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Abstract. The critical group of a connected graph is a finite abelian group,
whose order is the number of spanning trees in the graph, and which is closely
related to the graph Laplacian. Its group structure has been determined for
relatively few classes of graphs, e.g. complete graphs, and complete bipartite
graphs.

For complete multipartite graphs Kn1,...,nk
, we describe the critical group

structure completely. For Cartesian products of complete graphs Kn1 × · · · ×

Knk
, we generalize results of H. Bai on the k-dimensional cube, by bounding

the number of invariant factors in the critical group, and describing completely
its p-primary structure for all primes p that divide none of n1, . . . , nk.

1. Introduction and background

The critical group of a connected graph is a finite abelian group whose structure
is a subtle isomorphism invariant of the graph. It is closely connected with the
graph Laplacian, as we now explain.

If G = (V,E) is a finite graph without self-loops, but with multiple edges allowed,
then its Laplacian L(G) is the |V | × |V | Laplacian matrix L(G) defined by

L(G)v,v′ =

{

degG(v) if v = v′

−mv,v′ else

where mv,v′ denotes the multiplicity of the edge {v, v′} in E. When G is connected,
the kernel of L(G) is spanned by the vectors in RV which are constant on the
vertices. Thinking of L(G) as a map Z|V | → Z|V |, its cokernel has the form

Z|V |/imL(G) ∼= Z ⊕ K(G).

where K(G) is defined to be the critical group. It follows from Kirchoff’s Matrix-
Tree Theorem that the order |K(G)| is the number κ(G) of spanning trees in G.

Kirchoff’s Matrix-Tree Theorem.(see e.g. [2, Chapter 6])

(i)

κ(G) = (−1)i+j detL(G)
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where L(G) is a reduced Laplacian matrix obtained from L(G) by striking
out any row i and column j.

(ii) If the eigenvalues of L(G) are indexed λ1, . . . , λn−1, λn, where n = |V | and
λn = 0, then

κ(G) =
λ1 · · ·λn−1

n
.

The critical group K(G) has also been called the Picard group, the Jacobian
group, the tree group, the sandpile group, and has a close connection with the critical
configurations in a certain chip-firing game on G (known as abelian sandpiles in the
physics literature)—see e.g. [3], [4], [5], [6], [7], [9, §14.13], [12].

Compared to the number of results on the spanning tree number κ(G), there are
relatively few results describing the group structure of K(G) in terms of structure
of G. There are also very few interesting infinite families of graphs for which the
group structure has been completely determined. For example, Cayley’s celebrated
formula κ(Kn) = nn−2 is suggestive of the structure of the critical group for the
complete graph Kn; it turns out that

K(Kn) ∼= (Z/nZ)n−2.

This paper studies the critical group for two families of graphs generalizing the
complete graphsKn, and for which the spanning tree numbers are known: complete
multipartite graphs Kn1,...,nk

and Cartesian products Kn1 × · · · ×Knk
.

For the complete multipartite graph Kn1,...,nk
, one knows from simple eigenvalue

calculations (see Section 2 below, or [10]) that if we set

N := n1 + · · · + nk(= |V |)

Ni := N − ni,

then

(1) κ(Kn1,...,nk
) = Nk−2

k∏

i=1

Nni−1
i .

In the bipartite case k = 2, Lorenzini [11] calculated that

(2) K(Kn1,n2)
∼= (Z/n1Z)n2−2 ⊕ (Z/n2Z)n1−2 ⊕ Z/n1n2Z,

which one can check has order agreeing with the case k = 2 in (1). Our first main
result shows that for k > 2, the answer is a bit more subtle, involving arithmetic
properties of the integers Ni and k−1. Let σ1, σ2, . . . , σk be the invariant factors of
⊕ki=1Z/NiZ that is, the unique sequence of positive integers having σi divide σi+1

for each i ≤ k − 1 and
k⊕

i=1

Z/NiZ ∼=

k⊕

i=1

Z/σiZ.

Also define
g := gcd(k − 1, N1, N2, . . . , Nk)

h := σ1σ2/g
.

Theorem 1. For k > 2 one has

K(Kn1,...,nk
) ∼=

k⊕

i=1

(Z/NiZ)ni−2 ⊕ Z/gZ ⊕ Z/hZ ⊕
k⊕

i=3

Z/σiNZ.
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Note that this agrees with (1) because

gh
k∏

i=3

(σiN) = Nk−2
k∏

i=1

σi = Nk−2
k∏

i=1

Ni.

