Can we arbitrarily specify the word lengths

$$l_{1,...,lm}$$
 for a code $(C = \{\omega_{1,...,}\omega_{m}\})$
on alphabet Σ of size n ?
(alled an n-ary alphabet/code
 $e.g. \Sigma = \{0,1\}$ binary = 2-ary
 $\Sigma = \{0,1,2\}$ ternary = 8-ary
EXAMPLE $(C = \{0,1,20,21,22\}$ on $\Sigma = \{0,1,2\}$
has $(l_{1,1},l_{2,1},l_{3,1},l_{5,1})$ (n=3
 $= (1,1,2,2,2)$
Certainly not arbitrarily, e.g. if $\Sigma = \{0,1\}$
then $(l_{1,1},l_{2,1},l_{3,1},l_{5,1}) = (2,2,2,2,2)$
is impossible since Σ^* has only
4 words of length 2: 00
 11

THEOREM Let
$$\Sigma$$
 be an alphabet with n letters,
and $(l_1, l_2, ..., l_m)$ positive integers.
 $(a) (Kraft) \text{ If } \sum_{i=1}^{m} \frac{1}{n^{l_i}} = \frac{1}{n^{l_1}} + \frac{1}{n^{l_2}} + ... + \frac{1}{n^{l_m}} \leq 1$
then $\exists a \text{ prefix code } C \text{ on } \Sigma$ with those lengths.
(Instantaneous)
 $(b) (McMillan) \text{ If } \exists a uniquely desigherable}$
code $C \text{ on } \Sigma$ with those lengths,
then $\sum_{i=1}^{m} \frac{1}{n^{l_i}} \leq 1$

EXAMPLES If n=3= [2], say D= {0,1,2} chen \$ any u.d. code C with word lengths (1,1,2,2,2,3) because $\frac{1}{3} + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^2} + \frac{1}{3^2} + \frac{1}{3^3} = \frac{9 + 9 + 3 + 3 + 1}{24} = \frac{28}{24} >$ On the other hand, there does I a prefix code (with lengths (1,2,2,2,3,3) because $\frac{1}{3^{1}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{3}} + \frac{1}{3^{3}} = \frac{9+3+3+3+3+1+1}{22} = \frac{23}{22} \le 1$ In fact, let's prove Kraft first, via an algorithm to find C. Assuming (li, ylm) has ti occurrences of length i then the inequality assumes $\sum_{i=1}^{\infty} \frac{1}{n^{k_i}} = \frac{t_1}{n^1} + \frac{t_2}{n^2} + \frac{t_3}{n^3} + \dots \leq 1$ and we by to pick the shorter words first.

EXAMPLE
$$(l_{1,1}, l_{m}) = (1, 2, 2, 2, 2, 3, 3)$$

has $\frac{t_{1}}{3^{1}} + \frac{t_{2}}{3^{2}} + \frac{t_{3}}{3^{3}} = \frac{t_{1}}{3^{1}} + \frac{t_{2}}{4^{2}} + \frac{2}{3^{3}} = 1$
 $\Rightarrow \frac{t_{1}}{3^{1}} \leq 1$
 $\Rightarrow \frac{t_{1}}{3^{1}} + \frac{t_{2}}{3^{2}} \leq 3^{2}$
 $\Rightarrow 3t_{1} + t_{2} \leq 3^{2}$
 $t_{2} \leq 3^{2} - 3t_{1}$
 $= \frac{t_{1}}{3^{1}} + \frac{t_{2}}{3^{2}} + \frac{t_{3}}{3^{2}} = 1$
 $\Rightarrow \frac{t_{1}}{3^{1}} + \frac{t_{2}}{3^{2}} + \frac{t_{3}}{3^{3}} + \frac{t_{3}}{3^{1}} + \frac{t_{3}}{3^{2}} + \frac{t_{3}}{3^{3}} + \frac{t_{3}}{3^{3}} + \frac{t_{3}}{3^{1}} + \frac{t_{3}$

proof of Kraft's neguality: If (li, lin) has ti occurrences of i and $\frac{t_1}{n^1} + \frac{t_2}{n^2} + \frac{t_3}{n^8} + \dots = \sum_{i=1}^{\infty} \frac{1}{n^{k_i}} \le 1$ we show how to pick a prefix code C sthethose lengths. Assuming one has already picked the words of length $\leq i-1$, and show they leave $\geq t_i$ words of length i that avoid them as prefixes. Previously one has proked ti-1 of length i-1 ms create ntry with bad prefix ti-2 of length i-2 ms create nºtiz with bod pretix to of length 2 ms create nit with bad prefix ty of length 1 ~ oreate nit to with bad prefix Since there are n' words of length i intotal using alphabet Σ , ...

this leaves

$$n^{i} - (n^{i_{1}}t_{1} + n^{i_{2}}t_{2} + ... + n^{2}t_{i-2} + nt_{i-1})$$

words of length i from which to choose t_{i} for C .
We chan the above quantity is at least t_{i} ,
since $\frac{t_{1}}{n^{i}} + \frac{t_{2}}{n^{2}} + ... + \frac{t_{i-2}}{n^{i-2}} + \frac{t_{i-1}}{n^{i}} + \frac{t_{i}}{n^{i}} \leq 1$
 g multiply by n^{i}
 $n^{i-1}t_{1} + n^{i_{2}}t_{2} + ... + n^{2}t_{i-2} + nt_{i_{1}} + t_{i} \leq n^{i}$
i.e. $t_{i} \leq n^{i} - (n^{i_{1}}t_{1} + n^{i_{2}}t_{2} + ... + n^{2}t_{i-2} + nt_{i_{1}})$

proof of McMillan inequality:
Assume C is a unipely desipheneble n-any code
having to codewords of length i for
$$i = 1, 2, ..., l$$
.
We want to show $\frac{t_1}{n^1} + \frac{t_2}{n^2} + ... + \frac{t_1}{n^2} \leq 1$
all this sum A ; would A < 1.
IDEA: Instead, for each $p = 1, 2, 3, ...$ we will show
 $A^P = \sum_{s=1}^{p_1} \frac{C_s}{n^s}$ for some coefficients $C_s \leq n^s$
 $\Rightarrow A^P \leq \sum_{s=1}^{p_2} 1 = pl$
 $\Rightarrow A \leq (pl)^P$ take pt not of both sets
 $\Rightarrow A \leq (pl)^P$ = 1, as desired
 $\lim_{p \to \infty} (pl)^P = \lim_{p \to \infty} \lim_{q \to \infty} \lim_{p \to \infty}$

So for C u.d., we need to show

$$A := \frac{t_1}{n!} + \frac{t_2}{n^2} + \dots + \frac{t_1}{n^2} \text{ has } A^P = \sum_{s=1}^{p_1} \frac{c_s}{n^s} \text{ with} \\ S \le n^s \text{ in fact, we can interpret } c_s as counting the member of messages $(w_1, w_{2s}, \dots, w_p)$ of p words from C with a total leight of s letters from Σ .
Since there are n^s strings in Σ^* with s letters, and C is uniquely decipherable, this shows $c_s \le n^s$; each string comes from at most one message.

$$\sum_{s=2}^{p_2} \frac{p_{s=2}}{n^s} = \frac{t_1 \cdot t_1}{3^2} + \frac{t_2 \cdot t_2}{3^3} + \frac{t_2 \cdot t_2}{3^4} +$$$$

so all 8 statements are equivalent.