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1. Introduction

This paper proposes two related conjectures in the invariant theory of GLn(Fq),
motivated by the following celebrated result of Dickson [8] (see also [5, theo-
rem 8.1.1] and [30, theorem 8.1.5]).

Theorem 1.1 (Dickson [8]). When G := GLn(Fq) acts via invertible linear substi-
tutions of variables on the polynomial algebra S = Fq[x1, . . . , xn], the G-invariants
form a polynomial subalgebra SG = Fq[Dn,0, Dn,1, . . . , Dn,n−1].

Here the Dickson polynomials Dn,i are the coefficients in the expansion

∏
�(x)

(t + �(x)) =
n∑

i=0

Dn,it
qi

,

where the product runs over all Fq-linear forms �(x) in the variables x1, . . . , xn. In
particular, Dn,i is homogeneous of degree qn −qi, so that Dickson’s theorem implies
the Hilbert series formula:

Hilb(SG, t) :=
∑
d�0

dimFq (S
G)dt

d =
n−1∏
i=0

1
1 − tqn−qi . (1.1)

Our main conjecture gives the Hilbert series for the G-invariants in the quotient
ring Q := S/m[qm] by an iterated Frobenius power m[qm] := (xqm

1 , . . . , xqm

n ) of the
irrelevant ideal m = (x1, . . . , xn). The ideal m[qm] is G-stable, and hence the action
of G on S descends to an action on the quotient Q.
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Conjecture 1.2. The G-fixed subalgebra QG has Hilbert series

Hilb((S/m
[qm])G, t) = Cn,m(t),

where

Cn,m(t) :=
min(n,m)∑

k=0

t(n−k)(qm−qk)
[
m

k

]
q,t

. (1.2)

The (q, t)-binomial appearing in (1.2) is a polynomial in t, introduced and studied
in [25], defined by

[
n

k

]
q,t

:=
Hilb(SPk , t)
Hilb(SG, t)

=
k−1∏
i=0

1 − tq
n−qi

1 − tqk−qi . (1.3)

Here Pk is a maximal parabolic subgroup of G stabilizing Fk
q ⊂ Fn

q , so G/Pk is the
Grassmannian of k-planes.

It will be shown in § 3 that conjecture 1.2 implies the following conjecture on
the G-cofixed space (also known as the maximal G-invariant quotient or the G-
coinvariant space1) of S. This is defined to be the quotient Fq-vector space SG :=
S/N , where N is the Fq-linear span of all polynomials g(f) − f with f in S and g
in G.

Conjecture 1.3. The G-cofixed space of S = Fq[x1, . . . , xn] has Hilbert series

Hilb(SG, t) =
n∑

k=0

tn(qk−1)
k−1∏
i=0

1
1 − tqk−qi .

(Here and elsewhere we interpret empty products as 1, as in the k = 0 summand
above.)

Example 1.4. When n = 0, conjectures 1.2 and 1.3 have little to say, since S =
Fq has no variables and G = GL0(Fq) is the trivial group. When n = 1, both
conjectures are easily verified as follows. The group G = GL1(Fq) = F×

q is cyclic
of order q − 1. A cyclic generator g for G scales the monomials in S = Fq[x] via
g(xk) = (ζx)k = ζkx, where ζ is a (q−1)st root of unity in Fq; g similarly scales the
monomial basis elements {1, x̄, x̄2, . . . , x̄qm−1} of the quotient ring Q = S/m[qm].
Hence, x̄k is G-invariant in Q if and only if q −1 divides k, so that QG has Fq-basis
{1, x̄q−1, x̄2(q−1), . . . , x̄qm−q, x̄qm−1}. Therefore,

Hilb(QG, t) = (1 + tq−1 + t2(q−1) + · · · + tq
m−q) + tq

m−1

= t0
[
m

1

]
q,t

+ tq
m−1
[
m

0

]
q,t

= C1,m(t).

1 Warning: the latter terminology is often used for a different object, the quotient ring
S/(Dn,0, . . . , Dn,n−1), so we avoid it.
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For the same reason, the image of xk survives as an Fq-basis element in the G-
cofixed quotient SG if and only if q − 1 divides k. Hence, SG has Fq-basis given by
the images of {1, xq−1, x2(q−1), . . . }, so that

Hilb(SG, t) = 1 + tq−1 + t2(q−1) + · · · =
1

1 − tq−1 = 1 +
tq−1

1 − tq−1 .

1.1. The parabolic generalization

In fact, we shall work with generalizations of conjectures 1.2 and 1.3 to a parabolic
subgroup Pα of G specified by a composition α = (α1, . . . , α�) of n, so that |α| :=
α1 + · · · + α� = n, and αi > 0 without loss of generality. This Pα is the subgroup
of block upper-triangular invertible matrices

g =

⎡
⎢⎢⎢⎣

g1 ∗ . . . ∗
0 g2 . . . ∗
...

...
. . .

...
0 0 . . . g�

⎤
⎥⎥⎥⎦

with diagonal blocks g1, . . . , g� of sizes α1 × α1, . . . , α� × α�. A generalization of
Dickson’s theorem by Kuhn and Mitchell [21] (related to results of Mui [24], and
rediscovered by Hewett [16]) asserts that SPα is again a polynomial algebra, having
Hilbert series given by the following expression, where we denote partial sums of α
by Ai := α1 + · · · + αi:

Hilb(SPα , t) =
�∏

i=1

αi−1∏
j=0

1
1 − tq

Ai−qAi−1+j . (1.4)

This leads to a polynomial in t called the (q, t)-multinomial, also studied in [25]:[
n

α

]
q,t

:=
Hilb(SPα , t)
Hilb(SG, t)

=

∏n−1
j=0 (1 − tq

n−qj

)∏�
i=1
∏αi−1

j=0 (1 − tq
Ai−qAi−1+j )

. (1.5)

To state the parabolic versions of the conjectures, we consider weak compositions
β = (β1, . . . , β�) with βi ∈ Z�0, of a fixed length �, and partially order them
componentwise, i.e. β � α if βi � αi for i = 1, 2, . . . , �. In this situation, let
Bi := β1 + β2 + · · · + βi.

Parabolic conjecture 1.5. For m � 0 and for α a composition of n, the Pα-
fixed subalgebra QPα of the quotient ring Q = S/m[qm] has Hilbert series

Hilb(QPα , t) = Cα,m(t),

where

Cα,m(t) :=
∑

β : β�α,
|β|�m

te(m,α,β)
[

m

β, m − |β|

]
q,t

, e(m, α, β) :=
�∑

i=1

(αi − βi)(qm − qBi).

(1.6)
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The � = 1 case of parabolic conjecture 1.5 is conjecture 1.2. Parabolic conjec-
ture 1.5 also implies the following conjecture, whose � = 1 case is conjecture 1.3.

Parabolic conjecture 1.6. For a composition α of n, the Pα-cofixed space SPα

of S has Hilbert series

Hilb(SPα
, t) =

∑
β : β�α

t
∑�

i=1 αi(qBi−1)
�∏

i=1

βi−1∏
j=0

1
1 − tq

Bi−qBi−1+j . (1.7)

1.2. Structure of the paper

The rest of the paper explains the relation between parabolic conjectures 1.5
and 1.6, along with context and evidence for both, including relations to known
results.

Section 2 explains why parabolic conjecture 1.5 implies the Hilbert series (1.4)
in the limit as m → ∞, with the proof delayed until Appendix A.

Section 3 shows that parabolic conjecture 1.5 implies parabolic conjecture 1.6. It
then shows the reverse implication in the case n = 2. Appendix B proves both via
direct arguments for n = 2.

