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An Analogy: The Secondary Polytope

Definition (Polytope)

A polytope is a convex hull of finitely many points in Rd .
Combinatorially a polytope can be defined by its face lattice.

Definition (Polyhedral Subdivision)

A polyhedral subdivision is a decomposition of P into
subpolytopes. A subdivision is a triangulation when each
subpolytope is a simplex.
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Remark
Subdivisions of P form a poset called the refinement poset of P.
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Remark
In this example, the refinement poset is the face lattice of a
polytope.
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I Some bad triangulations are not regular or are incoherent.
I Coherence is a linear inequality condition.
I Σ(P) is an example of a Fiber Polytope.

Theorem (GKZ)

The refinement poset of all regular subdivisions of P is the face
lattice of a polytope Σ(P).
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Our Work: Monotone Paths
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I Our version of triangulations
are f -monotone edge paths of
P .

I f must be generic,
non-constant on each edge of
P.

I The refinement poset consists
of cellular strings.

Definition
An f -monotone edge path is a path from the f -minimal vertex
−z to the f -maximal vertex z along the edges of P.
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Definition

I The vertices graph G2(P, f ) is formed from all elements on
the bottom level levels of the refinement poset.

I In this example every f -monotone path is coherent.
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Question
When does P have incoherent f -monotone paths?
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Definition (Coherent)

An f -monotone path γ is coherent if there exists g ∈
(
Rd)∗

making γ the lower face of the polytope
P = Conv {(f (pi),g(pi))} ⊂ R2.
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Remark
The refinement poset of coherent cellular strings is the fiber
polytope Σ(P, f ).
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Theorem (Billera & Sturmfels)

Every f -monotone path of a cube is coherent.
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Definition

I A zonotope is the image of the
n-cube in Rd under a
projection A : Cn → Rd

specified by a d × n matrix

A =

 | | |
a1 a2 . . . an
| | |


I The zonotope

Z (A) =
∑

[−ai ,+ai ] is the
Minkowski of the columns of
A.

I The vertices of Z (A) are sign
vectors
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Proposition

I Every f -monotone path of Z (A) is of length n.
I The function f is generic when f (ai) > 0 for all i .
I The choice of f corresponds to the choice of a f -minimal

vertex −z.
I But not all vertices are symmetric, so we will have to

consider multiple options for z.
I The corank of Z is n − d.
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Proposition

A f -monotone path γ is coherent if there exists a g ∈
(
Rd)∗ so

that:
gγ(1)

fγ(1)
<

gγ(2)

fγ(2)
< . . . <

gγ(n)

fγ(n)
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Corank 1

Z (4,3) =


a1 a2 a3 a4

1 1 1 1
1 2 3 4
1 4 9 16



−+ ++ + + ++

Remark

I Every f -monotone path is coherent for −+ ++.
I + + ++ has an incoherent f -monotone path for every f .
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Corank 2 (cyclic)

Z (5,3) =


a1 a2 a3 a4 a5

1 1 1 1 1
1 2 3 4 5
1 4 9 16 25



−+ + + + −−+ + + + + + + +

Remark

I Has incoherent f -monotone path for every f .
I + + + + + is an important geometric counterexample.
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Definition (Pointed hyperplane arrangement)

The normal fan of the zonotope, is a hyperplane arrangement,
A =

{
a⊥1 , . . . ,a

⊥
n
}

. The choice of a chamber c of A
corresponds to the choice of f .

− − − − −

a⊥1

a⊥2

a⊥3

a⊥4

a⊥5

X2,3

I Easy to draw under
stereographic projection

I k -faces of Z ⇐⇒ d − k
intersections of
hyperplanes.

