Coherence of f-Monotone Paths on Zonotopes.

Robert Edman

May 15, 2015

An Analogy: The Secondary Polytope

Definition (Polytope)

A polytope is a convex hull of finitely many points in \mathbb{R}^{d}.
Combinatorially a polytope can be defined by its face lattice.

Definition (Polyhedral Subdivision)

A polyhedral subdivision is a decomposition of P into subpolytopes. A subdivision is a triangulation when each subpolytope is a simplex.

Remark

Subdivisions of P form a poset called the refinement poset of P.

Remark

In this example, the refinement poset is the face lattice of a polytope.

- Some bad triangulations are not regular or are incoherent.
- Coherence is a linear inequality condition.
- $\Sigma(P)$ is an example of a Fiber Polytope.

Theorem (GKZ)

The refinement poset of all regular subdivisions of P is the face lattice of a polytope $\Sigma(P)$.

Our Work: Monotone Paths

Definition

An f-monotone edge path is a path from the f-minimal vertex $-z$ to the f-maximal vertex z along the edges of P.

Definition

- The vertices graph $G_{2}(P, f)$ is formed from all elements on the bottom level levels of the refinement poset.
- In this example every f-monotone path is coherent.

Question

When does P have incoherent f-monotone paths?

Definition (Coherent)

An f-monotone path γ is coherent if there exists $g \in\left(\mathbb{R}^{d}\right)^{*}$ making γ the lower face of the polytope
$P=\operatorname{Conv}\left\{\left(f\left(p_{i}\right), g\left(p_{i}\right)\right)\right\} \subset \mathbb{R}^{2}$.

Remark

The refinement poset of coherent cellular strings is the fiber polytope $\Sigma(P, f)$.

Theorem (Billera \& Sturmfels)

Every f-monotone path of a cube is coherent.

Definition

- A zonotope is the image of the n-cube in \mathbb{R}^{d} under a projection $\mathcal{A}: C_{n} \rightarrow \mathbb{R}^{d}$ specified by a $d \times n$ matrix

$$
\mathcal{A}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
a_{1} & a_{2} & \ldots & a_{n} \\
\mid & \mid & & \mid
\end{array}\right)
$$

- The zonotope $Z(\mathcal{A})=\sum\left[-a_{i},+a_{i}\right]$ is the Minkowski of the columns of \mathcal{A}.
- The vertices of $Z(\mathcal{A})$ are sign vectors

Proposition

- Every f-monotone path of $Z(\mathcal{A})$ is of length n.
- The function f is generic when $f\left(a_{i}\right)>0$ for all i.
- The choice of f corresponds to the choice of a f-minimal vertex -z.
- But not all vertices are symmetric, so we will have to consider multiple options for z.
- The corank of Z is $n-d$.

Proposition

A f-monotone path γ is coherent if there exists a $g \in\left(\mathbb{R}^{d}\right)^{*}$ so that:

$$
\frac{g_{\gamma(1)}}{f_{\gamma(1)}}<\frac{g_{\gamma(2)}}{f_{\gamma(2)}}<\ldots<\frac{g_{\gamma(n)}}{f_{\gamma(n)}}
$$

Corank 1

Remark

- Every f-monotone path is coherent for -+++ .
- ++++ has an incoherent f-monotone path for every f.

Corank 2 (cyclic)

$$
Z(5,3)=\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 9 & 16 & 25
\end{array}\right)
$$

Remark

- Has incoherent f-monotone path for every f.
- +++++ is an important geometric counterexample.

Definition (Pointed hyperplane arrangement)

The normal fan of the zonotope, is a hyperplane arrangement, $\mathcal{A}=\left\{a_{1}^{\perp}, \ldots, a_{n}^{\perp}\right\}$. The choice of a chamber c of \mathcal{A} corresponds to the choice of f.

- Easy to draw under stereographic projection
- k-faces of $Z \Longleftrightarrow d-k$ intersections of hyperplanes.
- $L_{2}(\mathcal{A})$ are the codimension 2 intersections of hyperplanes.

Reflection Arrangements

A_{3}

B_{3}

Remark

- Does not depend on the choice of a base chamber c.
- Paths corresponds to reduced words.
- Dual hyperplane configuration is a $(n-d) \times n$ matrix.
- Functions on \mathcal{A} correspond to dependencies of \mathcal{A}^{*}.
- When $n-d$ is small, this makes things easy.

$$
\left.\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right)=0 \quad \mathcal{A}^{*}=\begin{array}{cccc}
a_{1}^{*} & a_{2}^{*} & a_{3}^{*} & a_{4}^{*} \\
1 & 1 & 1 & -1
\end{array}\right)
$$

Example

$$
\begin{array}{ccc}
++++ & f(x, y, z)=x+y+z & a_{1}^{*}+a_{2}^{*}+a_{3}^{*}+3 a_{4}^{*}=0 \\
-+++ & f(x, y, z)=-x+y+z & -a_{1}^{*}+a_{2}^{*}+a_{3}^{*}+a_{4}^{*}=0 \\
+++- & ? & ?
\end{array}
$$

Affine Gale duals replace (\mathcal{A}, f) with a picture.