Section 4 checks parabolic conjecture 1.5 for m = 0, 1.
Section 5 explains why the Pα-cofixed space SPα

is a finitely generated module
of rank 1 over the Pα-fixed algebra SPα , and why this is consistent with the form
of parabolic conjecture 1.6.

Section 6 concerns some of our original combinatorial motivation, comparing two
G-representations:

• on the graded quotient Q = S/m[qm];

• permuting the points of (Fqm)n.

These two representations are not isomorphic; however, we shall show that they
have the same composition factors, i.e. they are Brauer isomorphic. After extending
scalars from FqG to FqmG-modules, this Brauer isomorphism holds even taking
into account a commuting group action G × C, where the cyclic group C = F×

qm

is the multiplicative group of Fqm . Consistent with this, parabolic conjecture 1.5
has a strange implication: the two representations have G-fixed spaces and Pα-fixed
spaces which are isomorphic C-representations. This assertion is equivalent to the
fact that evaluating Cα,m(t) when t is a (qm − 1)st root of unity exhibits a cyclic
sieving phenomenon in the sense of [26].

Section 7 collects some further questions and remarks.

2. Conjecture 1.2 implies (1.4)

The following proposition is delicate to verify, but serves two purposes, explained
after its statement.

Proposition 2.1. For any m � 0 and any composition α of n, the power series

Hilb(SPα , t) =
�∏

i=1

αi−1∏
j=0

1
1 − tq

Ai−qAi−1+j
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is congruent in Z[[t]]/(tq
m

) to the polynomial

Cα,m(t) =
∑

β : β�α,
|β|�m

te(m,α,β)
[

m

β, m − |β|

]
q,t

, e(m, α, β) =
�∑

i=1

(αi − βi)(qm − qBi).

The first purpose of proposition 2.1 is to give evidence for parabolic conjec-
ture 1.5, since it is implied by the conjecture: the ideal m[qm] = (xqm

1 , . . . , xqm

n )
only contains elements of degree qm and above, so the G-equivariant quotient map
S � Q = S/m[qm] restricts to Fq-vector-space isomorphisms

Sd
∼= Qd,

SPα

d
∼= QPα

d ,

}
(2.1)

for 0 � d � qm − 1. Consequently, one has

Hilb(SPα , t) ≡ Hilb(QPα , t) mod (tq
m

). (2.2)

In particular, proposition 2.1 shows why parabolic conjecture 1.5 gives (1.4) in the
limit as m → ∞.

The second purpose of proposition 2.1 is to use its precise form in the proof of
corollary 3.6 to assert the equivalence of parabolic conjectures 1.5 and 1.6 for n = 2.

The proof of proposition 2.1 is rather technical, so it is given in Appendix A.

3. Conjecture 1.2 implies conjecture 1.3

The desired implication follows from an examination of the quotient ring

Q := S/m
[qm] = Fq[x1, . . . , xn]/(xqm

1 , . . . , xqm

n )

as a monomial complete intersection, and hence a Gorenstein ring. Note that Q has
monomial basis

{xa := xa1
1 · · ·xan

n }0�ai�qm−1 (3.1)

and that its homogeneous component Qd0 of top degree,

d0 := n(qm − 1), (3.2)

is one dimensional, spanned over Fq by the image of the monomial

xa0 := (x1 · · ·xn)qm−1.

Furthermore, the Fq-bilinear pairing

Qi ⊗ Qj → Qd0 = Fq · xa0 ∼= Fq

(f1, f2) 	→ f1 · f2

}
(3.3)

is non-degenerate (or perfect): for monomials xa,xb in (3.1) of degrees i, j with
i + j = d0, one has

(xa,xb) =

{
xa0 if a + b = a0,

0 otherwise.
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Proposition 3.1. The monomial xa0 = (x1 · · ·xn)qm−1 has G-invariant image in
the quotient Q = S/m[qm], and hence its span Qd0 carries the trivial G-representa-
tion.

Proof 1. As G acts on S and on Q preserving degree, it induces a one-dimensional
G-representation on Qd0 . Thus, Qd0 must carry one of the linear characters of
G = GLn(Fq), i.e. detj for some j in {0, 1, . . . , q − 2}. We claim that in fact j = 0,
since the element g in G that scales the variable x1 by a primitive (q − 1)st root of
unity γ in F×

q and fixes all other variables xi with i � 2 will have det(g) = γ and
has g(xa0) = γqm−1xa0 = xa0 .

Proof 2. Note that G = GLn(Fq) is generated by all permutations of coordinates,
all scalings of coordinates, and any transvection, such as the element u sending
x1 	→ x1 + x2 and fixing xi for i 
= 1. So it suffices to check that the image of
xa0 = (x1 · · ·xn)qm−1 in Q is invariant under permutations (obvious), invariant
under scalings of a coordinate (easily checked as in (1)), and invariant under the
transvection u:

u(xa0) = (x1 + x2)qm−1(x2 · · ·xn)qm−1

= (xqm−1
1 + x2h)(x2 · · ·xn)qm−1

≡ xa0 mod m
[qm],

where h is a polynomial whose exact form is unimportant.

Note that proposition 3.1 is an expected consequence of conjecture 1.2, due to
the following observation.

Proposition 3.2. For any composition α of n, the polynomial Cα,m(t) is monic
of degree d0 = n(qm − 1).

Proof. Letting degt(·) denote degree in t, the product formula (1.5) for the (q, t)-
multinomial shows that

degt

[
m

β, m − |β|

]
q,t

=
|β|∑
j=0

(qm − qj) −
�∑

i=1

βi−1∑
j=0

(qBi − qBi−1+j)

= |β|qm −
|β|∑
j=0

qj −
�∑

i=1

βiq
Bi +

�∑
i=1

βi−1∑
j=0

qBi−1+j

= |β|qm −
�∑

i=1

βiq
Bi , (3.4)

while the exponent on the monomial te(m,α,β) can be rewritten as

e(m, α, β) =
�∑

i=1

(αi − βi)(qm − qBi) = nqm − |β|qm −
�∑

i=1

αiq
Bi +

�∑
i=1

βiq
Bi . (3.5)
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Therefore, the summand of Cα,m(t) indexed by β has degree equal to the sum of
(3.4) and (3.5), namely

nqm −
�∑

i=1

αiq
Bi � nqm −

�∑
i=1

αi = nqm − n = n(qm − 1) = d0.

Equality occurs in the above if and only if Bi = 0 for all i, so the t-degree
is maximized uniquely by the β = 0 summand, which is the single monomial
tn(qm−1) = td0 .

Proposition 3.1 shows that the non-degenerate pairing (3.3) is G-invariant : for
any g in G, one has

(g(f1), g(f2)) = g(f1)g(f2) = g(f1f2) = f1f2 = (f1, f2).

Thus, one has an isomorphism of G-representations Qi
∼= Q∗

j in complementary
degrees i + j = d0. Here the notation U∗ denotes the representation contragredient
or dual to the G-representation U on its dual space, in which, for any functional
ϕ in U∗, group element g in G and vector u in U , one has g(ϕ)(u) = ϕ(g−1(u)).
Cofixed spaces are dual to fixed spaces, as the following well-known proposition
shows.

Proposition 3.3. For any group G and any G-representation U over a field k,
one has a k-vector-space isomorphism (UG)∗ ∼= (U∗)G, in which UG is the cofixed
space for G acting on U , and (U∗)G is the subspace of G-fixed functionals in U∗.

Proof. Recall that UG := U/N , where N is the k-span of {g(u) − u}u∈U, g∈G. Thus,
by the universal property of quotients, (UG)∗ is the subspace of functionals ϕ in U∗

vanishing on restriction to N . This is equivalent to 0 = ϕ(g(u)−u) = ϕ(g(u))−ϕ(u)
for all u in U and g in G, i.e. to ϕ lying in (U∗)G.

