Math 5251 Kraft \& McMillan inequalities
Can we arbitrarily specify the word lengths $l_{1, \ldots}, l_{m}$ for a code $C=\left\{\omega_{1}, \omega_{m}\right\}$ on alphabet \sum of size n ?
$C_{\text {called an } n \text {-any alphabet/code }}$

$$
\text { egg. } \Sigma=\{0,1\}\} \text { binary }=2 \text {-any }
$$

$$
\Sigma=\{0,1,2\} \text { ternary }=3 \text {-any }
$$

EXAMPLE $C=\{0,1,20,21,22\}$ on $\sum=\{a, 2\}$

$$
\begin{aligned}
\text { has } & \left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right) \\
= & (1,1,2,2,2)
\end{aligned}
$$

Certainly not arbititaily, e.g. if $\Sigma=\{0,1\}$
then $\left(l_{1}, l_{2}, l_{3}, l_{1}, l_{5}\right)=(2,2,2,2,2)$
is impossible since Σ^{*} has only 4 words of length 2: $\begin{aligned} & 00 \\ & 010 \\ & 10 \\ & 11\end{aligned}$

If we further insist on the code beng uniquely decipherable, it imposes even more of a constraint on ($l_{1}, \longrightarrow l_{m}$); interestingly it's the same constraint for codes that are prefix.

THEOREM Let \sum be an alphabet with n letters, and $\left(l_{1}, l_{2}, \ldots, l_{m}\right)$ porifove integers.

$$
\text { (a) (Kraft) If } \sum_{i=1}^{m} \frac{1}{n^{l_{i}}}=\frac{1}{n^{l_{1}}}+\frac{1}{n^{l_{2}}}+\ldots+\frac{1}{n^{l_{m}}} \leq 1
$$

then $\exists a \underset{(i n s t a n i t a n e o u s) ~}{\text { pref ic }} \sum$ with those lengths.
(b) (McMillan) If \exists a uniquely decipherable code Con \sum with those lengths,

$$
\text { then } \sum_{i=1}^{m} \frac{1}{n^{l_{i}}} \leq 1
$$

SAME Mequality for both! So one concludes $\left\{\begin{array}{c}\text { lengths of } u . d .\} \\ n \text {-any codes }\end{array}\right.$
nary codes \{lengths of prefix $\}$ Kraft-McMillom " $\left\{\left(l, l_{m}\right) \text { with } \sum_{i} \frac{n^{l_{i}}}{} \leq 1\right\}^{\prime \prime}$

EXAMPLES If $n=3=|\Sigma|$, say $\Sigma=\{0,1,2\}$ then \nexists any u.d. code C with word lengths $(1,1,2,2,2,3)$ because

$$
\frac{1}{3^{1}}+\frac{1}{3^{3}}+\frac{1}{3^{2}}+\frac{1}{3^{2}}+\frac{1}{3^{2}}+\frac{1}{3^{3}}=\frac{9+9+3+3+3+1}{27}=\frac{28}{27}>1
$$

On the other hand, there does \exists a prefix code C with lengths $(1,33333,3)$ because

$$
\frac{1}{3^{1}}+\frac{1}{3^{2}}+\frac{1}{3^{2}}+\frac{1}{3^{2}}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\frac{1}{3^{3}}=\frac{9+3+3+3+3+1+1}{27}=\frac{23}{27} \leq 1
$$

In fact, let's prove Kraft first, via an algorithm to find C. Assuming $\left(l,-g l_{m}\right)$ has t_{i} occurrences of length i, then the equality as umps

$$
\sum_{i=1}^{m} \frac{1}{n^{l_{i}}}=\frac{t_{1}}{n^{9}}+\frac{t_{2}}{n^{2}}+\frac{t_{3}}{n^{3}}+\ldots \leq 1
$$

and we by to pick the shorter words first.

proof of Kraft's inequality:
If $\left(l_{1}, \rightarrow l_{m}\right)$ has t_{i} occurrences of i and

$$
\frac{t_{1}}{n^{1}}+\frac{t_{2}}{n^{2}}+\frac{t_{3}}{n^{3}}+\ldots=\sum_{i=1}^{m} \frac{1}{n^{l_{i}}} \leq 1
$$

we show how to pick a prefix code C with those lengths. Assuming one has already picked the words of length $\leq i-1$, and show the leave $\geq t_{i}$ words of length i that avoid them as prefixes. Previously one has picked t_{i-1} of length $i-1 m>$ create $n t_{i-1}$ with bad prefix t_{i-2} of length $i-2 \rightarrow$ create $n^{2} t_{i-2}$ with bad pretty
t_{2} of length $2 m$ create $n^{i-2} t_{2}$ with bad prefix t_{1} of length $? ~ a$ create $n^{i-1} t_{1}$ with bad prefix
Since there are $n i$ words of length i in total using alphabet Σ,...
this leaves