For the Cartesian product Kn1 × · · · ×Knk
, we will henceforth assume (without

loss of generality) that ni ≥ 2 for each i. One knows from simple eigenvalue
calculations (see Section 2) that if we set NS :=

∑

i∈S ni, then

(3) κ(Kn1 × · · · ×Knk
) =

1
∏k
i=1 ni

∏

∅6=S⊆[k]

N
∏

i∈S
(ni−1)

S

Describing the exact structure of the critical group K(Kn1 ×· · · ×Knk
) appears

to be difficult, due to bad behavior of its p-primary structure for primes p that
divide some of n1, . . . , nk. However, for other primes, things are as simple as one
could hope, based on (3).

Theorem 2. For every prime p that divides none of n1, . . . , nk, the Sylow p-
subgroup (or p-primary component) of the critical group K(Kn1 × · · · ×Knk

) has
the following description:

SylpK(Kn1 × · · · ×Knk
) ∼=

⊕

∅6=S⊆[k]

Sylp (Z/NSZ)
∏

i∈S
(ni−1)

.

We also have the following result in general.

Theorem 3. The critical group K(Kn1 × · · · ×Knk
) has at most

1

2

(
k∏

i=1

ni +
k∏

i=1

(ni − 2)

)

− 1

invariant factors.

In the special case where n1 = · · · = nk = 2, so that Kn1 × · · · ×Knk
= (K2)

n is
the 1-skeleton of the k-dimensional cube, this critical group structure was studied
by H. Bai [1]. He was able to show a result (Corollary 17 below) equivalent to the
specialization of Theorem 2, and also that Theorem 3 is tight in this special case.

In the remainder of the paper, we prove these results. Although not strictly
necessary for what follows, Section 2 reviews the results on Laplacian eigenvalues
needed to compute the spanning tree numbers given by (1) and (3). Section 3
proves Theorem 1, while Section 4 proves Theorems 2 and 3. It turns out that
both Theorem 2 and 3 follow from a somewhat surprising result (Theorem 13),
which greatly simplifies the Laplacian presentation for the critical group. This
result says that L(Kn1 × · · · × Knk

), which we know to have integer eigenvalues
and hence be diagonalizable over Q, is actually triangularizable over Z (that is, it is
triangularizable by a unimodular change-of-basis). Note that this need not happen
in general for Laplacian matrices, e.g. one can check that a path with 4 vertices
has Laplacian matrix which cannot be triangularized even over Q.

Our main tools will be the use of Smith normal form (see e.g. [8, Chapter 12])
or other diagonal forms for an integer matrix, which can be achieved by row and
column operations that are invertible over Z. Say that two matrices A,B ∈ Zm×n

are equivalent (written A ∼ B) if there exist matrices P ∈ GL(m,Z), Q ∈ GL(n,Z)
such that B = PAQ. Equivalently, B is obtainable from A by a sequence of row
and column operations in which one is allowed to



4 BRIAN JACOBSON, ANDREW NIEDERMAIER, AND VICTOR REINER

• permute rows or columns,
• scale any row or column by −1, or
• add any integer multiple of one row (resp. column) to another row (resp.

column).

It is easily seen that A ∼ B implies cokerA ∼= cokerB. Our methodology will often
be to bring the Laplacian matrix L(G) into a simpler (hopefully diagonal) form via
row and column operations. The Smith normal form is a diagonal canonical form for
our equivalence relation: every A ∈ Zm×n is equivalent to a unique diagonal matrix
S (i.e. Si,j = 0 for i 6= j) whose diagonal entries s1, . . . , st (where t = min(m,n))
have si dividing si+1 for i = 1, 2, . . . , t − 1. We will also use the fact that the
values si can also be interpreted as follows: for each i, the product s1s2 · · · si is the
greatest common divisor of all i-by-i minor subdeterminants of A.

2. Spanning tree numbers

In this section we recall how certain natural constructions on graphs behave
well with respect to Laplacian eigenvalues, and use this to deduce the formulae
(1) and (3). Given a graph G with n vertices, we will number the eigenvalues of
its Laplacian matrix L(G) in weakly decreasing order (λ1(G), . . . , λn(G)), so that
λn(G) = 0.

For example, trivially the disjoint union G1 +G2 of two graphs has

L(G1 +G2) = L(G1) ⊕ L(G2)

and hence its eigenvalues are the (multiset) union of the eigenvalues for each Gi.
It is also well-known [9, Lemma 13.1.3] that if G has no multiple edges, then its

complement graph G (having same vertex set V , and edge set equal to the pairs in
V which are not edges of G) satisfies

λi(G) = n− λn−i(G) for i = 1, 2, . . . , n− 1.