Corollary 3.4. For complementary degrees i + j = d0 in Q = S/m[qm], one has
an Fq-vector space duality of fixed and cofixed spaces (QPα

i )∗ ∼= (Qj)Pα
, and hence

the equality of their dimensions. Therefore, one has

Hilb(QPα , t) = td0 Hilb(QPα , t−1), (3.6)

Hilb(SPα
, t) ≡ td0 Hilb(QPα , t−1) mod (tq

m

), (3.7)

and

Hilb(SPα , t) = lim
m→∞

td0 Hilb(QPα , t−1). (3.8)

Proof. Equation (3.6) is immediate from the discussion surrounding proposition 3.3.
Then (3.6) implies (3.7), since the isomorphism (2.1) shows (SPα)d

∼= (QPα)d for
0 � d � qm − 1. Lastly, (3.7) implies (3.8).

Corollary 3.5. Parabolic conjecture 1.5 implies parabolic conjecture 1.6.

Proof. Assuming parabolic conjecture 1.5 holds, (3.8) implies

Hilb(SPα
, t) = lim

m→∞
td0 Hilb(QPα , t−1) = lim

m→∞
td0Cα,m(t−1).
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Hence, parabolic conjecture 1.6 follows once one checks the following assertion:

td0Cα,m(t−1) ≡
∑

β : β�α

t
∑�

i=1 αi(qBi−1)
�∏

i=1

βi−1∏
j=0

1
1 − tq

Bi−qBi−1+j mod (tq
m

). (3.9)

To prove (3.9), one first uses the definition (1.6) of Cα,m(t) to do a straightforward
calculation showing

td0Cα,m(t−1) =
∑

β : β�α,
|β|�m

t
∑�

i=1 αi(qBi−1)

∏|β|−1
j=0 (1 − tq

m−qj

)∏�
i=1
∏βi−1

j=0 (1 − tq
Bi−qBi−1+j )

. (3.10)

Since qBi − 1 � qBi−1, one has

�∑
i=1

αi(qBi − 1) �
�∑

i=1

αiq
Bi−1 � α�q

B�−1 � q|β|−1.

This implies that for each j = 0, 1, . . . , |β| − 1 one has

(qm − qj) +
�∑

i=1

αi(qBi − 1) � qm.

Therefore, the right-hand side of (3.10) is equivalent mod(tq
m

) to the right-hand
side of (3.9).

Corollary 3.6. In the bivariate case n = 2, the parabolic conjectures 1.5 and 1.6
are equivalent.

Proof. Corollary 3.5 showed that parabolic conjecture 1.5 implies parabolic conjec-
ture 1.6 for any n. The reverse implication when n = 2 arises when two coefficient
comparisons valid for general n ‘meet in the middle’, as we now explain. Again, in
this proof, all symbols ‘≡’ mean congruence mod(tq

m

). On the one hand, one has

Hilb(QPα , t) ≡ Hilb(SPα , t) =
�∏

i=1

αi−1∏
j=0

1
1 − tq

Ai−qAi−1+j ≡ Cα,m(t),

where the left congruence is (2.2), the middle equality is (1.4) and the right con-
gruence is proposition 2.1. Therefore, Hilb(QPα , t) and Cα,m(t) have the same coef-
ficients on 1, t, t2, . . . , tq

m−1. On the other hand, one has

td0 Hilb(QPα , t−1) ≡ Hilb(SPα , t)

=
∑

β : β�α

t
∑�

i=1 αi(qBi−1)
�∏

i=1

βi−1∏
j=0

1
1 − tq

Bi−qj

≡ td0Cα,m(t−1),

where the first congruence is (3.7), the equality is parabolic conjecture 1.6 and the
last congruence is corollary 3.9. Therefore, Hilb(QPα , t) and Cα,m(t) also have the
same coefficients on td0 , td0−1, . . . , td0−(qm−1). Since d0 = n(qm − 1) when n = 2,
this means that Hilb(QPα , t), Cα,m(t) agree on all coefficients.
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Example 3.7. We illustrate some of the assertions of corollary 3.4 for n = m = 2
and q = 3, where

S = F3[x, y], Q = S/(x9, y9), d0 = 2(32 − 1) = 16.

Our results in Appendix B show that conjectures 1.2 and 1.3 hold for n = 2.
Therefore, for the group G = GL2(F3)(= P(2)), one can compute that

Hilb(SG, t) =
1

(1 − t6)(1 − t8)
= 1 + t6 + t8 + O(t9),

Hilb(QG, t) = C2,2(t) = 1 + t6 + t8 + t10 + t12 + t16 ≡ Hilb(SG, t) mod t9,

and, similarly,

Hilb(SG, t) = 1 +
t4

1 − t2
+

t16

(1 − t6)(1 − t8)
= 1 + t4 + t6 + t8 + O(t9),

t16 Hilb(QG, t−1) = 1 + t4 + t6 + t8 + t10 + t16 ≡ Hilb(SG, t) mod t9.

Note that Hilb(QG, t) is not a reciprocal polynomial in t, i.e. its coefficient sequence
is not symmetric. In particular, although the ring Q is Gorenstein, its G-fixed
subalgebra QG is not.

4. The case where m is at most 1

When m = 0, parabolic conjecture 1.5 says little: Q = S/m[q0] = S/m = Fq has no
variables, so QPα = Q = Fq and Hilb(QPα , t) = 1. Meanwhile, Cα,0(t) = 1, since
(1.6) has only the β = 0 summand.

The m = 1 case is less trivial.

Proposition 4.1. Parabolic conjecture 1.5 holds for m = 1.

Proof. Given the composition α = (α1, . . . , α�) of n, the only weak compositions β
with 0 � β � α and |β| � m = 1 are β = 0 and β = ek = (0, . . . , 0, 1, 0, . . . , 0) for
k = 1, 2, . . . , �. One therefore finds that

Cα,1(t) = te(1,α,0)
[

1
0, 1

]
q,t

+
�∑

k=1

te(1,α,ek)
[

1
ek, 0

]
q,t

= tn(q−1) +
�∑

k=1

tAk−1(q−1)

=
�∑

k=0

tAk(q−1),

recalling that A� = n and the convention that A0 = 0. Thus, to show Cα,1(t) =
Hilb(QPα , t), it will suffice to show that QPα has Fq-basis given by the images of
the monomials

{(x1x2 · · ·xAk
)q−1}k=0,1,...,�. (4.1)
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To argue this, consider any polynomial

f(x) =
∑

a=(a1,...,an),
ai∈{0,1,...,q−1}

caxa

representing an element of the quotient Q = S/m[q]. One has that f(x) is invariant
under the diagonal matrices T inside Pα if and only if each entry ai is either 0 or
q − 1, i.e. if and only if f(x) has the form

f(x) =
∑

A⊂{1,2,...,n}
cAxq−1

A , (4.2)

where xA :=
∏

j∈A xj , so that xq−1
A =

∏
j∈A xq−1

j .
We claim that such an f is furthermore invariant under the Borel subgroup B of

upper triangular matrices if and only if each monomial xq−1
A in the support of f

has A forming an initial segment A = {1, 2, . . . , k} for some k. To prove this claim,
note that B is generated by T together with {uij : 1 � i < j � n}, where uij sends
xj 	→ xj + xi and fixes all other variables x� with � 
= j. Working modm[q], one
checks that

ui,j(x
q−1
A ) =

{
xq−1

A if {i, j} ∩ A 
= {j},

xq−1
A + xq−1

A\{j}∪{i} if {i, j} ∩ A = {j}.