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right) \xrightarrow[\text { Lifting }]{\stackrel{\text { Contraction }}{ }}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

Proposition

- Extensions preserve
 dimension.
- Liftings preserve corank; if f is generic on \mathcal{A} then there exists \widehat{f} is generic on $\widehat{\mathcal{A}}$.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Findings: Reflection Arrangements

\mathcal{A}	$\|\Gamma(\mathcal{A})\|$
H_{3}	152
D_{4}	2316
D_{5}	12985968
D_{6}	3705762080
F_{4}	2144892

Proposition

H_{3} has exactly $4 L_{2}$-accessible nodes.

Findings: Diameter

There is an (\mathcal{A}, f) pair with no L_{2}-accessible nodes.

Example

$Z(8,4)$, cyclic arrangement of 8 vectors in \mathbb{R}^{4} has
Diam $G_{2}(\mathcal{A}, c)=30$ but $\left|L_{2}\right|=28$ for $c=(-)^{4}(+)^{4}$.

Theorem

When $n-d=1 G_{2}(\mathcal{A}, f)$ has diameter $\left|L_{2}\right|$ and always has an L_{2}-accessible node.

Findings: Classification of (\mathcal{A}, f) in corank 1.

- The purple (\mathcal{A}, f) pair is a minimal obstruction, all other (\mathcal{A}, f) containing incoherent f-monotone paths are liftings of it.
- Really remarkable:

Coherence depends only on the oriented matroid structure, not on the particular f.

Theorem

When $n-d=1$ there is a unique family of all-coherent (\mathcal{A}, f) pairs and all other (\mathcal{A}, f) pairs have incoherent paths.

Findings: Classification of (\mathcal{A}, f) in corank 2.

Theorem
When $n-d=2$ there are two all-coherent families and 9 minimal obstructions. Of the 9 minimal obstructions 8 are single-element lifting of the corank 1 minimal obstruction.

Findings: Minimal obstructions for Cyclic Zonotopes

$$
\mathcal{A}(n, d)=\left(\begin{array}{cccc}
a_{1} & a_{2} & \cdots & a_{n} \\
1 & 1 & \cdots & 1 \\
t_{1} & t_{2} & \cdots & t_{n} \\
\vdots & \vdots & & \vdots \\
t_{1}^{d-1} & t_{2}^{d-1} & \cdots & t_{n}^{d-1}
\end{array}\right)
$$

Theorem

When $d>2$ and f realizing c, the monotone path graph

- When $n-d=1$, every f-monotone path of $(\mathcal{A}(n, d), f)$ is coherent when c is a reorientation of a certain hyperplane arrangement, and has incoherence f-monotone paths for all other c.
- When $n-d \geq 2,(\mathcal{A}(n, d), f)$ has incoherent galleries for every f.

Lemma (4.17)

Suppose $\mathcal{A}^{+}=\left\{a_{i}, \ldots, a_{n+1}\right\}$ is a single-element extension of \mathcal{A} and f is a generic function on both $Z(\mathcal{A})$ and $Z\left(\mathcal{A}^{+}\right)$. If γ^{+}is a coherent f-monotone path of $\left(\mathcal{A}^{+}, f\right)$ then $\gamma=\gamma^{+} \backslash(n+1)$ is a coherent f-monotone path of (\mathcal{A}, f).

Lemma (4.22)

Let \mathcal{A} be a hyperplane arrangement and $\widehat{\mathcal{A}}$ a single element lifting of \mathcal{A}. Suppose

$$
\begin{aligned}
& \widehat{\gamma_{g}}=(n+1,1,2, \ldots, n) \\
& \widehat{\gamma_{n}}=(1,2, \ldots, n, n+1)
\end{aligned}
$$

are coherent \hat{f}-monotone paths of $(Z(\widehat{\mathcal{A}}), \widehat{f})$ for some \widehat{f}. Then there is a generic functional f on $Z(\mathcal{A})$ for which γ is a coherent f-monotone path.

Questions?

Thank You.

Committee Members

Victor Reiner
Pavlo Pylyavskyy

Alexander Voronov
Kevin Leder

