The Critical Group of a Line Graph: The Bipartite Case

John M. Machacek
University of Minnesota - Twin Cities
macha052@umn.edu
December 14, 2011

Overview

Give a graph $G=(V, E)$ the critical group $K(G)$ is a finite abelian group whose order is $\kappa(G)$, the number of spanning forests of the graph. Here G is an undirected graph without self loops, though multiple edges are allowed. There is a known relationship between the critical group of G and the critical group of the line graph line G when G is nonbipartite. Our task is to explore the relationship when G is bipartite.

Previous Work

On Dr. Vic Reiner's web page www.math.umn.edu/~reiner/:

- REU
- math latin honors theses
- "The Critical Group of a Line Graph" (Berget, Manion, Maxwell, Potechin, and Reiner)

The Graph Laplacian Matrix

Definition

Let $G=(V, E)$ be finite graph without self loops. The graph Laplacian $L(G)$ is the singular positive semidefinite $|V| \times|V|$ matrix given by

$$
L(G)_{i, j}= \begin{cases}\operatorname{deg}_{G}(i) & \text { if } i=j \\ -m_{i, j} & \text { otherwise }\end{cases}
$$

where $m_{i, j}$ is the multiplicity of the edge $\{i, j\}$ in E.
Note $L(G)=D-A$ wher D is the degree matrix and A is the adjacency matrix.

Kirchhoff's Matrix Tree Theorem

We notice the rank of $L(G)$ is $|V|-c$ if G has c connected components. Assuming G is connected denote the eigenvalues of $L(G)$ by $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n-1}>\lambda_{n}=0$ where $|V|=n$. Also let $\overline{L(G)}{ }^{i, j}$ be the reduced graph Laplacian obtained from $L(G)$ by striking out row i and column j.

Theorem (Kirchhoff's Matrix Tree Theorem)

$$
\begin{aligned}
\kappa(G) & =\frac{\lambda_{1} \lambda_{2} \cdots \lambda_{n-1}}{n} \\
& =(-1)^{i+j} \operatorname{det} \overline{L(G)}
\end{aligned}
$$

The Critical Group I

The critical group $K(G)$ of a graph G is a finite abelian group whose order is $\kappa(G)$ the number of spanning forests of the graph. If G has c connected components then

$$
\mathbb{Z}^{|V|} / \operatorname{im} L(G) \cong \mathbb{Z}^{c} \oplus K(G)
$$

If G is connected, then we have

$$
\mathbb{Z}^{|V|-1} / \mathrm{im} \overline{L(G)}{ }^{i, j} \cong K(G)
$$

Remark

The Smith normal form of $L(G)$ gives us $K(G)$.

The Critical Group II

We have the following alternative presentation of critical group

$$
K(G) \cong \mathbb{Z}^{E} /(B \oplus Z)
$$

Where B is the bond lattice and Z is the cycle lattice.

Remark

Here we fix are arbitrary orientation of the edges and the edge set E becomes a basis for $\mathbb{R}^{E} \cong \mathbb{R}^{m}$ where $|E|=m$.

Example Bonds

Remark

The single vertex cuts like the one of the right give a spanning set for B.

Example Cycle

Remark

Recall all cycles in bipartite graphs have even length.

The Edge Subdivision Graph

Definition

The edge subdivision graph for G denoted sd G is obtained by placing a new vertex at the midpoint of every edge in G.

Figure: G

The Line Graph

Definition

The line graph for G denoted line $G=\left(V_{\text {line } G}, E_{\text {line } G}\right)$ is defined by $V_{\text {line } G}=E$ where there is an edge in $E_{\text {line } G}$ corresponding to each pair of edges in E incident on a vertex in V.

Figure: G
Figure: line G

G and $\operatorname{sd} G$

Let $\beta(G)$ be the number of independent cycles in G. It is know the number of generators of $K(G)$ is bounded by $\beta(G)$. We also have the following simple relationship between G and $\operatorname{sd} G$.

Theorem (Lorenzini)

$$
\begin{aligned}
K(G) & =\bigoplus_{i=1}^{\beta(G)} \mathbb{Z}_{d_{i}} \\
K(\operatorname{sd} G) & =\bigoplus_{i=1}^{\beta(G)} \mathbb{Z}_{2 d_{i}}
\end{aligned}
$$

G and line G

Theorem (Sachs)

If G is d-regular, then

$$
\begin{aligned}
\kappa(\text { line } G) & =d^{\beta(G)-2} 2^{\beta(G)} \kappa(G) \\
& =d^{\beta(G)-2} \kappa(\operatorname{sd} G)
\end{aligned}
$$

Theorem (Berget et al.)