From this it is easily seen that each monomial (x1x2 · · ·xk)q−1 has a B-invariant
image in Q. On the other hand, if f(x) as in (4.2) has cA 
= 0 for some A that is
not an initial segment, then there exists 1 � i < j � n for which {i, j} ∩ A = {j},
and one finds that ui,j(f) 
= f , since ui,j(f) − f has coefficient cA on xq−1

A\{j}∪{i}.
Lastly, an element of this more specific form

f(x) =
n∑

k=0

ck(x1x2 · · ·xk)q−1

will furthermore be invariant under the subgroup Sα1 ×· · ·×Sα�
of block permuta-

tion matrices inside Pα if and only if it is supported on the monomials in (4.1). Since
P is generated by the Borel subgroup B together with this subgroup Sα1×· · ·×Sα�

,
the monomials in (4.1) give an Fq-basis for QPα .

5. The cofixed quotient SG as an SG-module

Note that parabolic conjecture 1.6 has the following two consequences for the
rational function Hilb(SPα

, t)/ Hilb(SPα , t):

Hilb(SPα
, t)

Hilb(SPα , t)
lies in Z[t] (5.1)

and

lim
t→1

Hilb(SPα , t)
Hilb(SPα , t)

= 1. (5.2)
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The subsections below explain why (5.1), (5.2) do indeed hold, essentially due to
the following three facts:

(1) the Pα-cofixed quotient SPα is a finitely generated module over the Pα-
invariant ring SPα ;

(2) while SPα is not in general a free SPα -module, it does always have SPα -rank 1;
and

(3) the Pα-invariant ring SPα is polynomial, as shown in [16,24].

5.1. The cofixed spaces as a module over fixed subalgebra

Facts (1) and (2) above hold generally for finite group actions, and are analo-
gous to well-known facts about invariant rings. As we have not found them in the
literature, we discuss them here.

Proposition 5.1. Fix a field k, a k-algebra R and an R-module M and let G be
any subgroup of AutR(M), the R-module automorphisms of M . Then one has that

(i) the k-linear span N of all elements {g(m) − m}g∈G,m∈M is an R-submodule
of M , and hence

(ii) the cofixed space MG := M/N is a quotient R-module of M .

Furthermore, if {mi}i∈I generate M as an R-module, and if {gj}j∈J generate G as
a group, then

(iii) the images {m̄i}i∈I generate MG as an R-module, and

(iv) the elements {g±1
j (mi) − mi}i∈I,j∈J generate N as an R-module.

Proof. All assertions are completely straightforward, except possibly for (iv), which
relies on the calculation

g1g2(m) − m = g1g2(m) − g2(m) + g2(m) − m,

and the hypotheses let one express g2(m) =
∑

i∈I rimi for some ri in R, so that
one can rewrite this as

g1g2(m) − m =
∑
i∈I

ri(g1(mi) − mi) + (g2(m) − m).

Corollary 5.2. Let S be a finitely generated k-algebra and G be a finite subgroup
of k-algebra automorphisms of S, e.g. S = k[x1, . . . , xn] and G is a finite subgroup
of GLn(k) acting by linear substitutions.

Then the G-cofixed space SG is a finitely generated module over the G-fixed sub-
algebra SG.

Proof. Via (ii) and (iii) of proposition 5.1, it suffices to show that S is a finitely
generated SG-module. This is a well-known argument via [3, corollary 5.2] (see
also [5, theorem 1.3.1]; [30, theorem 2.3.1]). One has that S is integral over SG, as
any x in S satisfies the monic polynomial

∏
g∈G(t − g(x)) in SG[t], and S is finitely

generated as an algebra over SG because it is finitely generated as a k-algebra.
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Example 5.3. In the case where M = S = Fq[x1, . . . , xn] and G = GLn(Fq),
one has that S is even a free SG-module of rank |G| with an explicit SG-basis of
monomials {xα}0�αi�qn−qi−1−1 provided by Steinberg [32] in his proof of Dickson’s
theorem. Consequently, SG is generated by the images of these monomials, and
proposition 5.1(iv) leads to an explicit finite presentation of SG as a quotient of the
free SG-module S, which is useful for computations.

Corollary 5.4. When a finite subgroup G of GLn(k) acting by linear substitutions
on S = k[x1, . . . , xn] has a G-fixed subalgebra SG that is again a polynomial algebra,
then Hilb(SG, t)/ Hilb(SG, t) lies in Z[t].

Proof. When SG is polynomial, the Hilbert syzygy theorem (see, for example, [5,
§ 2.1]; [30, § 6.3]) implies that SG will have a finite SG-free resolution 0 → Fn →
· · · → F1 → F0 → SG → 0, where Fi =

⊕
j�0 SG(−j)βi,j for some non-negative

integers βi,j . Here R(−j) denotes a copy of the graded ring R, regarded as a module
over itself, but with grading shift so that the unit 1 is in degree j, so that

Hilb(Fi, t) = Hilb(SG, t) ·
∑
j�0

βi,jt
j .

Considering the Euler characteristics in each homogeneous component of the reso-
lution gives

Hilb(SG, t)
∑

i,j�0

(−1)iβi,jt
j = Hilb(SG, t),

so that Hilb(SG, t)/ Hilb(SG, t) =
∑

i,j�0(−1)iβi,jt
j lies in Z[t].

5.2. The cofixed space is a rank 1 module

We next explain, via consideration of the rank of SG as an SG-module, why one
should expect (5.2) to hold.

Definition 5.5. Recall, for a finitely generated M over an integral domain R [12,
§ 12.1], that rankR(M) is the maximum size of an R-linearly independent subset
of M .

Alternatively, rankR(M) is the largest integer r such that M contains a free R-
submodule Rr, and in this situation, the quotient M/Rr will be all R-torsion, i.e. for
every x in M/Rr there exists some a 
= 0 in R with ax = 0. One can equivalently
define this using the field of fractions K := Frac(R) via

rankR(M) := dimK(K ⊗R M). (5.3)

Indeed, clearing denominators shows that a subset {m(i)} ⊂ M is R-linearly inde-
pendent if and only if {1 ⊗ m(i)} ⊂ K ⊗R M is K-linearly independent.

In the graded setting, one has the following well-known characterization of rank
via Hilbert series.
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Proposition 5.6. For R an integral domain that is also a finitely generated graded
k-algebra, and M a finitely generated graded R-module, the two rational functions
Hilb(R, t) and Hilb(M, t) satisfy

rankR(M) = lim
t→1

Hilb(M, t)
Hilb(R, t)

.

Proof. Letting r := rankR(M), we claim that one can choose an R-linearly inde-
pendent subset of size r in M consisting of homogeneous elements as follows. Given
any R-linearly independent subset {m(i)}i=1,2··· ,r, decompose its elements into
their homogeneous components m(i) =

∑
j m

(i)
j . Then the set of all such compo-

nents {m
(i)
j } spans an R-submodule of M containing the R-submodule spanned by

{m(i)}i=1,2,...,r. Thus, the set of all such components must contain an R-linearly
independent subset of size r.

Now, consider the free R-submodule Rr :=
⊕r

i=1 Rmi spanned by a homogeneous
R-linearly independent subset {mi}i=1,2,...,r, so that the quotient M/Rr will be an
R-torsion module. Then

lim
t→1

Hilb(M, t)
Hilb(R, t)

= lim
t→1

Hilb(Rr, t)
Hilb(R, t)

+ lim
t→1

Hilb(M/Rr, t)
Hilb(R, t)

.

