Math 5251 Entropy and Shannon's Noiseless Coding Theorem (\$3.3)
Given a source $W=\left\{\omega_{1},, \omega_{m}\right\}$, the probabilities p_{1}, \ldots, p_{m}

$$
\begin{aligned}
& \text { probabilities } \\
& \text { the entropy } H(W):=-\sum_{i=1}^{m} p_{i} \log _{2}\left(p_{i}\right)
\end{aligned}
$$

goes a surprisingly precise upper and lower bound on the minimum possible value of

$$
\operatorname{arglength}(f)=\sum_{i=1}^{m} p_{i} l\left(f\left(\omega_{i}\right)\right)
$$

for all uniquely decipherable n-any encoding

$$
f: W \rightarrow C \subset \Sigma^{*} \text { itu } n=|\bar{\Sigma}|:
$$

THEOREM (Shannon) The above minimum satisfies

$$
\frac{H(w)}{\log _{2}(n)} \leq \arg \operatorname{len} g^{2} h(f)<1+\frac{H(w)}{\log _{2}(n)}
$$

To prove the lower bound, need a basic inequality:
LEMMA: Given probabilities $p_{1,-}, p_{m}$
(so $p_{i} \in[0,1], p_{1}+\ldots+p_{m}=1$)
and real numbers $q_{1}, \ldots, q_{m} \geqslant 0$ with
$q_{1}+\ldots+q_{m} \leq 1$ (s omaybe not probabilities!),
one has $\sum_{i=1}^{m} p_{i} \log _{2}\left(\frac{1}{p_{i}}\right) \leq \sum_{i=1}^{m} p_{i} \log _{2}\left(\frac{1}{q_{i}}\right)$.
This will follow easily from some calculus in a bit But first let's see how to use it.

(of Lemma)
of size m, uniform distribution has highest entropy:

$$
H(\Omega) \leq H\left(\frac{1}{m}, \frac{1}{m}, \ldots, \frac{1}{m}\right)
$$

proof:

$$
\begin{aligned}
& \text { prod: } \\
& \begin{aligned}
H(\Omega)= & \sum_{i=1}^{m} p_{i} \log _{2}\left(\frac{1}{p_{i}}\right)
\end{aligned} \sum_{i=1}^{m} p_{i} \log _{2}\left(\frac{1}{1 / m}\right) \\
& \text { Take } q_{i}=\frac{1}{m} \forall_{i} \\
& \text { in LOMMA }=\log _{2}(m) \cdot \sum_{i=1}^{m} p_{i}=\log _{2}(m) \\
&=H\left(\frac{1}{m,} \frac{1}{m}, \ldots, m\right) \text { 易 }
\end{aligned}
$$

COROLARY 2: For any u.d. nary encoding $W \xrightarrow{f} e$, (of LEMMA)
one has $\frac{H(W)}{\log _{2}(n)} \leqslant$ auglength (f)
proof: Given the u.d. n-ary encoding $W \xrightarrow{ } C$ with codeword lengths $l_{i}=l\left(f\left(w_{i}\right)\right)$,
we know from McMillan that $\sum_{i=1}^{m} \frac{1}{n^{n_{i}}} \leq 1$.
Hence if we take $q_{i}=\frac{1}{n^{\ell_{i}}}$ then $q_{1}+\ldots+q_{m} \leq 1$, and we can apply the LETMMA to conclude

$$
\begin{aligned}
H(w)=\sum_{i=1}^{m} p_{i} \log _{2}\left(\frac{1}{p_{i}}\right) & \leq \sum_{i=1}^{m} p_{i} \log _{2}\left(\frac{1}{q_{i}}\right) \\
& =\sum_{i=1}^{m} p_{i} \log _{2}\left(n^{\ell_{i}}\right) \\
& =\sum_{i=1}^{m} p_{i} l_{i} \log _{2}(n) \\
& =\log _{2}(n) \operatorname{argleng} \ln (f)
\end{aligned}
$$

