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GRAPHS AND CARTESIAN PRODUCTS OF COMPLETE
GRAPHS
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ABSTRACT. The critical group of a connected graph is a finite abelian group,
whose order is the number of spanning trees in the graph, and which is closely
related to the graph Laplacian. Its group structure has been determined for
relatively few classes of graphs, e.g. complete graphs, and complete bipartite

graphs.
For complete multipartite graphs Kn,...,n, , we describe the critical group
structure completely. For Cartesian products of complete graphs Ky, X --- X

K, , we generalize results of H. Bai on the k-dimensional cube, by bounding
the number of invariant factors in the critical group, and describing completely
its p-primary structure for all primes p that divide none of ny,...,ng.

1. INTRODUCTION AND BACKGROUND

The critical group of a connected graph is a finite abelian group whose structure
is a subtle isomorphism invariant of the graph. It is closely connected with the
graph Laplacian, as we now explain.

If G = (V, E) is a finite graph without self-loops, but with multiple edges allowed,
then its Laplacian L(QG) is the |V| x |V| Laplacian matriz L(G) defined by
L(G)y o — degi(v) if v=1'

’ — My v/ else
where m,, .+ denotes the multiplicity of the edge {v,v'} in E. When G is connected,
the kernel of L(G) is spanned by the vectors in RY which are constant on the
vertices. Thinking of L(G) as a map Z!IVI — ZIVI  its cokernel has the form

ZV imL(G) = Z & K(G).

where K (G) is defined to be the critical group. It follows from Kirchoff’s Matrix-
Tree Theorem that the order |K(G)| is the number x(G) of spanning trees in G.

Kirchoff’s Matrix-Tree Theorem.(see e.g. [2, Chapter 6))
(1) -
k(G) = (=1)""7 det L(G)
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where L(G) is a reduced Laplacian matriz obtained from L(G) by striking
out any row ¢ and column j.
(i) If the eigenvalues of L(G) are indexed A1, ..., Ap—1, An, where n = |V| and
A =0, then

The critical group K(G) has also been called the Picard group, the Jacobian
group, the tree group, the sandpile group, and has a close connection with the critical
configurations in a certain chip-firing game on G (known as abelian sandpiles in the
physics literature)—see e.g. [3], [4], [5], [6], [7], [9, §14.13], [12].

Compared to the number of results on the spanning tree number x(G), there are
relatively few results describing the group structure of K(G) in terms of structure
of G. There are also very few interesting infinite families of graphs for which the
group structure has been completely determined. For example, Cayley’s celebrated
formula k(K,) = n"? is suggestive of the structure of the critical group for the
complete graph K,; it turns out that

K(K,) = (Z/nZ)" 2.

This paper studies the critical group for two families of graphs generalizing the
complete graphs K, and for which the spanning tree numbers are known: complete
multipartite graphs K, ., and Cartesian products K,, x --- x K, .
For the complete multipartite graph K,,, ... ,, one knows from simple eigenvalue
calculations (see Section 2 below, or [10]) that if we set
N:=n+- - +n(=1|V])
Ni =N — ng,

then

k
(1) F(Kny o) = NE2 TN

i=1
In the bipartite case k = 2, Lorenzini [11] calculated that
(2) K(Kpyny) = (Z/n1Z)"2 7% © (Z/n2Z)™ 2 © Z/n1noZ,

which one can check has order agreeing with the case kK =2 in (1). Our first main
result shows that for & > 2, the answer is a bit more subtle, involving arithmetic
properties of the integers IV; and k—1. Let 01,09, ..., 0% be the invariant factors of
@k | Z/N;Z that is, the unique sequence of positive integers having o; divide o1
for eacht < k —1 and

k k
Pz/Nz=Pz/oz.
i=1 i=1

Also define
g = ng(k — 1,N1,N2, e ,Nk)
h:=o102/g '
Theorem 1. For k > 2 one has
k k

K(Kn,..m,) = @P@/N2)™ 2 & 2/gZ © Z/hWZ & @DZ/oNL.
i=1 =3
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Note that this agrees with (1) because

k k k
gh][(eiN) = N*2 [ o = N* 2 ][ M.
=3 i=1 i=1

For the Cartesian product K,, x --- x K,,, we will henceforth assume (without
loss of generality) that n; > 2 for each i. One knows from simple eigenvalue
calculations (see Section 2) that if we set Ng := >, g n, then