Since Hilb(Rr, t)/ Hilb(R, t) =
∑r

i=1 tdeg(mi), the first limit on the right is r. One
can argue that the second limit on the right vanishes as follows. Assume R has
Krull dimension d, i.e. Hilb(R, t) has a pole of order d at t = 1. Thus, one must
show that Hilb(M/Rr, t) has its pole of order at most d − 1. To this end, choose
homogeneous generators y1, . . . , yN for the R-torsion module M/Rr, say with θiyi =
0 for non-zero homogeneous θi in R. Then one has a graded R-module surjection⊕N

i=1 R/(θi)(− deg(yi)) � M/Rr sending the basis element of R/(θi) to yi. This
gives a coefficientwise inequality,

Hilb(M/Rr, t) �
N∑

i=1

tdeg(yi) Hilb(R/(θi), t) =
N∑

i=1

(1 − tdeg(θi))tdeg(yi) Hilb(R, t),

(5.4)
between power series with non-negative coefficients that are also rational functions
having poles confined to the unit circle. As each summand on the right-hand side of
(5.4) has a pole of order at most d−1 at t = 1, the same holds for Hilb(M/Rr, t).

For a subgroup G of ring automorphisms of the domain S, denote by K :=
Frac(S)G the G-invariant subfield of L := Frac(S). When G is finite, an easy argu-
ment (see [5, proposition 1.1.1]; [30, proposition 1.2.4]) shows that

K := Frac(SG) = Frac(S)G(= LG),

giving the following commuting diagram of inclusions:

S
� � �� L

SG � � ����

��

K
��

��

(5.5)

Consequently, proposition 5.6 and the next result immediately imply (5.2).
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Proposition 5.7. A finite group G of automorphisms of an integral domain S has
rankSG SG = 1.

Proof. Using (5.3) to characterize rank, it suffices to show the following chain of
three K-vector-space isomorphisms:

K ⊗SG SG
∼= LG

∼= (KG)G
∼= K. (5.6)

For the first step in (5.6), start with the short exact sequence that defines SG

0 →
∑
g∈G,
s∈S

SG(g(s) − s) → S → SG → 0

and apply the exact localization functor K ⊗SG (·) to give the short exact sequence

0 →
∑
g∈G,
s∈S

K ⊗SG SG(g(s) − s) → K ⊗SG S → K ⊗SG SG → 0. (5.7)

Using the K-vector-space isomorphism K ⊗SG S ∼= L induced by f ⊗ s 	→ fs, the
sequence (5.7) becomes

0 →
∑
g∈G,
f∈L

K(g(f) − f) → L → K ⊗SG SG → 0,

which shows that K ⊗SG SG
∼= LG, completing the first step.

The second step in (5.6) comes from considering the Galois extension K = LG ↪→
L having Galois group G, which appears as the right vertical map in (5.5). The
normal basis theorem of Galois theory [23, theorem 13.1] asserts that not only is L ∼=
K |G| as a K-vector space but L is even isomorphic to the left-regular representation
KG as KG-module. Hence, LG

∼= (KG)G, completing the second step.
The third step in (5.6) comes from the short exact sequence of KG-modules

0 → IG → KG
ε−→ K → 0. (5.8)

Here G acts trivially on K, while the augmentation ideal IG is the kernel of the
augmentation map ε sending each K-basis element g of KG to 1 in K. Since IG

is K-spanned by g − h for g, h in G, the sequence (5.8) shows that (KG)G
∼= K,

completing the third step.

This immediately implies the following corollary, explaining (5.2).

Corollary 5.8. When a finite subgroup G of GLn(k) acting by linear substitutions
on S = k[x1, . . . , xn] has G-fixed subalgebra SG that is again a polynomial algebra,
we have

lim
t→1

Hilb(SG, t)
Hilb(SG, t)

= rankSG SG = 1.
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5.3. On the module structure of the G-cofixed space

For the full general linear group G = GLn(Fq), the structure of SG as an SG-
module exhibited for n = 1 in example 1.4 and for n = 2 in theorem B.15 suggests
a general question.

Recall that SG = Fq[Dn,0, Dn,1, . . . , Dn,n−1], where the Dickson polynomials Dn,i

are defined in § 1. Consider subalgebras of SG defined for i = 1, 2, . . . , n by

Fq[Zi] := Fq[Dn,n−i, Dn,n−i+1, . . . , Dn,n−2, Dn,n−1].

Question 5.9. Does there exist a subset M of homogeneous elements minimally
generating SG as an SG-module, with a decomposition M =

⊔n
i=1 Mi having the

following properties?

• The Fq[Zi]-submodule generated by Mi within SG is Fq[Zi]-free.

• The Dickson polynomials Dn,0, Dn,1, . . . , Dn,n−i−1 not in Fq[Zi] all annihilate
every element of Mi.

• The last set Mn is a singleton, whose unique element has degree (n−1)(qn−1).

Example 5.10. In the n = 1 case, example 1.4 shows that SG is a free SG-module
of rank 1 with basis element given by the image of 1. This answers question 5.9
affirmatively by setting M = M1 := {1}.

Example 5.11. In the n = 2 case, theorem B.15 will answer question 5.9 affir-
matively by setting M = M1 � M2, where M1 := {1, XY, X2Y, . . . , Xq−2Y } and
M2 := {XqY }, with X := xq−1, Y := yq−1.

Before discussing the n = 3 case in further detail, we mention a general recurrence
for the power series

fn(t) :=
n∑

k=0

tn(qk−1)
k−1∏
i=0

1
1 − tqk−qi

that was conjectured to equal Hilb(SG, t) in conjecture 1.3. An easy calculation
shows that

fn(t) = (fn−1(t) − t(n−1)(q−1)fn−1(tq)) +
t(n−1)(qn−1)∏n−1

i=0 (1 − tqn−qi)
. (5.9)

An affirmative answer to question 5.9 would interpret the two summands on the
right-hand side of (5.9) as follows:

• the last summand on the right in (5.9) would be the Hilbert series for the
SG-submodule of SG generated by the singleton set Mn;

• the difference fn−1(t) − t(n−1)(q−1)fn−1(tq) would be the Hilbert series for the
SG-submodule generated by M1 � · · · � Mn−1 or, alternatively, the kernel of
multiplication by Dn,0 on SG.
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Somewhat suggestively, it can be shown directly that the difference

fn−1(t) − t(n−1)(q−1)fn−1(tq)

has non-negative coefficients as a power series in t; we omit the details of this proof.

Example 5.12. In the n = 3 case, the recurrence (5.9) suggests a more precise
version of question 5.9 that agrees with computer experiments. Example 5.11 shows
that

f2(t) =
1 + t2(q−1)[q − 2]tq−1

1 − tq2−q
+

tq
2−1

(1 − tq2−q)(1 − tq2−1)
=: m2,1(t) + m2,2(t),

using the notation [n]t := 1+ t+ · · ·+ tn−1. Then the recurrence (5.9) applied with
n = 3 gives

f3(t) = (m2,1(t) − t2(q−1)m2,1(tq)) + (m2,2(t) − t2(q−1)m2,2(tq))

+
t2(q

3−1)

(1 − tq3−q2)(1 − tq3−q)(1 − tq3−1)

=
A1(t)

1 − tq3−q2 +
A2(t)

(1 − tq3−q2)(1 − tq3−q)
+

A3(t)
(1 − tq3−q2)(1 − tq3−q)(1 − tq3−1)

,

(5.10)

where one can compute the numerators explicitly:

A1(t) = [q]tq2−q + t2(q−1)([q − 2]tq−1(1 + tq
2−q) − 1)

+ t(2q+3)(q−1)[q − 2]tq2−q [q − 3]tq−1 ,

A2(t) = tq
2−1[q]tq2−1 [q]tq2−q − t(q−1)(q2+q+2),

A3(t) = t2(q
3−1).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.11)

Note that A1(t), A2(t) are polynomials in t with non-negative coefficients.2 The
following conjecture has been checked by D. Stamate (personal communication,
2014) for n = 3 and q = 2, 3, 4, 5 using Singular.