Note that the complete multipartite graph Kn1,...,nk
is the complement of the

disjoint union Kn1 + · · ·+Knk
. Since L(Kn) is well-known and easily seen to have

eigenvalues (n, . . . , n
︸ ︷︷ ︸

n−1

, 0), one concludes that L(Kn1 + · · · +Knk
) has eigenvalues

(n1, . . . , n1
︸ ︷︷ ︸

n1−1

, . . . , nk, . . . , nk
︸ ︷︷ ︸

nk−1

, 0, . . . , 0
︸ ︷︷ ︸

k

).

Hence if we recall the notation N :=
∑k

i=1 ni, then L(Kn1,...,nk
) has eigenvalues

(N − n1, . . . , N − n1
︸ ︷︷ ︸

n1−1

, . . . , N − nk, . . . , N − nk
︸ ︷︷ ︸

nk−1

, N, . . . , N
︸ ︷︷ ︸

k−1

, 0).

Applying Kirchoff’s Theorem Part (ii) and recalling Ni := N − ni then gives (1):

κ(Kn1,...,nk
) =

Nk−1
∏k
i=1(N − ni)

ni−1

N

= Nk−2
k∏

i=1

Nni−1
i .

Another well-behaved operation is the Cartesian product of two graphs

G1 = (V1, E1), G2 = (V2, E2),
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defined by

G1 ×G2 := (V,E) = (V1 × V2, (V1 ×E2) q (E1 × V2)).

In other words, (x1, x2), (y1, y2) spans is an edge of G1 ×G2 if either x1 = y1 and
{x2, y2} is an edge of G2, or x2 = y2 and {x1, y1} is an edge of G1.

When one identifies the space RV1×V2 with the tensor product RV1 ⊗RV2 in the
obvious way, one can check that this identifies

L(G1 ×G2) = L(G1) ⊗ 1 + 1 ⊗ L(G2).

Consequently, a complete set of eigenvectors for L(G1 ×G2) are obtained by ten-
soring any λ(1)-eigenvector v1 for L(G1) with any λ(2)-eigenvector v2 for L(G2) to
obtain the (λ(1) + λ(2))-eigenvector v1 ⊗ v2 for L(G1 ×G2).

If one iterates this and uses the known eigenvalues for L(Kn), one concludes that
L(Kn1×· · ·×Knk

) has the eigenvalueNS :=
∑

i∈S ni with multiplicity
∏

i∈S(ni−1)
for each subset S ⊆ [k]. Noting that the 0 eigenvalue occurs exactly once for S = ∅,

and that Kn1 × · · · ×Knk
has

∏k
i=1 ni vertices, Kirchoff’s Theorem Part (ii) then

immediately yields (3).

3. Complete multipartite graphs

We recall the statement of Theorem 1.

Theorem 1. For k > 2 one has

K(Kn1,...,nk
) ∼=

k⊕

i=1

(Z/NiZ)ni−2 ⊕ Z/gZ ⊕ Z/hZ ⊕
k⊕

i=3

Z/σiNZ.

where σ1, σ2, . . . , σk are the invariant factors of ⊕k
i=1Z/NiZ, and

g := gcd(k − 1, N1, N2, . . . , Nk)

h := σ1σ2/g
.

Proof. We start with a description of the Laplacian matrix L(Kn1,...,nk
), and then

perform some easy row and column operations to simplify it, up to equivalence.
For the sake of notation, let Im denote an m×m identity matrix, and Jm×n an

m× n matrix having all entries equal to 1. Then it is easily seen that by ordering
the vertices of Kn1,...,nk

in their groups of size n1, n2, . . . , nk, one has

L(Kn1,...,Knk
) =









N1In1 −Jn1×n2 · · · −Jn1×nk

−Jn1×n2 N2In2

. . .
...

...
. . .

. . . −Jnk−1×nk

−Jnk×n1 · · · −Jnk×nk−1
NkInk









.

In the first stage of reduction, one can perform row and column operations on
L(Kn1,...,nk

) to make the on- and off-diagonal blocks look as follows:
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(4)













Ni 0 0 · · · 0 −niNi
0 Ni 0 · · · 0 0

0 0 Ni
. . .

...
...

...
...

. . .
. . . 0 0

0 0 · · · 0 Ni 0
0 0 · · · 0 0 Ni













and













0 0 0 · · · 0 0
0 0 0 · · · 0 0

0 0 0
. . .

...
...

...
...