1 . n;—
(3) K(Kpy X oo X Ky ) = ——— H Ngles( 1)
i mi giscm

Describing the exact structure of the critical group K (K,, x --- x K,,) appears
to be difficult, due to bad behavior of its p-primary structure for primes p that

divide some of ny,...,ng. However, for other primes, things are as simple as one
could hope, based on (3).
Theorem 2. For every prime p that divides none of ni,...,ng, the Sylow p-

subgroup (or p-primary component) of the critical group K(K,, x ---x K,,) has
the following description:

Syl, K (K, % - x Ky, ) = @ Syl (Z/Nsz)TiestD
0£SCK]
We also have the following result in general.
Theorem 3. The critical group K(K,, X --- x K,,) has at most

1 k k
5 (il:[lni+il:[1(ni—2)> -1

imwvariant factors.

In the special case where ny = - -+ = ny = 2, so that K,,, x --- x K,,, = (K2)" is
the 1-skeleton of the k-dimensional cube, this critical group structure was studied
by H. Bai [1]. He was able to show a result (Corollary 17 below) equivalent to the
specialization of Theorem 2, and also that Theorem 3 is tight in this special case.

In the remainder of the paper, we prove these results. Although not strictly
necessary for what follows, Section 2 reviews the results on Laplacian eigenvalues
needed to compute the spanning tree numbers given by (1) and (3). Section 3
proves Theorem 1, while Section 4 proves Theorems 2 and 3. It turns out that
both Theorem 2 and 3 follow from a somewhat surprising result (Theorem 13),
which greatly simplifies the Laplacian presentation for the critical group. This
result says that L(K,, x --- x K,,), which we know to have integer eigenvalues
and hence be diagonalizable over Q, is actually triangularizable over Z (that is, it is
triangularizable by a unimodular change-of-basis). Note that this need not happen
in general for Laplacian matrices, e.g. one can check that a path with 4 vertices
has Laplacian matrix which cannot be triangularized even over Q.

Our main tools will be the use of Smith normal form (see e.g. [8, Chapter 12])
or other diagonal forms for an integer matrix, which can be achieved by row and
column operations that are invertible over Z. Say that two matrices A, B € Z™*"
are equivalent (written A ~ B) if there exist matrices P € GL(m,Z),Q € GL(n,Z)
such that B = PAQ. Equivalently, B is obtainable from A by a sequence of row
and column operations in which one is allowed to
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e permute rows or columns,

e scale any row or column by —1, or

e add any integer multiple of one row (resp. column) to another row (resp.
column).

It is easily seen that A ~ B implies cokerA = coker B. Our methodology will often
be to bring the Laplacian matrix L(G) into a simpler (hopefully diagonal) form via
row and column operations. The Smith normal form is a diagonal canonical form for
our equivalence relation: every A € Z™*"™ is equivalent to a unique diagonal matrix
S (ie. S;; =0 for i # j) whose diagonal entries s1,...,s; (where t = min(m,n))
have s; dividing s;4+1 for i = 1,2,...,t — 1. We will also use the fact that the
values s; can also be interpreted as follows: for each i, the product siss - --s; is the
greatest common divisor of all i-by-i minor subdeterminants of A.

2. SPANNING TREE NUMBERS

In this section we recall how certain natural constructions on graphs behave
well with respect to Laplacian eigenvalues, and use this to deduce the formulae
(1) and (3). Given a graph G with n vertices, we will number the eigenvalues of
its Laplacian matrix L(G) in weakly decreasing order (A1(G),..., A\, (G)), so that
An(G) =0.

For example, trivially the disjoint union G1 + G2 of two graphs has

L(G1+ G2) = L(Gy) ® L(G2)

and hence its eigenvalues are the (multiset) union of the eigenvalues for each G;.

It is also well-known [9, Lemma 13.1.3] that if G has no multiple edges, then its
complement graph G (having same vertex set V, and edge set equal to the pairs in
V which are not edges of G) satisfies

N(G) =n—X\_i(G) for i=1,2,...,n—1.