$$
n^{i}-\left(n^{i-1} t_{1}+n^{i-2} t_{2}+\ldots+n^{2} t_{i-2}+n t_{i-1}\right)
$$

words of length i from which to choose t_{i} for e.
We chain the above quantity is at least t_{i},
since $\frac{t_{1}}{n^{1}}+\frac{t_{2}}{n^{2}}+\ldots+\frac{t_{i-2}}{n^{i-2}}+\frac{t_{i-1}}{n^{i-1}}+\frac{t_{i}}{n^{i}} \leq 1$
$\left\{\right.$ multiply by n^{i}

$$
\begin{gathered}
n^{i-1} t_{1}+n^{i-2} t_{2}+\ldots+n^{2} t_{i-2}+n t_{i-1}+t_{i} \leq n^{i} \\
\text { i.e. } t_{i} \leq n^{i}-\left(n^{i-1} t_{1}+n^{i-2} t_{2}+\ldots+n^{2} t_{i-2}+n t_{i-1}\right)
\end{gathered}
$$

proof of McMillan inequality:
Assume C is a uniquely decipherable n-any code having t_{i} codewords of length i for $i=1,2, \ldots, l$.
We want fo show $\frac{t_{1}}{n^{1}}+\frac{t_{2}}{n^{2}}+\ldots+\frac{t_{l}}{n^{l}} \leq 1$
call this sum A; wont $A \leq 1$.
IDEA: Instead, for each $p=1,2,3, \ldots$ we will show

$$
\begin{aligned}
& A^{p}=\sum_{s=1}^{P l} \frac{c_{s}}{n^{s}} \text { for some coefficients } c_{s} \leq n^{s} \\
& \left.\begin{array}{l}
\Rightarrow A^{p} \leq \sum_{\delta=1}^{p l} 1=p l \\
\Rightarrow A \leq(p l)^{\frac{1}{p}}
\end{array}\right) \text { take } p^{\text {th }} \text { root of louth sides } \\
& \Rightarrow A \leq \lim _{\phi \rightarrow \infty}(p l)^{\frac{1}{p}}=1 \text {, as desired } \\
& \lim _{p \rightarrow \infty}(p l)^{1 / p}=\lim _{p \rightarrow \infty} e^{\ln (p l)^{1 / p}}=e^{\lim _{p \rightarrow \infty} \frac{\ln (p)}{p}+\frac{\ln (l)}{p}} \\
& \text { Calculus } \\
& \text { interlude! } \quad=e^{0}=1
\end{aligned}
$$

So for C u.d., we need to show

$$
A:=\frac{t_{1}}{n^{1}}+\frac{t_{2}}{n^{2}}+\ldots+\frac{t_{l}}{n^{l}} \text { has } A^{p}=\sum_{s=1}^{p l} \frac{c_{s}}{n^{s}} \text { with } c_{s} \leq n^{s}
$$

In fact, we can interpret c_{s} as wanting the number of messages $\left(\omega_{1}, \omega_{2}, \ldots, \omega_{p}\right)$ ot p words from C with a total length of s letters from \sum.
Since there are n^{s} strings in \sum^{*} with s letters, and C is uniquely decipherable, this shows $c_{s} \leq n^{s}$; each string comes from at most one message.

$$
\begin{aligned}
& \text { (prot by) } \\
& \begin{array}{l}
\text { proof by) } \\
\text { EXAMPLE }
\end{array} C=\{\underbrace{0,1,20,21,22}_{t=2}\} \underbrace{0}_{t_{2}=3}, \quad \sum=\{0,1,2\} \\
& \left(\frac{t_{1}}{3^{1}}+\frac{t_{2}}{3^{2}}\right)^{2}=\frac{t_{1} \cdot t_{1}}{3^{2}}+\frac{\left(t_{1} t_{2}+t_{2} t_{1}\right)^{c_{3}}}{3^{3}}+\frac{t_{2} \cdot t_{2}}{3^{4}} \\
& =\frac{2 \cdot 2}{3^{2}}+\frac{2 \cdot 3+3 \cdot 2}{3^{3}}+\frac{3 \cdot 3}{3^{4}} \\
& \begin{array}{llll}
010 & 0 / 20 & 2010 & 20120 \\
01 & 021 & 2011 & 2021 \\
10 & 022 & 210 & 20122 \\
10 & 120 & 211 & 2121 \\
1 / 1 & 121 & 220 & 2122 \\
& 1122 & 221 & 22120 \\
& & 221 \\
& & 22122
\end{array}
\end{aligned}
$$

RECAP: We showed

so all 3 statements are equivalent.