. . .
. . . 0 0

0 0 · · · 0 0 0
−1 0 · · · 0 0 0













The matrices P and Q such that P · L(Kn1,...,Knk
) · Q has this form are block

diagonal P = diag(P1, . . . , Pk), Q = diag(Q1, . . . , Qk), where Pi and Qi are ni × ni
matrices given as:

Pi =













1 1 1 · · · 1 1 − ni
0 1 0 · · · 0 −1

0 0 1
. . .

...
...

...
...

. . .
. . . 0 −1

0 0 · · · 0 1 −1
0 0 · · · 0 0 1













, Qi =













1 −1 −1 · · · −1 1 − ni
0 1 0 · · · 0 1

0 0 1 · · ·
...

...
...

...
. . .

. . . 0 1
0 0 · · · 0 1 1
0 0 · · · 0 0 1













Looking at the form of the blocks in (4), one sees that each integer Ni occurs as
the unique non-zero entry in its row and column ni − 2 times, and hence

(5) Z ⊕K(G) ∼=

(
k⊕

i=1

(Z/NiZ)⊕(ni−2)

)

⊕ cokerL

where L is the 2k × 2k matrix obtained by removing these rows and columns:

L =















N1 −n1N1

0 N1

0 0
−1 0

· · ·
0 0
−1 0

0 0
−1 0

N2 −n2N2

0 N2

. . .
...

...
. . .

. . .
0 0
−1 0

0 0
−1 0

· · ·
0 0
−1 0

Nk −nkNk
0 Nk















Further reduction of L can be achieved by re-ordering rows and columns to
obtain

L′ :=



















0 −1 · · · −1 N1 0 · · · 0

−1 0
. . .

... 0 N2
. . .

...
...

. . .
. . . −1

...
. . .

. . . 0
−1 · · · −1 0 0 · · · 0 Nk
N1 0 · · · 0 −n1N1 0 · · · 0

0 N2
. . .

... 0 −n2N2
. . .

...
...

. . .
. . . 0

...
. . .

. . . 0
0 · · · 0 Nk 0 · · · 0 −nkNk



















.
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One can further reduce L′ to obtain

(6)

[
Ik−1 0

0 L′′

]

,

where

L′′ :=











NN1 0 · · · 0 N1

0 NN2
. . .

...
...

...
. . .

. . . 0 Nk−1

0 · · · 0 NNk Nk
N1 · · · Nk−1 Nk k − 1











.

The P,Q ∈ GL2k(Z) achieving this reduction of L′ are

P =





















0 1 0 · · · · · · · · · · · · 0
...

. . .
. . .

. . .
...

0
. . .

. . .
. . .

...

−N1
. . .

. . .
. . .

. . .
...

0 −N2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0 · · · 0 −Nk
. . .

. . . 1
−1 · · · −1 −1 0 0 · · · 0





















Q =























−1 · · · −1 0 −N2 −N3 · · · −Nk 2 − k
1 0 · · · 0 N2 0 · · · 0 1

0
. . .

. . .
. . . N3

. . .
...

...
...

. . . 1
. . .

. . .
. . . 0 1

...
. . . −1

. . .
. . . Nk 1

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . 0
...

. . .
. . .

. . .
...

0 · · · · · · · · · · · · · · · 0 −1 0























Since (6) implies that cokerL′ ∼= cokerL′′, comparing (5) with Theorem 1 shows
that it only remains to prove

cokerL′′ ∼= Z ⊕ Z/gZ ⊕ Z/hZ ⊕
k⊕

i=3

Z/σiNZ.

Note that the column vector [1 1 . . . 1 −N ]T spans the kernel of L′′, which is
therefore a (k+ 1)× (k+ 1) matrix of rank k. Also note that the gcd of the entries
of L′′ coincides with g. Bearing in mind that σ1σ2 · · ·σj is the gcd of all j-fold
products Ni1 · · ·Nij , Theorem 1 follows from this claim:
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for each j = 2, 3, . . . , k, the gcd of all j × j minors of L′′ equals the
gcd of all products of the form N j−2Ni1 · · ·Nij .

To this end, note that each N j−2Ni1 · · ·Nij does occur as such a j × j minor of
L′′, namely by choosing

rows {i1, . . . , ij−2, ij−1, k + 1}

columns {i1, . . . , ij−2, ij , k + 1}

from L′′.
Thus it only remains to show that each j×j minor of L′′, say the one indexed by

rows R and columns C, is divisible by the greatest common divisor of the products
N j−2Ni1 · · ·Nij . This is easily verified in cases, based on whether R,C contain
k + 1, and how they intersect:

• When neither R nor C contains k+ 1, one is looking at the j × j minors of
the matrix diag(NN1, . . . , NNk), which clearly are either 0 or of the form
±N jNi1 · · ·Nij .