Note that the complete multipartite graph K, . ., is the complement of the
disjoint union K, +---+ K,, . Since L(K,) is well-known and easily seen to have

eigenvalues (n,...,n,0), one concludes that L(K,, + ---+ K,, ) has eigenvalues
———
n—1
(N1, .. yN1, ey Mgy ey, 0,000, 0).
——— —_———— ——
ni—1 ni—1 k

Hence if we recall the notation N := Zle n;, then L(Kp,,  n,) has eigenvalues
(N-ny,....,N—nq,....,N—ng,...,N —ni,N,... . N,0).
————

n1—1 ngp—1 k—1

Applying Kirchoff’s Theorem Part (ii) and recalling N; := N — n; then gives (1):
Nkfl Hf_ (N _ ni)nifl
K/(Knlw--;nk) = 71N

_ Nk—2 ﬁNlnz—l

=1

Another well-behaved operation is the Cartesian product of two graphs

Gi1= W, En), Go = (Va, Es),
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defined by
G1 X GQ = (‘/, E) = (V1 X ‘/2, (V1 X EQ) II (El X ‘/2»

In other words, (21, x2), (y1,y2) spans is an edge of G; x Gy if either z; = y; and
{z2,y2} is an edge of Ga, or x2 = yo and {x1,y1} is an edge of G;.

When one identifies the space RV**"2 with the tensor product RV* @ R"2 in the
obvious way, one can check that this identifies

L(G1 x G2) = L(G1) ® 1 + 1 ® L(G2).

Consequently, a complete set of eigenvectors for L(G1 x G2) are obtained by ten-
soring any A(M-eigenvector vy for L(G;) with any A(?-eigenvector vy for L(Gs) to
obtain the (A 4+ X\(?))-eigenvector v; ® vy for L(G x Gy).

If one iterates this and uses the known eigenvalues for L(K,,), one concludes that
L(Ky, x---xK,,) has the eigenvalue Ng := ), ¢ n; with multiplicity [ [, g(n;—1)
for each subset S C [k]. Noting that the 0 eigenvalue occurs exactly once for S = 0,
and that K, x --- x K, has Hle n; vertices, Kirchoft’s Theorem Part (ii) then
immediately yields (3).

3. COMPLETE MULTIPARTITE GRAPHS
We recall the statement of Theorem 1.

Theorem 1. For k > 2 one has

k k

K(Kn,..m,) 2 @P@/N2)™ ™ & 2/gZ © Z/hWZ & @HZ/oNL.
i=1 i=3
where 01,0, ...,0k are the invariant factors of ®F_Z/N;Z, and

g :=ged(k —1, N1, Na, ..., Ng)
h:=o0102/g '

Proof. We start with a description of the Laplacian matrix L(K,,, . n,), and then

perform some easy row and column operations to simplify it, up to equivalence.
For the sake of notation, let I,,, denote an m x m identity matrix, and Jy,x, an

m x n matrix having all entries equal to 1. Then it is easily seen that by ordering

the vertices of K,,, .. n, in their groups of size ny,n2,...,ny, one has
Nllnl _Jnl Xnao Tt _Jannk
—Jn NoI, :
_ 1Xn2 24n,y
L(Knl ----- Knk) - . .
: s ' _Jnk—l Xny
_Jnk XM e _J’ﬂkXTLk71 N]CI’ﬂk

In the first stage of reduction, one can perform row and column operations on
L(Kp, ....n,) to make the on- and off-diagonal blocks look as follows:

.....
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N; 0 0 0 —n;lV; 0 0 O 0 0
0O N, O 0 0 0O 0 O 0 0
(@) 0o 0 N and 0 0 O
: : .0 0 : : .0 0
0 O 0 N; 0 0 O 0 0 0
L 0 0 0 0 N; | -1 0 0 0 O

The matrices P and @ such that P - L(Kp,,  k, )@ has this form are block

diagonal P = diag(Py, ...

matrices given as:

, Pr), Q = diag(Q1, .. .

.....

,Qk), where P; and Q; are n; X n;

1 1 1 1 1—mn; ] 1 -1 -1 -1 1-—mn,

01 0 0 -1 0 1 0 0 1
o 0 0 1 O, = 0 O 1

Lo 0 -1 : : . 0 1

0 0 0 1 -1 0 O 0 1 1

1 0 0 0 O 1 ] 10 0 0 0 1

Looking at the form of the blocks in (4), one sees that each integer IN; occurs as
the unique non-zero entry in its row and column n; — 2 times, and hence

()

Z@K(G)':(

k

i=1

D (Z/N;Z)®"i=2

) @ cokerL

where L is the 2k x 2k matrix obtained by removing these rows and columns:

Nl —n1N1 O O O O
0 Ny -1 0 -1 0
0 0 NQ —7?,2N2
-1 0 0 Na
L= 0 0
-1 0
0 0 0 0 Nk —nka
-1 0 -1 0 0 N

Further reduction of L can be achieved by re-ordering rows and columns to
obtain

0 -1 -1 Ny 0 0 i
-1 0 0 Ny

: -1 ; 0
| -1 -1 0 0 0 N
T N1 0 0 —?’L1N1 0 0

0 NQ 0 —n2N2
.0 0

L 0 0 Nk 0 0 —nka
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One can further reduce L’ to obtain

I _ 0
(6) [ P } :
where
NN, 0 0 Ny
0 NN, : :
L// o
. . . 0 N1
0 0 N Ny, Ny,
N1 Ni_1 Ny k—1

The P,Q € GL(Z) achieving this reduction of L’ are

r 0 1 0 .o 07
0
p=| M
0 —Ny
0
0 0 —Np 1
L -1 -1 -1 0 0 0|
-1 -+ -1 0 —Ny —N3 -+ —Ny 2-k]
1 0 -~ 0 Ny 0 0 1
0 A
1 0 1
Q= -1 Ny 1
' 0
0
o e 0 o

Since (6) implies that cokerL’ = cokerL”, comparing (5) with Theorem 1 shows
that it only remains to prove

k
cokerl” 2 Z®© Z/gZ © Z/hL & D Z/oNZ.
=3
Note that the column vector [1 1 ... 1 — N]% spans the kernel of L”, which is
therefore a (k+1) x (k+ 1) matrix of rank k. Also note that the ged of the entries

of L” coincides with ¢g. Bearing in mind that o102 ---0; is the ged of all j-fold
products IV;, - -+ Ny, Theorem 1 follows from this claim:
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for each j = 2,3,...,k, the ged of all 7 x j minors of L” equals the
ged of all products of the form NY72N; -+ N; .

To this end, note that each N9=2N;, -- - Nj; does occur as such a j x j minor of
L”, namely by choosing

TOWS {il, NN ,’L'jfg,ijfl, k + 1}
columns {il, . ,’L'j,Q,Z.j,k + 1}

from L”.

Thus it only remains to show that each j x 7 minor of L”, say the one indexed by
rows R and columns C, is divisible by the greatest common divisor of the products
NI=2N;, -+ N;,. This is easily verified in cases, based on whether R,C contain
k + 1, and how they intersect:

e When neither R nor C' contains k£ + 1, one is looking at the j x j minors of
the matrix diag(N Ny, ..., NNy), which clearly are either 0 or of the form
+NIN;, -+ Nj,.

e When one of R or C' contains k 4 1, but the other does not, one can check
that one either obtains minors which are 0 or of the form =N/~ N; --- N;..

e When both R, C contain k 4 1, there are three cases, depending upon how
R, C intersect. If the symmetric difference (R — C') U (C — R) contains
more than two elements, then one can check that the minor vanishes. If
the symmetric difference has cardinality 2, one can check that the minor
will be of the form +N7=2Nj, --- N, . If R = C, the minor is a determinant

of the form
NN; 0 e 0 Ny,
0 NN :
: . 0 Ni,_,
0 e 0 NN;, ., Ni_,
N; . Ni; ., Ni,_, k-

To evaluate this determinant, add to the last row —% times each of the
other rows. This does not affect the value of the the determinant, and
creates an upper triangular matrix whose determinant is

(V) () (= 1) = V4 ))
=N'72N;, ---N,

ij71

((k=1)N = (Ni, +---Ni;_,))

k
= NI2N; - N, <Z N; — (N;, +- ..Nijl)>
=1

= Nj_2Ni1 - Ni,_, Ny,
m@{i1,...;i;—1}
= > NN, N, Np.
m{in,...ij—1}

This last sum is divisible by the gcd of the N7=2N,, - - - Ni,, so the proof of
Theorem 1 is complete.

O
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Example 4.
As an illustration of Theorem 1, we compute K (K44,). In this situation,
k=3 N=4+4+6=14, N; =10, No = 10, N3 =8
and
ZJ10Z & Z)10Z & /ST = 7,)27 & Z)10Z & Z/40Z.

Thus one has

2.1
o1 =2, 0o =10 03 = 40, g = ged(3 — 1,8, 10, 10) = 2, h:Tozl().