Conjecture 5.13. Question 5.9 for n = 3 has an affirmative answer for∑
f∈Mi

tdeg(f) = Ai(t)

as in (5.11).

We close this section with some remarks on question 5.9, some providing evidence
on the affirmative side, and some on the negative side.

Remark 5.14. If the answer to question 5.9 is affirmative, then this would imply
that the Dickson polynomial of lowest degree Dn,n−1 acts on the SG-module SG as
a non-zero divisor. One can check that this property does indeed hold for Dn,n−1

2 The non-negativity of A1(t), A2(t) is manifest from (5.11) for q � 3; for q = 2 it also holds,
although it is less clear from (5.11).
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via the argument of Karagueuzian and Symonds [17, lemma 2.5] used in propo-
sition B.8. The key fact is that Dickson’s expression for Dn,n−1 as a quotient of
determinants shows it to be a homogeneous polynomial in x1, . . . , xn of degree
qn − qn−1 with xqn−qn−1

n as its leading monomial in xn.

Remark 5.15. Recurrence (5.9) with n = 4 gives rise, via a calculation similar to
(5.10), to the following expression:

f4(t) =
4∑

i=1

Bi(t)∏i
j=1(1 − tq4−q4−j )

.

However, one finds that for q = 2 the numerator B1(t) is equal to 1− t3 + t4, which
has a negative coefficient. Analogous calculations for higher values of n and small
values of q yield similar negative coefficients in the other numerator terms.

Remark 5.16. One might ask why question 5.9 has been formulated only for G,
and not for all parabolic subgroups Pα of G. In fact, theorem B.10 does prove such
a result for n = 2, when there is only one proper parabolic subgroup: the Borel
subgroup B = P(1,1) inside G = GL2(Fq).

However, computer calculations in Sage suggest that a naive formulation of
such a question has a negative answer in general. Specifically, for n = 3 and q = 4
with B = P(1,1,1) inside G = GL3(F4), one encounters the following difficulty. One
wants a minimal generating set M for SB as an SB-module of a particular form.
Note that here SB = F4[f3, f12, f48], where f3 := x3, f12 :=

∏
c∈F4

(y + cx)3 =
y12 +x3y9 +x6y6 +x9y3 and f48 := D3,2(x, y, z). One can also show, using the idea
in [17, § 2.1] and proposition B.8, that f48 acts as a non-zero divisor on SB . Thus,
one might expect a decomposition of the minimal generators as

M = M1 � M2 � M3 � M4, (5.12)

in which

• F4[f3, f12, f48] acts freely on M4,

• F4[f12, f48] acts freely on M3, but f3 annihilates it,

• F4[f3, f48] acts freely on M2, but f12 annihilates it, and

• F4[f48] acts freely on M1, but both f3, f12 annihilate it.

We argue that this is impossible as follows. Let

(SB)�d :=
d⊕

i=0

(SB)d

and, similarly,

(SB)<d :=
d−1⊕
i=0

(SB)d.
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Given a subset A ⊂ SB , let SBA denote the SB-submodule of SB that it generates.
Then computations show Hilb(SB(SB)�42, t) − Hilb(SB(SB)<42, t) agrees up to
degree 90 with

t42 · Hilb(F4[f3, f48], t) + t42 · Hilb(F4[f12, f48], t).

One can check that, in any decomposition (5.12), the sets M2, M3 must each contain
exactly one element of degree 42. But computations show that for every element f
in (SB)42 the difference

Hilb(SB((SB)<42 ∪ {f}), t) − Hilb(SB(SB)<42, t)

is equal neither to t42 Hilb(F4[f3, f48], t) nor to t42 Hilb(F4[f12, f48], t). Thus, there
are no suitable choices for these elements of M2, M3.

Remark 5.17. Question 5.9 is reminiscent of the Landweber–Stong conjecture [22]
in modular invariant theory, proven for the case when q = p is prime by Bourguiba
and Zarati [6].

Conjecture 5.18 (Landweber and Stong). For a subgroup H of GLn(Fq) acting
on S = Fq[x], the depth of the H-invariant ring SH is the maximum i for which
the elements Dn,n−i, Dn,n−i+1, . . . , Dn,n−2, Dn,n−1 form a regular sequence on SH .

6. Comparing two representations

This section reveals the original motivation for our conjectures, analogous to ques-
tions on real and complex reflection groups W , their parking spaces, W -Catalan
numbers and Fuss–Catalan generalizations. We refer the reader to [2, 27] for the
full story on this analogy (see also § 7.5). Roughly speaking, we start by exam-
ining two strikingly similar G-representations, which we shall call the graded and
ungraded G-parking spaces. Parabolic conjecture 1.5 turns out to yield a comparison
of their Pα-fixed subspaces.

6.1. The graded and ungraded GLn(Fq)-parking spaces

Definition 6.1. For a field k ⊃ Fq, the graded parking space for G = GLn(Fq)
over k is

Qk := k ⊗Fq Q = k[x1, . . . , xn]/(xqm

1 , . . . , xqm

n ) = Sk/m
[qm],

where Sk := k[x1, . . . , xn] and m := (x1, . . . , xn). The group G = GLn(Fq) ⊂
GLn(k) acts on Sk via linear substitutions, and also on Qk, just as before. Thus,
Qk is a graded kG-module.

Definition 6.2. For a field k ⊃ Fq, the ungraded parking space

k[Fn
qm ] := spank{ev : v ∈ Fn

qm}

for G over k is the G-permutation representation on the points of Fn
qm via the

embedding G = GLn(Fq) ⊂ GLn(Fqm), considered as a kG-module. In other
words, the element g in G = GLn(Fq) represented by a matrix (gij) will send
the k-basis element ev indexed by v = (v1, . . . , vn) in Fn

qm to g(ev) = eg(v), where
g(v)i =

∑n
j=1 gijvj .
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Example 6.3. When q = 3, n = 2, m = 1, the ungraded parking space has the
following nine k-basis elements:⎧⎨

⎩
e(−1,+1), e(0,+1), e(+1,+1),

e(−1,0), e(0,0), e(+1,0),

e(−1,−1), e(0,−1), e(+1,−1)

⎫⎬
⎭ .

For example, −I2×2 in G = GL2(F3) fixes e(0,0) and swaps the remaining basis
elements as follows:

e(−1,0) ↔ e(+1,0),

e(−1,+1) ↔ e(+1,−1),

e(0,+1) ↔ e(0,−1),

e(+1,+1) ↔ e(−1,−1).

Note that both kG-modules Qk and k[Fn
qm ] have dimension (qm)n. Before investi-

gating their further similarities, we first note that they are not in general isomorphic
for n � 2.

Example 6.4. As in example 6.3, take q = 3, n = 2, m = 1. One can argue that

Qk = k[x1, x2]/(x3
1, x

3
2) � k[F2

3]

as follows. The action of G = GL2(F3) commutes with the action of its centre C =
{±I2×2} ∼= Z/2Z. Thus, a kG-module isomorphism Qk

∼= k[F2
3] would necessarily

lead to a k[G × C]-module isomorphism, and hence also kG-module isomorphisms
between the C-isotypic subspaces Q−

k and k[F2
3]

−, where for U = Qk or k[F2
3] we

define
U− := {u ∈ U such that −I2×2 : u 	→ −u}.

It therefore suffices to check that these two isotypic subspaces are not kG-module
isomorphic:

Q−
k = {f ∈ Qk : f(−x1,−x2) = −f(x1, x2)}

= (Qk)1 ⊕ (Qk)3
= spank{x1, x2} ⊕ spank{x2

1x2, x1x
2
2},

k[F2
3]

− = {w ∈ k[F2
3] : − I2×2 : w 	→ −w}

= spank{w1 := e(+1,0) − e(−1,0), w2 := e(0,+1) − e(0,−1),

w3 := e(+1,+1) − e(−1,−1), w4 := e(−1,+1) − e(+1,−1)}.