• When one of R or C contains k + 1, but the other does not, one can check
that one either obtains minors which are 0 or of the form ±N j−1Ni1 · · ·Nij .

• When both R,C contain k + 1, there are three cases, depending upon how
R,C intersect. If the symmetric difference (R − C) ∪ (C − R) contains
more than two elements, then one can check that the minor vanishes. If
the symmetric difference has cardinality 2, one can check that the minor
will be of the form ±N j−2Ni1 · · ·Nij . If R = C, the minor is a determinant
of the form











NNi1 0 · · · 0 Ni1

0 NNi2
. . .

...
...

...
. . .

. . . 0 Nij−2

0 · · · 0 NNij−1 Nij−1

Ni1 · · · Nij−2 Nij−1 k − 1











To evaluate this determinant, add to the last row − 1
N times each of the

other rows. This does not affect the value of the the determinant, and
creates an upper triangular matrix whose determinant is

(NNi1) · · · (NNij−1)

(

(k − 1) −
1

N
(Ni1 + · · ·Nij−1 )

)

= N j−2Ni1 · · ·Nij−1

(
(k − 1)N − (Ni1 + · · ·Nij−1)

)

= N j−2Ni1 · · ·Nij−1

(
k∑

i=1

Ni − (Ni1 + · · ·Nij−1 )

)

= N j−2Ni1 · · ·Nij−1

∑

m/∈{i1,...,ij−1}

Nm

=
∑

m/∈{i1,...,ij−1}

N j−2Ni1 · · ·Nij−1Nm.

This last sum is divisible by the gcd of the N j−2Ni1 · · ·Nij , so the proof of
Theorem 1 is complete.

�
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Example 4.

As an illustration of Theorem 1, we compute K(K4,4,6). In this situation,

k = 3, N = 4 + 4 + 6 = 14, N1 = 10, N2 = 10, N3 = 8

and
Z/10Z ⊕ Z/10Z ⊕ Z/8Z ∼= Z/2Z ⊕ Z/10Z ⊕ Z/40Z.

Thus one has

σ1 = 2, σ2 = 10 σ3 = 40, g = gcd(3 − 1, 8, 10, 10) = 2, h =
2 · 10

2
= 10.

Consequently,

K(K4,4,6)

∼= (Z/10Z)4−2 ⊕ (Z/10Z)4−2 ⊕ (Z/8Z)6−2 ⊕ Z/2Z ⊕ Z/10Z ⊕ Z/(14 · 40)Z

∼= (Z/10Z)5 ⊕ (Z/8Z)4 ⊕ Z/2Z ⊕ Z/560Z.

We close this section by noting a special case where the form of Theorem 1
simplifies, so that the arithmetic issues disappear.

Corollary 5. Let k ≥ 2. For the complete k-partite graph with k blocks of vertices
of equal size m, one has

K(Km, . . . ,m
︸ ︷︷ ︸

k

) ∼= Z/(k − 1)Z ⊕ (Z/(k − 1)mZ)k(m−2)

⊕ Z/(k − 1)m2Z ⊕
(
Z/k(k − 1)m2Z

)k−2

Proof. The bipartite case k = 2 follows from Lorenzini’s result (2). For k ≥ 3,
apply Theorem 1 after noting that when n1 = · · · = nk = m, one has

N = km

Ni = (k − 1)m

σi = (k − 1)m

g = k − 1

h = (k − 1)m2.

�

4. Cartesian products of complete graphs

The goal of this section is to prove Theorems 2 and 3, both of which will be de-
duced from Theorem 13. The latter provides a surprisingly simple triangularization
of L(Kn1 × · · · ×Knk

) by an integer (unimodular) change-of-basis.
Throughout this section, I will denote an identity matrix of varying size, whose

size can be inferred from the context. Recall also our tacit assumption that ni ≥ 2
for each i. We introduce here the equivalence relation for unimodular change-of-
bases, and note some of its trivial properties for later use.

Definition 6. For A,B ∈ Zn×n, say that A ≈ B if there exists a P ∈ GL(n,Z)
such that B = PAP−1.

Proposition 7. Note that

(i) A ≈ B implies A ∼ B.
(ii) Aα ≈ Bα for each α implies

⊕

αAα ≈
⊕

αBα �.
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The essence of Theorem 13 turns out to be repeated application of a simple
fact (Proposition 9 (v) below) that generalizes the row-reductions of L(Kn) used

to compute the critical group K(Kn) ∼= (Z/nZ)
n−2

for the complete graph Kn.