Consequently,
K(K4456)
>~ (Z/102)* 2 @ (Z/102)* 2 & (Z/82)° 2 © 227 & Z/10Z & 7./ (14 - 40)Z
>~ (Z/10Z)° @ (Z/87)* © Z/27 & 7./560Z.

We close this section by noting a special case where the form of Theorem 1
simplifies, so that the arithmetic issues disappear.

Corollary 5. Let k > 2. For the complete k-partite graph with k blocks of vertices
of equal size m, one has
K(Km,....m)= Z/(k—1)Z © (Z/(k—1)mz)*m?
——

k

& Z/(k—)m’Ze (Z/k(k—1)m?z)" >

Proof. The bipartite case k = 2 follows from Lorenzini’s result (2). For k > 3,

apply Theorem 1 after noting that when n; = --- = nx = m, one has
N =km
Ni=(k—-1m
o, =(k—-1m
g=k-1
h=(k—1)m?

4. CARTESIAN PRODUCTS OF COMPLETE GRAPHS

The goal of this section is to prove Theorems 2 and 3, both of which will be de-
duced from Theorem 13. The latter provides a surprisingly simple triangularization
of L(K,, x ---x Kp,) by an integer (unimodular) change-of-basis.

Throughout this section, I will denote an identity matrix of varying size, whose
size can be inferred from the context. Recall also our tacit assumption that n; > 2
for each i. We introduce here the equivalence relation for unimodular change-of-
bases, and note some of its trivial properties for later use.

Definition 6. For A, B € Z™*", say that A ~ B if there exists a P € GL(n,Z)
such that B = PAP™!.

Proposition 7. Note that
(i) A~ B implies A ~ B.
(i) Aq = Bq for each o implies @, Ao ~ @D, Ba L.
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The essence of Theorem 13 turns out to be repeated application of a simple
fact (Proposition 9 (v) below) that generalizes the row-reductions of L(K,,) used
to compute the critical group K (K,) = (Z/nZ)" " for the complete graph K,,.

Definition 8. If M and T are square matrices of the same size, H,(M,T) is the
n x n (block) matriz defined by

M-T -T e -T
H,(M,T) := T M-T
: - - -T
=T e -T M-T
Proposition 9. The construction H,(M,T) has the following properties.
(i) Hy(M,T)+ cIl = H,(M + cI, T) for any scalar c.
ii) A~ B implies H,(A,I)~ H,(B,I).

(ii)
1; (59 Ao, 1) = @, Ho(Aa, ).
) H

(iii

(iv

(v

L(Kn x G) = Hp(L(G), 1) +nl
M T
B(n—2)
n(MT) = MPH @ {0 M- nT] '
Proof. Assertions (i)-(iv) are completely straightforward from the definitions. For
assertion (v), one can check that

M T
. O = MO(n=2)
™ PomonT)-Q=ne e [ T
where
M1 o -~ 0 =1 07
0 1
P = o -1 0],
0 0 1 -1 0
0o - 0 0 1 0
-1 o -1 -1 -1 -1
M1 0 0 1 07
0 1
Q=|: . . 0 1 0
o --- 0 1 1 0
o --- 0 0 1 0
-1 o -1 -1 1-n -1

interpreting the scalar entries ¢ = 0,1, —1,1 — n above as scalar matrices cI of the
same size as M and T. One can then either check directly that @ = P!, or simply
set M =T and T =0 in (7) to reach the same conclusion. O

Repeatedly applying parts (iv) and (v) of Proposition 9 to L(K,, x --- x K,,)
will give rise to upper triangular matrices of a certain form.
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Definition 10. For any integers m,my, ..., m,, define
M(m;my,...,my) =
[m] ifr=20
M (m; e - 1
(msma, . omp1) otherwise.
0 M(m —mp;my,...,mp_1)

Example 11.

M(m;—) = [m];
[(m 1 1 0
Mm;ma) = K m—ml] [O m(m—ml)}’
[m 1 1 0
0 m—m 0 1
Mimgm,mz) =g 70 1
_O 0 0 m—1mi — Mo
N 1 0 ® m(m —my) 2m — my — Mo
0 1 0 (m —mg)(m —my —mg)
(1 0 @ a O
0 1]%0 »)

where
a = ged (m(m —my), 2m —mq —ma, (Mm —ma)(m —my —ma))
m(m —ma)(m — ma)(m —my —ma)

b= .
a

The following proposition follows easily by induction on r.
Proposition 12. For any scalar ¢, one has
M(m+c¢my,...,m.)=M(m;mq,...,m.)+cl. O

