Math 8202 Graduate abstract algebra Spring 2011, Vic Reiner Final exam- Due Friday May 6, in class

Instructions: This is an open book, open library, open notes, takehome exam, but you are *not* to collaborate. The instructor is the only human source you are allowed to consult.

- 1. (15 points) Dummit and Foote §9.5, Problem 7, page 315.
- 2. (15 points total; 5 points each)
- (a) Consider the factorization of $f(x) = x^{17^2} x$ into irreducible polynomials in $\mathbb{F}_{17}[x]$. For each possible degree $d = 1, 2, 3, \ldots$, how many irreducible factors will there be of degree d?
- (b) Same question for $g(x) = x^{17^4} x$.
- (c) Same question for $h(x) = x^{\frac{17^2-1}{2}} + 1$ (which divides f(x)).
- 3. (10 points) Let $\mathbb{K} = \mathbb{F}(a, b, c, d)$ be the field of rational functions in indeterminates a, b, c, d with coefficients in some field \mathbb{F} . Show that the polynomial $f(x) = x^4 + ax^3 + bx^2 + cx + d$ is irreducible in $\mathbb{K}[x]$.
- 4. (10 points) Dummit and Foote §14.7, Problem 3, page 636. Assume that the necessary and sufficient condition for $\mathbb{F}(\sqrt{\alpha}) = \mathbb{F}(\sqrt{\beta})$ they want you to prove is this: the product $\alpha\beta$ should be a perfect square in \mathbb{F} . Don't forget to answer their second question.
- 5.(15 points total; 5 points each)

On that same page 636 of Dummit and Foote §14.7, do

- (a) Problem 4.
- (b) Problem 5.
- (c) Problem 6.
- 6. (10 points) How many intermediate fields lie strictly between \mathbb{Q} and and $\mathbb{Q}(\zeta_{19})$ where ζ_{19} is a primitive 19^{th} root of unity? You need not describe them all explicitly, but you must explain your answer.

7. (25 points total; 5 points each)

Let V be an n-dimensional \mathbb{F} -vector space where \mathbb{F} is an algebraically closed field, and let $T:V\longrightarrow V$ be an \mathbb{F} -linear operator. For each λ in \mathbb{F} , define the *generalized* λ -eigenspace of T by

$$V_{T,\lambda} := \{ v \in V : \text{ there exists } m > 0 \text{ with } (T - \lambda \cdot 1_V)^m v = 0 \}.$$

(a) Show the inclusions

$$\ker(T - \lambda \cdot 1_V) \subseteq V_{T,\lambda} \subseteq \ker(T - \lambda \cdot 1_V)^n$$
.

- (b) Show that $V_{T,\lambda}$ is T-stable, meaning that $T(V_{T,\lambda}) \subseteq V_{T,\lambda}$.
- (c) Show that one has a direct sum of \mathbb{F} -vector spaces $V = \bigoplus_{\lambda \in \mathbb{F}} V_{T,\lambda}$. (Hint: how does this relate to Jordan canonical form?)
- (d) Let V_1, V_2 be \mathbb{F} -vector spaces of dimensions n_1, n_2 , respectively, and let

$$V_1 \xrightarrow{T_1} V_2$$

$$V_2 \xrightarrow{T_2} V_1$$

be F-linear maps between them, so that one can form their composite maps in either order:

$$V_1 \xrightarrow{T_2 \circ T_1} V_1$$

$$V_2 \stackrel{T_1 \circ T_2}{\longrightarrow} V_2$$

Show that for each nonzero λ in \mathbb{F}^{\times} , the maps T_1 and T_2 restrict to give isomorphisms

$$(V_1)_{T_2 \circ T_1, \lambda} \xrightarrow{T_1} (V_2)_{T_1 \circ T_2, \lambda}$$

$$(V_2)_{T_1 \circ T_2, \lambda} \xrightarrow{T_2} (V_1)_{T_2 \circ T_1, \lambda}.$$

(e) Deduce that the characteristic polynomials of the two composite maps $T_2 \circ T_1$ and $T_1 \circ T_2$ differ only by powers of t; specifically, show

$$t^{n_1} \det(t \cdot 1_{V_2} - T_1 \circ T_2) = t^{n_2} \det(t \cdot 1_{V_1} - T_2 \circ T_1).$$