Definition 8. If M and T are square matrices of the same size, Hn(M,T ) is the
n× n (block) matrix defined by

Hn(M,T ) :=









M − T −T · · · −T

−T M − T
. . .

...
...

. . .
. . . −T

−T · · · −T M − T









.

Proposition 9. The construction Hn(M,T ) has the following properties.

(i) Hn(M,T ) + cI = Hn(M + cI, T ) for any scalar c.
(ii) A ≈ B implies Hn(A, I) ≈ Hn(B, I).
(iii) Hn(

⊕

αAα, I) ≈
⊕

αHn(Aα, I).
(iv) L(Kn ×G) = Hn(L(G), I) + nI

(v) Hn(M,T ) ≈M⊕(n−2) ⊕

[
M T
0 M − nT

]

.

Proof. Assertions (i)-(iv) are completely straightforward from the definitions. For
assertion (v), one can check that

(7) P ·Hn(M,T ) ·Q = M⊕(n−2) ⊕

[
M T
0 M − nT

]

where

P =













1 0 · · · 0 −1 0

0 1
. . .

...
...

...
...

. . .
. . . 0 −1 0

0 · · · 0 1 −1 0
0 · · · 0 0 1 0
−1 · · · −1 −1 −1 −1













,

Q =













1 0 · · · 0 1 0

0 1
. . .

...
...

...
...

. . .
. . . 0 1 0

0 · · · 0 1 1 0
0 · · · 0 0 1 0
−1 · · · −1 −1 1 − n −1













interpreting the scalar entries c = 0, 1,−1, 1− n above as scalar matrices cI of the
same size as M and T . One can then either check directly that Q = P−1, or simply
set M = I and T = 0 in (7) to reach the same conclusion. �

Repeatedly applying parts (iv) and (v) of Proposition 9 to L(Kn1 × · · · ×Knk
)

will give rise to upper triangular matrices of a certain form.
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Definition 10. For any integers m,m1, . . . ,mr, define

M(m;m1, . . . ,mr) :=






[m] if r = 0
[

M(m;m1, . . . ,mr−1) I

0 M(m−mr;m1, . . . ,mr−1)

]

otherwise.

Example 11.

M(m;−) = [m];

M(m;m1) =

[
m 1
0 m−m1

]

∼

[
1 0
0 m(m−m1)

]

;

M(m;m1,m2) =







m 1 1 0
0 m−m1 0 1
0 0 m−m2 1
0 0 0 m−m1 −m2







∼

[
1 0
0 1

]

⊕

[
m(m−m1) 2m−m1 −m2

0 (m−m2)(m−m1 −m2)

]

∼

[
1 0
0 1

]

⊕

[
a 0
0 b

]

,

where

a = gcd (m(m−m1), 2m−m1 −m2, (m−m2)(m−m1 −m2))

b =
m(m−m1)(m−m2)(m−m1 −m2)

a
.

The following proposition follows easily by induction on r.

Proposition 12. For any scalar c, one has

M(m+ c;m1, . . . ,mr) = M(m;m1, . . . ,mr) + cI. �

We can now triangularize L(Kn1 × · · · ×Knk
). For this purpose, given any sub-

set S = {s1 < · · · < sr} ⊆ [k], define

M(N ;nS) := M(N ;ns1 , . . . , nsr
).

Theorem 13.

L(Kn1 × · · · ×Knk
) ≈

⊕

S⊆[k]

M(N ;nS)⊕
∏

i∈[k]−S
(ni−2).

Consequently,

Z ⊕K(Kn1 × · · · ×Knk
) ∼=

⊕

S⊆[k]

cokerM(N ;nS)⊕
∏

i∈[k]−S
(ni−2).

Proof. We use induction on k, with base case k = 1 easily checked to follow directly
from Proposition 9 (iv) and (v).

In the inductive step, one has

L(Kn1 × · · · ×Knk
) = L((Kn1 × · · · ×Knk−1

) ×Knk
)

= Hnk
(L(Kn1 × · · · ×Knk−1

) + nkI, I)
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by Proposition 9(iv). By induction on k, one has

L(Kn1 × · · · ×Knk−1
) ≈

⊕

S⊆[k−1]

M(N − nk;nS)⊕
∏

i∈[k−1]−S
(ni−2)

and hence by Proposition 12

L(Kn1 × · · · ×Knk−1
) + nkI ≈

⊕

S⊆[k−1]

M(N ;nS)⊕
∏

i∈[k−1]−S
(ni−2).