We can now triangularize L(K,, X --- x K,, ). For this purpose, given any sub-
set § = {s1 <--- < s,} C k], define

M(N;ng):= M(N;ng,,...,ng,).
Theorem 13.
L(Kp, %+ x Ky ) & @) M(Nyng)®icm-s (n=2),
SC[k]
Consequently,

Z D K(Knl X X Knk) = @ COkerM(N;nS)GBHiE[k]fS (ni72).
SC[k]

Proof. We use induction on k, with base case k = 1 easily checked to follow directly
from Proposition 9 (iv) and (v).
In the inductive step, one has
L(Kp, XX Ky, ) =L((Kp, X+ X Kp,_,) X Ky,)
=H,, (L(Kp, X X Kpn,_,)+nil, 1)
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by Proposition 9(iv). By induction on k, one has
L(Kn, % x Ky )2 @) MV —nggng)®ien-y-s (n=2)
SClk—1]
and hence by Proposition 12
LK, % x K, ) +md = P M(N;ng)?ien-u-s (i=2),
SClk-1)

Therefore by Proposition 9(ii) and (iii),

L(K’ﬂl XX ch) ~ Hp, @ M(N;nS)eaHiE[kfl]fs (m—2),I
SClk—1]

D Hu (M(N;ng), 1)®lictrs (=2,
SClk—1]

%

After noting that Proposition 9(v) along with the definition of M(N;ng) shows
Hy (M(N;ns), I) = M(N;ng)® =2 @& M(N;nsuq)),
one can then apply Proposition 7(ii) to give
L(Kp, % x Kp,)~ @ (M(N;ns)@(nk—2)ni€[k—l]fs (ni—2)
SClk—1]
@M(N;nsu{k})eaniewﬂ]—s (”i*Q))
- @ M(N;ng)® e —s (ni=2),
SCIk)
O

Theorems 2 and 3 require a tiny bit of further row-reduction on the matrices
M(N;ng), provided by the following proposition.

Proposition 14. Ifr > 1,
M(m;ma,...,mp) ~ Iprmr @ M(m;ma,...,me_1)M(m —mpe;ma, ... mpe_1).

Proof. Note that for any integer square matrices A, B of the same size, one has

A T A T 0 I
[o B] ~ {—AB 0] ~ {—AB 0} ~1OAB.
Apply this with
A=M(m;my,...,mp_1)

B=M(m—mgmy,...,me_1).

Proof of Theorem 3.

From Proposition 14, the Smith normal form of M (N;ng) = M(N;ns,,...,ns,)
contains at least 2"~! ones, which is half its size. Hence the total number of
ones in the Smith normal form of L (K,, x -+ x K,,) is at least half the com-
bined size of the matrices M (N;ng), where §) # S C [k]. Since the total size of
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L(K, x--xKp,)is Hle n;, and corresponding to S = () there are Hle (n; — 2)
one-by-one matrices of the form M(N;—) = [N], this number of ones is at least

1 [E K
5 (Hnl — 1_[(7’LZ —2)) .
i=1 i=1
Since L (K, x --- X K,,) also has a 0 in its Smith normal form, the number of
invariant factors is at most
k 1 [E k 1 [E k
i=1 i=1 i=1 i=1 i=1
As was mentioned in the Introduction, H. Bai [1, Theorem 1.1] showed that in
the case ny = --- = ny = 2, the number of invariant factors is exactly 2¥~1 — 1, so
that the bound in Theorem 3 is tight in this case. Unfortunately, it is not tight in
general, as shown by the following example.

Example 15.
Proposition 14 implies that

M(N;nyi,n2,n3)

~ 127“71@
N(N—n3) 2N—n1—n3 2N—n2—n3 2
0 (N —n1)(N —n1 — n3) 0 e
0 0 (N—TLQ)(N—TLQ—TLg) ﬂ ’
0 0 0 v
where

a=2N —2ny —ng —n3

6:2]\7—711—2712—713

v =(N—ny—n2)(N —ny; —ny —n3).
The presence of the entry 2 in the upper right corner of this last matrix has surpris-
ingly subtle consequences for the structure of the critical group L(K,,, X K, X K,,).
In particular, if at least one other entry in the above matrix is odd, then the ged
of the entries will be 1, so K(K,, x K,, x Kp,) will have fewer invariant factors

than the upper bound given in Theorem 3. For example, one can compute by brute
force that

K(Ks x Ky x Ky) = Z/5Z ® L/5Z ® L/35Z & /4207

which has 4 invariant factors, one fewer than the predicted upper bound:

k k
1 1
§<‘I_I1ni+.|_|1(ni—2)> —1=5(3-2:2+1:0.0)-1=5.

