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Branched covers

Our main object of study are covers between compact Riemann surfaces
branched over three points with base space the Riemann sphere. Here are
visual representations of...

a (compact Riemann) surface
Σg of genus g

a covering map
X −→ Y

f : Σg −→ Σ0 is a branched cover if it behaves like a covering map
over all but a finite subset {y1, . . . , yn} of Σ0. These points are
called branch points.
Every branched cover considered from this point forward will be
branched over at most three points {y1, y2, y3}.
After a Möbius transformation, assume {y1, y2, y3} = {0, 1,∞}.
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Dessin d’enfants

A dessin d’enfant D associated to the isomorphism class of a branched
cover f : Σg −→ Σ0 branched over 0, 1,∞ is the preimage of the interval
[0, 1]. This is a connected bipartite graph embedded on D, where:

the preimages of 0 (resp. 1) are colored black (resp. white),
the preimages of ∞ corresponds to the faces of D, i.e. connected
components of Σg \ D.

In this talk we will focus on the case Σg = Σ0. Below is such an example
for Σg = Σ0.

−−−−−−−−−−→
0 1
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Branched covers of trees

A branched cover f : Σ0 −→ Σ0, with dessin d’enfant T a tree, can be
expressed generally as follow.

Say T has black (resp. white) vertices of degrees e1, . . . , en (resp.
f1, . . . , fm) with coordinates b1, . . . , bn (resp. w1, . . . , wm).
After a transformation to make sure bi, wj 6=∞, the map f is a
rational function satisfying

f(z) = K1

n∏
i=1

(z − bi)ei ,

f(z)− 1 = K2

m∏
j=1

(z − wj)fj ,

where K1, K2 ∈ C are nonzero constants.
The problem to find the branched cover of a tree (or general dessin)
given just its graph is highly nontrivial. A complete classification of
this exists only for trees of degrees at most ten, and for general
dessins of degrees at most four.
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An example

The branch covers of the left hand side trees are of the form

f(z) = z3(z − a)2
(

z2 +
(

−7
2 + 2a

)
z + 8

5a2 − 28
5 a + 21

5

)
where 24a3 − 84a2 + 98a− 35 = 0.

The branch covers of the right hand side trees are of the form

f(z) = z3(z − a)2
(

z2 +
(4

3a5 − 34
15a4 − 26

15a3 + 7
5a2 + 20

3 a − 28
5

)
z

− 8
15a5 − 32

75a4 + 172
75 a3 + 148

75 a2 − 14
5 a − 287

75

)
where 20a6 − 84a5 + 84a4 + 56a3 − 294a + 245 = 0.
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Galois action

Theorem (Belyi, 1980)

A compact Riemann surfaces S is defined over Q if and only if there is a
branched cover f : S −→ Σ0 with at most three branched points.

Belyi’s theorem gives us an action of the absolute Galois group
Γ = Gal(Q/Q) on branched covers branched at {0, 1,∞}.
For S = Σ0, the action is on the coefficients on the rational function
defining the branched cover.

σ: 3
√

7
2 7→
(

1
2−

√
3

2 i
)

3
√

7
2−−−−−−−−−−−−−−−→

−→

σ2
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Galois invariants

A property that is equal on two Galois-conjugate dessin d’enfants is called
a Galois invariant. Below are some well-known Galois invariants of a dessin
d’enfant D:

the number of edges, white vertices, black vertices, and faces of D,
the degree of white vertices, black vertices, and faces of D,
the genus of D.

Nontrivial Galois invariants are important because they distinguish Galois
orbits of dessin d’enfants, which actually corresponds to subsets of the
absolute Galois group Gal(Q /Q) via the following theorem.

Theorem
Gal(Q /Q) acts faithfully on the set of dessin d’enfants.

We only have enough time to study the superpotential algebra of a tree
and state a conjecture on its Galois invariant property.
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The superpotential algebra
We define the superpotential algebra via the following example.

F =
ab

c d

e f

F∨ =
u v

WF = abcd + ef − aef − b− c− d

IWF = (∂xWF )x∈{a,b,c,d,e,f}

=
(

bcd− ef, cda− v, dab− v
abc− v, f − fa, e− ae

)
AF := Z[a, b, c, d, e, f, u, v]

/
IWF ∪

{path algebra
relations

}
∼= Z[e, f, u, v]

/(
{efef − v} ∪

{path algebra
relations

})
.
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Superpotential algebra for stars and double stars

Below are two examples of stars and double stars.

m = 3 n = 2

AStar6
∼= Z[x]/(x5 − 1) ADStar3,2

∼= Z[x]/(x3−2 − 1) ∼= Z

In general we have the following computation.
AStarn

∼= Z[x]/(xn−1 − 1), where n is the number of leaves.

ADStarn,m
∼=

{
Z[x, x−1] if n = m

Z[x]/(xm−n − 1) if n < m
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The superpotential rank

Theorem
The superpotential algebra AT for a tree T is isomorphic to Z[x, x−1] or
Z[x]/(xl − 1) for some non-negative integer l. Furthermore,

every edge z is identified with xm(z) in AT for some integer m(z),
leaves are identified with x in AT .

If we define the superpotential rank l(T ) for a tree T to be

l(T ) =
{

l if AT ∼= Z[x]/(xl − 1),
∞ if AT ∼= Z[x] or if AT ∼= Z[x, x−1],

then we have the following conjecture.

Conjecture
l(T ) is a Galois invariant on trees.

This conjecture is provable in special cases, and checked for trees of degrees
up to ten.
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Proof idea of theorem
The proof of the previous theorem relies on the following reductions for a
tree T . Here T ′, T ′′, T ′′′ are the trees after reduction.

AT ∼= AT ′ .

x1 x2 x3
· · · · · ·

// x2x1 x3
· · · · · ·

// x1 = x3
· · · · · ·

AT ∼= AT ′′ .

u

w
· · ·

... // u

w
· · ·

...

AT ∼= AT ′′′ [v−1].

u

w

v

· · · // u

w

v

· · ·
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Proof idea of theorem
After doing the previous three reductions till it is not impossible, a technical
lemma implies that we can apply the following reduction to get a tree T ′′′′ .

...

...

n1

n2

//

...

...

n1

n2

n1 + n2 − 1...

The reduction gives us a superpotential algebra AT ′′′′ for which AT is a
certain quotient of. Iterating the four reductions above reduces us to the
star or double star, which gives us the theorem two slides ago, and defines
the superpotential rank.

Assuming the conjecture that the superpotential rank is a Galois
invariant, the reductions imply that, although there is no canonical
way to track the reductions of Galois conjugate trees, they are
actually reduced to the same star or double star.
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