Therefore by Proposition 9(ii) and (iii),

L(Kn1 × · · · ×Knk
) ≈ Hnk




⊕

S⊆[k−1]

M(N ;nS)⊕
∏

i∈[k−1]−S
(ni−2), I





≈
⊕

S⊆[k−1]

Hnk
(M(N ;nS), I)⊕

∏

i∈[k−1]−S
(ni−2).

After noting that Proposition 9(v) along with the definition of M(N ;nS) shows

Hnk
(M(N ;nS), I) ≈M(N ;nS)⊕(nk−2) ⊕M(N ;nS∪{k}),

one can then apply Proposition 7(ii) to give

L(Kn1 × · · · ×Knk
) ≈

⊕

S⊆[k−1]

(

M(N ;nS)⊕(nk−2)
∏

i∈[k−1]−S
(ni−2)

⊕M(N ;nS∪{k})
⊕
∏

i∈[k−1]−S
(ni−2)

)

=
⊕

S⊆[k]

M(N ;nS)⊕
∏

i∈[k]−S
(ni−2).

�

Theorems 2 and 3 require a tiny bit of further row-reduction on the matrices
M(N ;nS), provided by the following proposition.

Proposition 14. If r ≥ 1,

M(m;m1, . . . ,mr) ∼ I2r−1 ⊕M(m;m1, . . . ,mr−1)M(m−mr;m1, . . . ,mr−1).

Proof. Note that for any integer square matrices A,B of the same size, one has
[
A I
0 B

]

∼

[
A I

−AB 0

]

∼

[
0 I

−AB 0

]

∼ I ⊕AB.

Apply this with
A = M(m;m1, . . . ,mr−1)

B = M(m−mr;m1, . . . ,mr−1).

�

Proof of Theorem 3.
From Proposition 14, the Smith normal form of M(N ;nS) = M(N ;ns1 , . . . , nsr

)
contains at least 2r−1 ones, which is half its size. Hence the total number of
ones in the Smith normal form of L (Kn1 × · · · ×Knk

) is at least half the com-
bined size of the matrices M(N ;nS), where ∅ 6= S ⊆ [k]. Since the total size of
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L (Kn1 × · · · ×Knk
) is
∏k
i=1 ni, and corresponding to S = ∅ there are

∏k
i=1 (ni − 2)

one-by-one matrices of the form M(N ;−) = [N ], this number of ones is at least

1

2

(
k∏

i=1

ni −
k∏

i=1

(ni − 2)

)

.

Since L (Kn1 × · · · ×Knk
) also has a 0 in its Smith normal form, the number of

invariant factors is at most
k∏

i=1

ni −
1

2

(
k∏

i=1

ni −
k∏

i=1

(ni − 2)

)

− 1 =
1

2

(
k∏

i=1

ni +

k∏

i=1

(ni − 2)

)

− 1. �

As was mentioned in the Introduction, H. Bai [1, Theorem 1.1] showed that in
the case n1 = · · · = nk = 2, the number of invariant factors is exactly 2k−1 − 1, so
that the bound in Theorem 3 is tight in this case. Unfortunately, it is not tight in
general, as shown by the following example.

Example 15.

Proposition 14 implies that

M(N ;n1, n2, n3)

∼ I2r−1⊕






N(N − n3) 2N − n1 − n3 2N − n2 − n3 2
0 (N − n1)(N − n1 − n3) 0 α
0 0 (N − n2)(N − n2 − n3) β
0 0 0 γ






,

where
α = 2N − 2n1 − n2 − n3

β = 2N − n1 − 2n2 − n3

γ = (N − n1 − n2)(N − n1 − n2 − n3).

The presence of the entry 2 in the upper right corner of this last matrix has surpris-
ingly subtle consequences for the structure of the critical group L(Kn1×Kn2×Kn3).
In particular, if at least one other entry in the above matrix is odd, then the gcd
of the entries will be 1, so K(Kn1 ×Kn2 ×Kn3) will have fewer invariant factors
than the upper bound given in Theorem 3. For example, one can compute by brute
force that

K(K3 ×K2 ×K2) ∼= Z/5Z ⊕ Z/5Z ⊕ Z/35Z ⊕ Z/420Z

which has 4 invariant factors, one fewer than the predicted upper bound:

1

2

(
k∏

i=1

ni +

k∏

i=1

(ni − 2)

)

− 1 =
1

2
(3 · 2 · 2 + 1 · 0 · 0) − 1 = 5.

Also, this entry of 2 can cause the critical group structure to depart from naive
guesses based on the eigenvalues of the Laplacian. For example, (1) predicts the
tree number

κ(K4 ×K4 ×K4) =
43 · 43 · 43 · 89 · 89 · 89 · 1227

4 · 4 · 4
,

and so one might naively hope that the critical group K(K4 ×K4 ×K4) is a direct
sum of cyclic groups all of the form Z/4Z, Z/8Z, Z/12Z. This is contradicted by
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the presence of the 2 in the upper right of the matrix above, which via Theorem 13,
shows that Z/2Z will occur as a summand of the critical group.