ie. $\frac{H(w)}{\log _{2}(n)} \leq \operatorname{arglength}(f)$

The upper bound in Shannon's Theorem says \exists an nary u.d. encoding $W \xrightarrow{f} C \subset \Sigma^{*}$ with arglength $(f)<1+\frac{H(w)}{\log _{2}(n)}$.
proof of upper bound:
Pick positive integers ℓ_{1}, l_{m} uniquely via $\ell_{i} \in\left[\alpha_{i}, 1+\alpha_{i}\right)$ where $\alpha_{i}:=\log _{n}\left(\frac{1}{p_{i}}\right)(>0)$ i.e. $\log _{n}\left(\frac{1}{p_{i}}\right) \leqslant l_{i}<1+\log _{n}\left(\frac{1}{p_{i}}\right)$ for $i=1,2, \ldots, m$. Then $\frac{1}{p_{i}} \leq n^{l_{i}}$

$$
p_{i} \geq \frac{1}{n^{l_{i}} \Rightarrow 1=\sum_{i=1}^{m} p_{i} \geqslant \sum_{i=1}^{m} \frac{1}{n^{\ell_{i}}} \text {. } \quad \text { 抳 }}
$$

$\stackrel{\text { Kraft }}{\Rightarrow}$ 子 a and. encoding $W \xrightarrow{f} e$
use (*) $\quad \begin{aligned} & \Rightarrow J \text { a u.d. } \\ & \text { with codelenghts } l_{i}=l\left(f\left(\omega_{i}\right)\right)\end{aligned}$
But then

$$
\begin{aligned}
& \begin{array}{l}
\text { But then } \\
\text { arglengtes }(f)=\sum_{i=1}^{m} p_{i} l_{i}<\sum_{i=1}^{m} p_{i}\left(1+\log _{n}\left(\frac{1}{p_{i}}\right)\right) \\
=\sum_{i=1}^{n} p_{i}+\sum_{i=1}^{m} p_{i} \log _{n}\left(\frac{1}{p_{i}}\right) \\
\text { ace }(x)=\log _{2}(x) \\
\log _{2}(n)
\end{array}=1+\frac{H\left(w^{2}\right)}{\log _{2}(n)}
\end{aligned}
$$

Let's return to prove ...
LEMMA: For $p_{1}, \rightarrow p_{m}$ probabilities and $q_{1>} \rightarrow q_{m} \geq 0$ with $q_{1}+\ldots+q_{m} \leq 1$,

$$
\sum_{i=1}^{m} p_{i} \log _{2}\left(\frac{1}{p_{i}}\right) \leqslant \sum p_{i} \log _{2}\left(\frac{1}{q_{i}}\right) .
$$

$$
\begin{aligned}
& \text { prof: Want to show } \\
& \sum_{i=1}^{m} p_{i} \log _{2}\left(\frac{1}{p_{i}}\right)-\sum_{i=1}^{m} p_{i} \log _{2}\left(\frac{1}{q_{i}}\right) \stackrel{?}{\circ} \leq 0 \\
& =\sum_{i=1}^{m} p_{i}\left(\log _{2}\left(\frac{1}{p_{i}}\right)-\log _{2}\left(\frac{1}{q_{i}}\right)\right) \\
& =\sum_{i=1}^{m} p_{i} \log _{2}\left(\frac{1 / p_{i}}{1 / q_{i}}\right) \\
& =\sum_{i=1}^{m} p_{i} \log _{2}\left(\frac{q_{i}}{p_{i}}\right)
\end{aligned}
$$

So we want $\sum_{i=1}^{m} p_{i} \log _{2}\left(\frac{q_{i}}{p_{i}}\right) \stackrel{?}{\leq} 0$
$C_{\text {some positive real } x}=\frac{q_{i}}{p_{i}}>0$
We cain $\log _{2}(x) \stackrel{(x *)}{\leq} \frac{x-1}{\log _{e}(2)} \quad \forall x>0$ or equivalently $\log _{e}(x) \leq x-1$:

Hence $\sum_{i=1}^{m} p_{i} \log _{2}\left(\frac{q_{i}}{p_{i}}\right)^{\text {use }\left(p_{0}\right)} \leq \sum_{i=1}^{m} p_{i}\left(\frac{q_{i}}{p_{i}}-1\right) / \log _{g}(2)$

$$
=\frac{1}{\log g_{e}(2)}\left(\sum_{i=1}^{m} q_{i}-\sum_{i=1}^{m}\right)=\frac{1}{\log _{e}(2)}\left(\sum_{i=1}^{m} q_{i}-1\right) \leq 0
$$

since $\sum_{i=1}^{m} q_{i} \leq 1$ by our hypotheses