To argue that Q−
k � k[F2

3]
− as kG-modules, check that

u =
[
1 1
0 1

]
,

the transvection in G, acts on both the two-dimensional summands (Qk)1 and (Qk)3
of Q−

k via 2 × 2 Jordan blocks, but it acts on the four-dimensional space k[F2
3]

− by
fixing w1 and cyclically permuting w2 	→ w3 	→ w4 	→ w2. This three-cycle action
is conjugate to a 3 × 3 Jordan block when k has characteristic 3.
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Although Qk and k[Fn
qm ] are not isomorphic as kG-modules, they do turn out

to be Brauer isomorphic. This Brauer isomorphism was essentially observed by
Kuhn [20] (see remark 6.12).

Definition 6.5. Recall [29, ch. 18] that two finite-dimensional representations U1,
U2 of a finite group G over a field k are said to be Brauer isomorphic as kG-modules,
written U1 ≈ U2, if each simple kG-module has the same composition multiplicity
in U1 as in U2. Equivalently, each p-regular element g in G has the same Brauer
character values χU1(g) = χU2(g).

In fact, when the field extension k of Fq actually contains Fqm , it is useful to
consider an extra cyclic group,

C := F×
qm

∼= Z/(qm − 1)Z,

acting on both Qk and k[Fn
qm ] in a way that commutes with the G-actions.

Definition 6.6 (C-action on the graded parking space). When k ⊃ Fqm , an ele-
ment γ in C = F×

qm acts on Sk = k[x1, . . . , xn] by the scalar variable substitution

xi 	→ γxi for i = 1, 2, . . . , n.

This C-action preserves m[qm] = (xqm

1 , . . . , xqm

n ), so that it descends to a C-action
on Qk. Also this C-action commutes with the action of G, so that Qk becomes a
k[G × C]-module.

Note that the C-action on Qk depends in a trivial way on the grading structure
of Qk: an element γ of C = F×

qm scales all elements of a fixed degree d in Qk by the
same scalar γd.

Definition 6.7 (C-action on the ungraded parking space). When k ⊃ Fqm , an
element γ in C = F×

qm permutes the elements of Fn
qm via diagonal scalings:

v = (v1, . . . , vn)
γ	−→ (γv1, . . . , γvn).

Again this commutes with the permutation action of G on Fn
qm , giving k[Fn

qm ] the
structure of a permutation k[G × C]-module.

To understand why the k[G×C]-modules Qk and k[Fn
qm ] are Brauer isomorphic,

we introduce a third object: an ungraded ring Rk that turns out to be a thinly
disguised version of k[Fn

qm ].

Definition 6.8. Define an ungraded quotient ring Rk of Sk = k[x1, . . . , xn] by

Rk := Sk/n, where n := (xqm

1 − x1, . . . , x
qm

n − xn).

As n is stable under the G×C-action on Sk, the quotient Rk inherits the structure
of a k[G × C]-module.

Proposition 6.9. When k ⊃ Fqm , one has a k[G × C]-module isomorphism Rk
∼=

kF
n
qm , where kF

n
qm is the ring of all k-valued functions on the finite set Fn

qm with
pointwise addition and multiplication. In particular, Rk is k[G×C]-module isomor-
phic to the contragredient of k[Fn

qm ], and hence to k[Fn
qm ] itself.
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Proof. The map Sk → kF
n
qm that evaluates a polynomial f(x1, . . . , xn) at the points

of Fn
qm is well known to be a surjective ring homomorphism with kernel n when

k ⊃ Fqm . This proves most of the assertions. For the last assertion, note that
permutation representations are self-contragredient.

It will turn out that Sk is closely related to Rk via a filtration

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Rk, (6.1)

where Fi is the image within Rk of polynomials in Sk of degree at most i. Note
that FiFj ⊂ Fi+j , allowing one to define the associated graded ring

grF Rk := F0 ⊕ F1/F0 ⊕ F2/F1 ⊕ F3/F2 ⊕ · · ·

with multiplication Fi/Fi−1 × Fj/Fj−1 → Fi+j/Fi+j−1 induced from Fi × Fj →
Fi+j .

Proposition 6.10. When k ⊃ Fqm , one has a G × C-equivariant isomorphism of
graded rings Qk

∼= grF Rk.

Proof. Consider the k-algebra map ϕ defined by

Sk
ϕ−→ grF Rk

xi 	→ x̄i ∈ F1/F0.

}
(6.2)

We claim ϕ surjects: Rk is generated as a k-algebra by the images of x1, . . . , xn, so
the multiplication map

F1 × · · · × F1︸ ︷︷ ︸
i factors

→ Fi

is surjective, and hence likewise for the induced multiplication map F1/F0 × · · · ×
F1/F0 → Fi/Fi−1.

The relation xqm

i = xi that holds in Rk shows that x̄qm

i = x̄i = 0 inside the qm-
graded component Fqm/Fqm−1 of grF Rk. Hence, the surjection Sk

ϕ
� grF Rk has

m[qm] in its kernel, and descends to a surjection Qk

ϕ
� grF Rk. But all of Qk, Rk,

grF Rk have dimension (qm)n, so ϕ is an isomorphism. Furthermore, it is easily seen
to be G × C-equivariant.

Corollary 6.11. When k ⊃ Fq, one has a Brauer isomorphism of kG-modules
Qk ≈ k[Fn

qm ]. Furthermore, when k ⊃ Fqm , this is a Brauer isomorphism of k[G ×
C]-modules.

Proof. One may assume without loss of generality that k ⊃ Fqm , as one has Brauer
isomorphisms between two kG-modules if and only if the Brauer isomorphism holds
after extending scalars to any field containing k.

Then one has a string of k[G×C]-module Brauer isomorphisms and isomorphisms

k[Fn
qm ] ∼= Rk ≈ grF Rk

∼= Qk

derived, respectively, from proposition 6.9, from the filtration defining grF Rk and
from proposition 6.10.
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Remark 6.12. The Brauer isomorphism of kG-modules asserted in corollary 6.11,
ignoring the C-action, is essentially a result of Kuhn, as we now explain.

Note that a choice of Fq-vector space basis for Fqm identifies Fqm with the length-
m row vectors Fm

q , and hence also identifies Fn
qm with the n × m matrices Fn×m

q .
Hence, the kG-module k[Fn

qm ] is isomorphic to the permutation action of G =
GLn(Fq) left-multiplying matrices in Fn×m

q .
Kuhn proved [20, theorem 1.8] via similar filtration methods to ours that, for

k = Fp with p a prime, the quotient ring Qk := k[x1, . . . , xn]/(xpm

1 , . . . , xpm

n ) has
the same composition factors as the permutation representation k[Fn×m

p ] on the
space of n × m matrices. In fact, he proves this holds not only as kG-modules for
G = GLn(Fp), but even as modules over the larger semigroup ring k[Matn(Fp)] of
n × n matrices, which still acts by linear substitutions on Qk and acts by matrix
left-multiplication on k[Fn×m

p ].

Remark 6.13. (The authors thank N. Kuhn for pointing out the following conse-
quence of conjecture 1.2.) Since the filtration F = {Fi} on the ring R := Rk defined
in (6.1) is G-stable, it induces a filtration FG = {(Fi)G} on the G-fixed subring
RG. One has well-defined injective maps (Fi)G/(Fi−1)G ↪→ Fi/Fi−1, whose images
lie in the subspace (Fi/Fi−1)G. Compiling these injections gives an injective ring
homomorphism

grF G(RG) ↪→ (grF R)G. (6.3)

Proposition 6.14. The specialization of conjecture 1.2 to t = 1 is equivalent to
the injection (6.3) being an isomorphism.

