ell-1} \xrightarrow{f_{\ell-1}} \cdots \xrightarrow{f_{3}} V_{2} \xrightarrow{f_{2}} V_{1} \xrightarrow{f_{1}} V_{0} \longrightarrow 0
$$

prove that

$$
\operatorname{dim}_{\mathbb{F}} V_{0}-\operatorname{dim}_{\mathbb{F}} V_{1}+\operatorname{dim}_{\mathbb{F}} V_{2}-\cdots+(-1)^{\ell} \operatorname{dim}_{\mathbb{F}} V_{\ell}=\sum_{i=0}^{\ell}(-1)^{i} \operatorname{dim}_{\mathbb{F}} V_{i}=0
$$

(b) (5 points) Given a short exact sequence of finite groups $1 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 1$, prove $|B|=|A||C|$.
(c) (5 points) Given an exact sequence of finite groups

$$
1 \longrightarrow G_{\ell} \xrightarrow{f_{\ell}} G_{\ell-1} \xrightarrow{f_{\ell-1}} \cdots \xrightarrow{f_{3}} G_{2} \xrightarrow{f_{2}} G_{1} \xrightarrow{f_{1}} G_{0} \longrightarrow 1
$$

prove that

$$
\left|G_{1}\right|\left|G_{3}\right|\left|G_{5}\right| \cdots=\left|G_{0}\right|\left|G_{2}\right|\left|G_{4}\right| \cdots
$$

3, (10 points; 5 points each part) For a field \mathbb{F} and a linear operator $\varphi: V \rightarrow V$ on a finite-dimensional \mathbb{F}-vector space V, define the trace $\operatorname{Tr}_{V}(\varphi)$ as follows: make a choice of an ordered basis $\left(v_{1}, \ldots, v_{n}\right)$ for V in which to express φ by an $n \times n$ matrix $A=\left(a_{i j}\right)_{i, j=1,2, \ldots, n}$, and then set

$$
\operatorname{Tr}(\varphi)=\operatorname{Tr}(A):=\sum_{i=1}^{n} a_{i, i}=a_{11}+a_{22}+\cdots+a_{n n}
$$

(a) Show $\operatorname{Tr}(\varphi)$ is well-defined, that is, independent of the choice of the ordered basis $\left(v_{1}, \ldots, v_{n}\right)$ for V.
(b) Given an \mathbb{F}-linear subspace $W \subseteq V$ with $\varphi(W) \subset W$, show that the restriction map φ_{W} on W and the induced map $\varphi_{V / W}$ on the quotient V / W satisfy

$$
\operatorname{Tr}(\varphi)=\operatorname{Tr}\left(\varphi_{W}\right)+\operatorname{Tr}\left(\varphi_{V / W}\right)
$$

4. (20 points total; 5 points each) Let \mathbb{F}_{q} be a finite field with q elements, e.g., if q is prime then $\mathbb{F}_{q}=\mathbb{Z} / q \mathbb{Z}$. Let $V=\mathbb{F}_{q}^{n}$ considered as an n-dimensional vector space over \mathbb{F}_{q}. Fixing k in the range $0 \leq k \leq n$, let $G(k, V)=G\left(k, \mathbb{F}_{q}^{n}\right)$ denote the set of all k-dimensional \mathbb{F}_{q}-linear subspaces of V.
(a) (5 points) Show that when then group $G L(V)=G L_{n}\left(\mathbb{F}_{q}\right)$ acts on V, it takes an \mathbb{F}_{q}-subspace to another \mathbb{F}_{q}-subspace, preserving dimension, so that it acts on the set $G(k, V)$.
(b) (5 points) Show that this action on $G(k, V)$ is transitive.
(c) (5 points) Let P_{k} be the subgroup P of $G L(V)$ which is the stabilizer of the particular k-dimensional subspace of $V=\mathbb{F}_{q}^{n}$ spanned by the first k standard basis vectors $\left\{e_{1}, \ldots, e_{k}\right\}$. Writing elements of $G L(V)$ as $n \times n$ matrices in block form

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

where $A \in \mathbb{F}^{k \times k}, B \in \mathbb{F}^{k \times(n-k)}, C \in \mathbb{F}^{(n-k) \times k}, D \in \mathbb{F}^{(n-k) \times(n-k)}$, identify the elements of P_{k} by saying what are the conditions on A, B, C, D for this matrix to lie in P_{k}.
(d) (5 points) Find the cardinality of $G(k, V)$, as a function of k, n and q.
5. (15 points) For two simple groups G_{1}, G_{2} and a normal subgroup $N \triangleleft G_{1} \times G_{2}$, show that either

- $N=\{e\}$, or
- $N=G_{1} \times G_{2}$, or
- N is isomorphic to one of G_{1} or G_{2}.

6. (20 points) Let G be a finite group,

- with $|G|=p q r$ for primes $p<q<r$,
- with q not dividing $r-1$, and
- containing a normal subgroup $N \triangleleft G$ having $|N|=p$.

Prove that G is cyclic.