If a simple graph G is 2-edge-connected, then the critical group K (line G) can be generated by $\beta(G)$ elements.

Question

Can we say anything about the relationship between $K(G)$ and $K(\operatorname{line} G)$?

A Homomorphism

Theorem (Berget et al.)

For any connected d-regular simple graph G with $d \geq 3$ there is a natural group homomorphism $f: K(\operatorname{line} G) \rightarrow K(\operatorname{sd} G)$ whose kernel-cokernel exact sequence takes the form

$$
0 \rightarrow \mathbb{Z}_{d}^{\beta(G)-2} \oplus C \rightarrow K(\text { line } G) \xrightarrow{f} K(\operatorname{sd} G) \rightarrow C \rightarrow 0
$$

in which the cokernel C is the following cyclic d-torsion group:

$$
C= \begin{cases}0 & \text { if } G \text { non-bipartite and } d \text { is odd } \\ \mathbb{Z}_{2} & \text { if } G \text { non-bipartite and } d \text { is even } \\ \mathbb{Z}_{d} & \text { if } G \text { bipartite }\end{cases}
$$

Nonbipartite Graphs

Corollary (Berget et al.)

For G a simple, connected, d-regular graph with $d \geq 3$ which is nonbipartite, after uniquely expressing

$$
K(G) \cong \bigoplus_{i=1}^{\beta(G)} \mathbb{Z}_{d_{i}}
$$

with d_{i} dividing d_{i+1}, one has

$$
K(\operatorname{line} G) \cong \bigoplus_{i=1}^{\beta(G)-2} \mathbb{Z}_{2 d d_{i}} \oplus \begin{cases}\mathbb{Z}_{2 d_{\beta(G)-1}} \oplus \mathbb{Z}_{2 d_{\beta(G)}} & \text { if }|V| \text { even } \\ \mathbb{Z}_{4 d_{\beta(G)-1}} \oplus \mathbb{Z}_{d_{\beta(G)}} & \text { if }|V| \text { odd }\end{cases}
$$

Proof.

Follow from previous theorem on exact sequence and a technical lemma on the p-primary component.

An Example

Let $G=K_{4}$, then $\beta(G)=3, d=3$, and $|V|$ is even and we have

$$
K(G) \cong \mathbb{Z}_{1} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{4}
$$

$$
K(\text { line } G) \cong \mathbb{Z}_{6} \oplus \mathbb{Z}_{8} \oplus \mathbb{Z}_{8} \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{8} \oplus \mathbb{Z}_{24}
$$

Figure: G

Figure: sd G

Goal

The goal in this thesis was to collect data from various infinite families of regular bipartite graphs G on the relation between $K(G)$ and K (line G), in the hope that they might lead us to some conjecture(s) as precise as the previous corollary.

The Complete Bipartite Graph

Theorem (Lorenzini, Berget)

Let $G=K_{n, n}$, then

$$
\begin{gathered}
K(G) \cong \mathbb{Z}_{n}^{2 n-4} \oplus \mathbb{Z}_{n^{2}} \\
K(\text { line } G) \cong \mathbb{Z}_{2 n}^{(n-2)^{2}+1} \oplus \mathbb{Z}_{2 n^{2}}^{2 n-4} .
\end{gathered}
$$

Almost Complete Bipartite Graph

Theorem

Let $G=K_{n, n}-M$ where M is a complete matching and $n \geq 4$, then

$$
\begin{gathered}
K(G) \cong \mathbb{Z}_{n-2} \oplus \mathbb{Z}_{n(n-2)}^{n-3} \oplus \mathbb{Z}_{n(n-1)(n-2)} \\
K(\text { line } G) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2(n-1)}^{(n-2)^{2}-3} \oplus \mathbb{Z}_{2(n-1)(n-2)} \oplus \mathbb{Z}_{2 n(n-1)(n-2)}^{n-2}
\end{gathered}
$$

Proof.

- Use Smith Normal Form reduction to obtain $K(G)$.
- Use known relationships to obtain K (line G).

Circulant Graphs

We denote circulant graphs by $C_{n}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$. We note that a circulant graph is always regular, and it is bipartite if and only n is even and a_{i} is odd for each i.

Figure: $C_{8}(1,3)$

A Bipartite Circulant Graph

Conjecture

Let $G=C_{2(2 l+1)}(1,2 I+1)$ where $2 I+1=3^{k} m$ with $\operatorname{gcd}(3, m)=1$, then we have

$$
K(G) \cong \mathbb{Z}_{3^{k}} \oplus \mathbb{Z}_{3^{k} d_{1}} \oplus \mathbb{Z}_{3^{k+1} d_{2}}
$$

$$
K(\text { line } G) \cong \mathbb{Z}_{6}^{2 /-1} \oplus \mathbb{Z}_{2 \cdot 3^{k}} \oplus \mathbb{Z}_{2 \cdot 3^{k+1} d_{1}} \oplus \mathbb{Z}_{2 \cdot 3^{k+1} d_{2}}
$$

where 3 does not divide d_{1} or d_{2}.