We note that neither of these subtleties arises in M(N ;n1, n2); see Example 11.
Consequently, if one desires, one can use Theorem 13 along with the calculations
in Example 11 to write down an explicit expression for K(Kn1 ×Kn2) as a direct
sum of cyclic groups.

For the proof of Theorem 2, we require one further simple lemma about p-primary
components Sylp(G) of abelian groups G.

Lemma 16. (cf. [1, Proposition 3.1]) Let G be an abelian group, and let α, β be
two endomorphisms G → G satisfying β − α = m · 1G for some integer m.

Then for any prime p that does not divide m, one has

Sylp(cokerαβ) ∼= Sylp(cokerα⊕ cokerβ).

Proof. Consider the maps

cokerαβ
φ
→ cokerα⊕ cokerβ

g + imαβ 7→ (g + imα, g + imβ)

cokerα⊕ cokerβ
ψ
→ cokerαβ

(g1 + imα, g2 + imβ) 7→ βg1 − αg2 + imαβ

One can check that φ, ψ are well-defined, using the fact that β−α = m ·1G implies
β, α commute, and hence

imαβ = imβα ⊆ imα, im β.

A straightforward calculation shows that the composite maps φψ, ψφ both coincide
with scalar multiplications by m, and hence induce inverse isomorphisms on p-
primary components. �

Proof of Theorem 2.
Note that Propositions 12 and 14 imply that Lemma 16 can be applied with

α = M(N ;ns1 , . . . , nsr−1)

β = M(N − nsr
;ns1 , . . . , nsr−1)

m = nr

to show that for any prime p not dividing nr, one has

(8)
SylpcokerM(N ;ns1 , . . . , nsr

) ∼=

Sylp
(
cokerM(N ;ns1 , . . . , nsr−1) ⊕ cokerM(N − nsr

;ns1 , . . . , nsr−1)
)

Note that cokerM(m;−) ∼= Z/mZ, except in the case where m = 0 so that
cokerM(0;−) = coker(0) = Z. Hence one can iterate (8) to conclude that if p
divides none of ns1 , . . . , nsr

, one has

Sylp(cokerM(N ;nS)) ∼= Sylp




⊕

T⊆S,T 6=[k]

Z/(N −NT )Z



 ,
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where NT :=
∑

i∈T ni. Applying this to Theorem 13 gives

Sylp(K(Kn1 × · · · ×Knk
)) ∼= Sylp




⊕

S⊆[k]

cokerM(N ;nS)⊕
∏

i 6∈S
(ni−2)





∼=
⊕

S⊆[k]

Sylp




⊕

T⊆S,T 6=[k]

Z/(N −NT )Z⊕
∏

i6∈S (ni−2)





∼=
⊕

∅6=T ′⊆[k]

Sylp




⊕

S′⊆T ′,T 6=[k]

Z/NT ′Z⊕
∏

i∈S′ (ni−2)





∼=
⊕

∅6=T ′⊆[k]

Sylp (Z/NT ′Z)⊕
∏

i∈T ′ (ni−1)
�

where the second-to-last isomorphism comes from interchanging the order of sum-
mations, along with a change of summation index so that S ′, T ′ are the complements
within [k] of the sets S, T , respectively. The last isomorphism uses the identity

∑

S′⊆T ′

∏

i∈S′

(ni − 2) =
∏

i∈T ′

(1 + (ni − 2)) =
∏

i∈T ′

(ni − 1).

Corollary 17. (H. Bai, [1, Theorem 1.2]) For any odd prime p, the 1-skeleton of
the k-cube Qk = K2 × · · · ×K2

︸ ︷︷ ︸

k times

has

Sylp(K(Qk)) ∼= Sylp

(
k⊕

`=1

Z/`Z

)⊕(k

`)

.

Proof. Let n1 = · · · = nk = 2 and apply Theorem 2, giving

Sylp(K(Qk)) ∼= Sylp




⊕

∅6=S⊆[k]

Z/NSZ





⊕
∏

i∈S (2−1)

∼= Sylp




⊕

∅6=S⊆[k]

Z/2|S|Z





∼= Sylp

(
k⊕

`=1

Z/2`Z

)⊕(k

`)

∼= Sylp

(
k⊕

`=1

Z/`Z

)⊕(k
`)

.

�
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