Also, this entry of 2 can cause the critical group structure to depart from naive
guesses based on the eigenvalues of the Laplacian. For example, (1) predicts the
tree number
43'43'43'89'89'89'1227

4-4-4 ’
and so one might naively hope that the critical group K (K4 x K4 x K) is a direct
sum of cyclic groups all of the form Z/47Z, 7/8Z, 7/12Z. This is contradicted by

Ii(K4 X K4 X K4) =
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the presence of the 2 in the upper right of the matrix above, which via Theorem 13,
shows that Z/2Z will occur as a summand of the critical group.

We note that neither of these subtleties arises in M (N;n1,n2); see Example 11.
Consequently, if one desires, one can use Theorem 13 along with the calculations
in Example 11 to write down an explicit expression for K(K,, x K,,) as a direct
sum of cyclic groups.

For the proof of Theorem 2, we require one further simple lemma about p-primary
components Syl,(G) of abelian groups G.

Lemma 16. (¢f. [1, Proposition 3.1]) Let G be an abelian group, and let o, 3 be
two endomorphisms G — G satisfying f — o =m - 1g for some integer m.
Then for any prime p that does not divide m, one has

Syl,(coker a3) = Syl ,(coker e @ coker f3).

Proof. Consider the maps

coker a3 2 cokera @ coker 8
g +imaf — (g+ima,g+im3)
coker o @ coker (3 4, coker a3

(g1 +ima, g2 +im ) —  Bg1 —ags +imaf

One can check that ¢, are well-defined, using the fact that 5 —a = m -1 implies
G, a commute, and hence

imaf = im fa C ima,im S3.

A straightforward calculation shows that the composite maps ¢, ¥¢ both coincide
with scalar multiplications by m, and hence induce inverse isomorphisms on p-
primary components. O

Proof of Theorem 2.
Note that Propositions 12 and 14 imply that Lemma 16 can be applied with

a=M(N;ng,...,n5._,)
B=MN =150, N, )
m=n,
to show that for any prime p not dividing n,, one has
Syl,cokerM (N;nsg,, ..., ng,) =
Syl, (cokerM (N;ng,, ..., ns,_,) ® cokerM (N —ng, ;ns,, ..., 0, _,))
Note that cokerM (m;—) = Z/mZ, except in the case where m = 0 so that

cokerM (0; —) = coker(0) = Z. Hence one can iterate (8) to conclude that if p
divides none of ng,,...,ns,, one has

Syl,(cokerM (N;ns)) = Syl, | €D Z/(N-Np)Z |,
TCS,T+#[k|
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where Ny := ). n;. Applying this to Theorem 13 gives

Syl (K (K, x -+ x Kp,)) 2 Syl, | @ cokerM (N;ng)®1lizs (=2
SC[K]

= @ Syl @ Z/(N — NT)ZGBHizs (n;—2)
SC[K] TCS T4
= @ Syl @ Z/NT/Z®Hies/ (ni—2)
#T/C S/QT/,Tyé[k]
= @ Sylp (Z/NT/Z)®HiET’ mi=1)
0T’ C[k]

where the second-to-last isomorphism comes from interchanging the order of sum-
mations, along with a change of summation index so that S/, T' are the complements
within [k] of the sets S, T, respectively. The last isomorphism uses the identity

Z H (ni —2) = H(1+(ni_2)): H(ni—l).
S'CT’ icS’ icT’ icT’

Corollary 17. (H. Bai, [1, Theorem 1.2]) For any odd prime p, the 1-skeleton of
the k-cube Qr = Ko X --- X Ko has
—_——

k times
(7)
SyL, (K (Qr)) = Syl, (@ Z/EZ) :
Proof. Let ny = --- =ny = 2 and apply Theorem 2, giving

®Iles (2-1)

SyL,(K(Qr) = Syl, | P Z/NsZ
0#SCk]

Il

sy, | €p z/2151z
0#SC K]

k o(})
Syl,, (@ Z /2€Z>
=1

Il

1%

k a(})
Syl,, <@ Z /ez) .
=1
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