Another Bipartite Circulant Graph

Conjecture

Let $G=C_{2 \cdot 2 I}(1,2 I-1)$, then we have

$$
K(G) \cong \begin{cases}\mathbb{Z}_{4}^{4} \oplus \mathbb{Z}_{8}^{2 I-4} \oplus \mathbb{Z}_{81} & \text { if } / \text { is even } \\ \mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{8}^{2 I-2} \oplus \mathbb{Z}_{81} & \text { if } / \text { is odd }\end{cases}
$$

$K($ line $G) \cong \mathbb{Z}_{4} \oplus \mathbb{Z}_{8}^{2 \prime} \oplus \mathbb{Z}_{16}^{2} \oplus \mathbb{Z}_{64}^{2 /-3} \oplus \mathbb{Z}_{64 I} \quad$ if I is odd.

Summary

The relationship between $K(G)$ and K (line G) is known for G regular and nonbipartite. Both $K(G)$ and K (line G) have been explicitly computed for the special cases $K_{n, n}$ and $K_{n, n}-M$. We have conjectures for $K(G)$ and $K($ line $G)$ in other cases, but nothing conclusive has emerged yet.

The Nonbipartite Relationship Revisited

Recall the following corollary:

Corollary (Berget et al.)

For G a simple, connected, d-regular graph with $d \geq 3$ which is nonbipartite, after uniquely expressing

$$
K(G) \cong \bigoplus_{i=1}^{\beta(G)} \mathbb{Z}_{d_{i}}
$$

with d_{i} dividing d_{i+1}, one has

$$
K(\operatorname{line} G) \cong \bigoplus_{i=1}^{\beta(G)-2} \mathbb{Z}_{2 d d_{i}} \oplus \begin{cases}\mathbb{Z}_{2 d_{\beta(G)-1}} \oplus \mathbb{Z}_{2 d_{\beta(G)}} & \text { if }|V| \text { even } \\ \mathbb{Z}_{4 d_{\beta(G)-1}} \oplus \mathbb{Z}_{d_{\beta(G)}} & \text { if }|V| \text { odd }\end{cases}
$$

The Bipartite Relationship?

Let $G=K_{n, n}$, then

$$
\begin{aligned}
K(G) & \cong \quad \mathbb{Z}_{n} \oplus \mathbb{Z}_{n}^{2 n-5} \oplus \mathbb{Z}_{n^{2}} \\
K(\operatorname{sd} G) & \cong \mathbb{Z}_{2}^{(n-2)^{2}} \oplus \mathbb{Z}_{2 n} \oplus \mathbb{Z}_{2 n}^{2 n-5} \oplus \mathbb{Z}_{2 n^{2}} \\
K(\operatorname{line} G) & \cong \mathbb{Z}_{2 n}^{(n-2)^{2}} \oplus \mathbb{Z}_{2 n} \oplus \mathbb{Z}_{2 n^{2}}^{2 n-5} \oplus \mathbb{Z}_{2 n^{2}}
\end{aligned}
$$

Let $G=K_{n, n}-M$, then

$$
\left.\left.\begin{array}{rlrl}
K(G) & \cong & \mathbb{Z}_{(n-2)} & \oplus \mathbb{Z}_{n(n-2)}^{n-3}
\end{array}\right) \oplus \mathbb{Z}_{n(n-1)(n-2)}\right)
$$

The Bipartite Relationship?

Let $G=C_{2 \cdot 2 I}(1,2 I-1)$ for I odd, then conjecturally

$$
\begin{aligned}
K(G) & \cong \quad \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{8} \oplus \mathbb{Z}_{8}^{2 I-3} \oplus \mathbb{Z}_{8 /} \\
K(\operatorname{sd} G) & \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}^{2 /-1} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{16} \oplus \mathbb{Z}_{16}^{2 I-3} \oplus \mathbb{Z}_{16 /} \\
K(\text { line } G) & \cong \mathbb{Z}_{4} \oplus \mathbb{Z}_{8}^{2 I-1} \oplus \mathbb{Z}_{8} \oplus \mathbb{Z}_{16} \oplus \mathbb{Z}_{16} \oplus \mathbb{Z}_{64}^{2 I-3} \oplus \mathbb{Z}_{64 /}
\end{aligned}
$$