I L2(A) are the codimension
2 intersections of
hyperplanes.
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Reflection Arrangements

A3 B3 H3

Remark

I Does not depend on the choice of a base chamber c.
I Paths corresponds to reduced words.
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I Dual hyperplane configuration is a (n − d)× n matrix.
I Functions on A correspond to dependencies of A∗.
I When n − d is small, this makes things easy.


a1 a2 a3 a4

1 0 0 1
0 1 0 1
0 0 1 1

·


1
1
1
−1

 = 0 A∗ =
(a∗1 a∗2 a∗3 a∗4

1 1 1 −1
)

Example
+ + ++ f (x , y , z) = x + y + z a∗1 + a∗2 + a∗3 + 3a∗4 = 0
−+ ++ f (x , y , z) = −x + y + z −a∗1 + a∗2 + a∗3 + a∗4 = 0
+ + +− ? ?

Affine Gale duals replace (A, f ) with a picture.
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Proposition

I Extensions preserve
dimension.

I Liftings preserve corank;
if f is generic on A then
there exists f̂ is generic
on Â.
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Proposition

If γ is an f -monotone path of
A and Â a single-element
lifting of A, then any γ̂ with
γ̂/(n + 1) = γ is an
f̂ -monotone path of Â.
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Proposition

If A+ is a single-element
extension of A, and γ+ is an
f -monotone path of A+ then
any γ\(n + 1) is an
f -monotone path of A.
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Findings: Reflection Arrangements

A |Γ(A)|
H3 152
D4 2316
D5 12985968
D6 3705762080
F4 2144892

Proposition

H3 has exactly 4 L2-accessible nodes.
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Findings: Diameter

There is an (A, f ) pair with
no L2-accessible nodes.

Example

Z (8,4), cyclic arrangement
of 8 vectors in R4 has
Diam G2(A, c) = 30 but
|L2| = 28 for c = (−)4(+)4.

Theorem
When n − d = 1 G2(A, f ) has diameter |L2| and always has an
L2-accessible node.

23 / 30



Findings: Classification of (A, f ) in corank 1.

I The purple (A, f ) pair is a
minimal obstruction, all other
(A, f ) containing incoherent
f -monotone paths are liftings
of it.

I Really remarkable:
Coherence depends only on
the oriented matroid structure,
not on the particular f .

Theorem
When n − d = 1 there is a unique family of all-coherent (A, f )
pairs and all other (A, f ) pairs have incoherent paths.
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Findings: Classification of (A, f ) in corank 2.

Theorem
When n − d = 2 there are two all-coherent families and 9
minimal obstructions. Of the 9 minimal obstructions 8 are
single-element lifting of the corank 1 minimal obstruction.
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Findings: Minimal obstructions for Cyclic Zonotopes

A(n,d) =


a1 a2 · · · an

1 1 · · · 1
t1 t2 · · · tn
...

...
...

td−1
1 td−1

2 · · · td−1
n

,

Theorem
When d > 2 and f realizing c, the monotone path graph

I When n − d = 1, every f -monotone path of (A(n,d), f ) is
coherent when c is a reorientation of a certain hyperplane
arrangement, and has incoherence f -monotone paths for
all other c.

I When n − d ≥ 2, (A(n,d), f ) has incoherent galleries for
every f .

26 / 30



Lemma (4.17)

Suppose A+ = {ai , . . . ,an+1} is a single-element extension of
A and f is a generic function on both Z (A) and Z (A+). If γ+ is
a coherent f -monotone path of (A+, f ) then γ = γ+\(n + 1) is a
coherent f -monotone path of (A, f ).

Lemma (4.22)

Let A be a hyperplane arrangement and Â a single element
lifting of A. Suppose

γ̂g = (n + 1,1,2, . . . ,n)

γ̂h = (1,2, . . . ,n,n + 1)

are coherent f̂ -monotone paths of (Z (Â), f̂ ) for some f̂ . Then
there is a generic functional f on Z (A) for which γ is a coherent
f -monotone path.
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Lemma 6.2
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Questions?
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Thank You.

Committee Members
Victor Reiner Alexander Voronov
Pavlo Pylyavskyy Kevin Leder
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