Thus, conjecture 1.2 implies that the operations of taking G-fixed points and
forming the associated graded ring commute when applied to the ungraded parking
space R.

Proof of proposition 6.14. Proposition 6.10 shows that Q ∼= grR, and hence QG ∼=
(grR)G. Thus, the specialization of conjecture 1.2 to t = 1 is equivalent to the
assertion that

min(m,n)∑
k=0

[
m

k

]
q

= dimFq
QG = dimFq

(grR)G.

On the other hand, theorem 6.16 shows that the sum on the left equals dimFq RG,
and hence also equals dimFq

grF G(RG). Thus, conjecture 1.2 at t = 1 asserts that
the source and target of the injection (6.3) have the same dimension.

6.2. Pα-fixed spaces, orbits and parabolic conjecture 1.5

We next compare the Pα-fixed spaces in Qk and in k[Fn
qm ]. Since k[Fn

qm ] is a
permutation representation, one can identify its fixed space as

k[Fn
qm ]Pα ∼= k[Pα\Fn

qm ],

where Pα\Fn
qm is the set of Pα-orbits on Fn

qm . This orbit set Pα\Fn
qm turns out to

be closely related to the mysterious summation in the definition (1.6) of Cα,m(t).
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Definition 6.15. Let β = (β1, . . . , β�) be a weak composition having |β| � m, and
define its partial sums Bi = β1 + β2 + · · · + βi as usual. A (β, m − |β|)-flag in Fqm

is a tower
0 = VB0 ⊂ VB1 ⊂ VB2 ⊂ · · · ⊂ VB�

⊂ Fqm (6.4)

of Fq-subspaces inside Fqm with dimFq
VBi

= Bi for each i.

Let Yβ be the set of (β, m − |β|)-flags in Fqm , whose cardinality is known to be
a q-multinomial coefficient :

|Yβ | =
[

m

β, m − |β|

]
q

:=
[

m

β, m − |β|

]
q,t=1

=

∏n−1
j=0 (qn − qj)∏�

i=1
∏βi−1

j=0 (qBi − qBi−1+j)
.

Given a composition α of n, define the set

Xα :=
⊔

β : β�α,
|β|�m

Yβ ,

which has cardinality given by

|Xα| =
∑

β : β�α,
|β|�m

|Yβ | = [Cα,m(t)]t=1.

Theorem 6.16. The set Xα naturally indexes Pα\Fn
qm . Therefore,

dimk k[Fn
qm ]Pα = |Pα\Fn

qm | = [Cα,m(t)]t=1.

Proof. Fix α = (α1, . . . , α�) and denote its partial sums by Ai = α1 + α2 + · · · + αi

as usual. To any vector v = (v1, . . . , vn) in Fn
qm one can associate a flag (Vi)�

i=1 in
Fqm defined by Vi := span

Fq
{v1, v2, . . . , vAi}. This gives rise to a weak composition

β = (β1, . . . , β�) with

βi = dimFq Vi − dimFq Vi−1 = dimFq Vi/Vi−1 � αi,

where the inequality arises because Vi/Vi−1 is spanned by the αi vectors

{vAi−1+1, vAi−1+2, . . . , vAi}.

Also one has

|β| = dimFq span
Fq

{v1, v2, . . . , vn} � dimFq Fqm = m.

Thus, the flag (Vi)�
i=1 associated to v lies in Yβ ⊂ Xα, and this flag is a complete

invariant of the Pα-orbit of v: one has Pαv = Pαv′ if and only if Vi = V ′
i for

i = 1, 2, . . . , �. This gives a bijection Pα\Fn
qm → Xα.

Remark 6.17. When α = (n) so that Pα = G = GLn(Fq), the analysis of the
G-orbits G\Fn

qm just given in theorem 6.16 is closely related to Kuhn’s analysis
in [20, § 5, corollary 5.3] (see also remark 6.12).
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Something even more striking is true regarding the action of the cyclic group
C = F×

qm on the set of flags Xα inside Fqm . Fix a multiplicative generator γ for
C = 〈γ〉 = F×

qm , so γ has multiplicative order qm −1. Also fix a primitive (qm −1)st
root of unity ζ in C×. For an element γd in C, denote its fixed subset by

(Xα)γd

:= {x ∈ Xα : γd(x) = x}.

Proposition 6.18. For any composition α and integer d, one has

|(Xα)γd | = [Cα,m(t)]t=ζd .

In other words, the triple (Xα, Cα,m(t), C) exhibits a cyclic sieving phenomenon in
the sense of [26].

Proof. It follows from [26, theorem 9.4] that for a weak composition β with |β| � m
and integer d one has

|(Yβ)γd | =
[

m

β, m − |β|

]
q,t=ζd

.

So, by (1.6), it suffices to show (Yβ)γd 
= ∅ implies that [te(m,α,β)]t=ζd = 1.
One checks this as follows. Let r be the multiplicative order of γd within C = F×

qm ,
and of ζd within C×. One knows that Fq(γd) = Fq� for some divisor � of m with the
property that r divides q� − 1. Then any (β, m − |β|)-flag of Fq-subspaces in Fqm

stabilized by γd must actually be a flag of Fq(γd)-subspaces, and hence a flag of
Fq� -subspaces. Therefore, � must divide each partial sum Bi for i = 1, 2, . . . , �. As
� also divides m, this means that � divides each m − Bi, so that q� − 1 divides each
qm−Bi −1, and hence q�−1 divides each qm−qBi = qBi(qm−Bi −1). This means that
r will also divide each qm − qBi , so that r divides e(m, α, β), and [te(m,α,β)]t=ζd = 1
as desired.

One can reinterpret proposition 6.18 in the following fashion.

Proposition 6.18
′
. Parabolic conjecture 1.5 implies that for any field k ⊃ Fqm ,

one has a kC-module isomorphism of the Pα-fixed spaces

QPα

k
∼= k[Fn

qm ]Pα . (6.5)

Proof. Note that |C| = qm − 1 is relatively prime to the characteristic of k ⊃ Fq,
and hence kC is semisimple. Thus, it suffices to check that QPα

k and k[Fn
qm ]Pα have

the same kC-module Brauer characters. Recall [29, § 18.1] that to compute these
Brauer characters, one starts by fixing an embedding of cyclic groups

C = F×
qm = 〈γ〉 → C×

γd 	→ ζd, where ζ := exp
{

2πi
qm − 1

}
.

Then, whenever an element γd in C acts in some r-dimensional FqmC-module U
with multiset of eigenvalues (γi1 , . . . , γir ), its Brauer character value on U is defined
to be

χU (γd) := ζi1 + · · · + ζir .
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To compute Brauer character values on QPα

k , recall from definition 6.6 that the
element γd in C acting on this graded vector space will scale the eth homogeneous
component by (γd)e. Hence,

χQPα
k

(γd) = [Hilb(QPα

k , t)]t=ζd . (6.6)

To compute the Brauer character values on k[Fn
qm ]Pα , note that, since k[Fn

qm ]
is a permutation representation of Pα × C, its Pα-fixed space k[Fn

qm ]Pα is isomor-
phic to the permutation representation of C on the set of Pα-orbits on Pα\Fn

qm .
Equivalently, by theorem 6.16, this is the permutation representation of C on Xα.
For a permutation representation of a finite group, it is easily seen that its Brauer
character value for a (p-regular) element is its usual ordinary complex character
value, i.e. its number of fixed points. Hence, the Brauer character value for γd when
acting on k[Fn

qm ]Pα is |(Xα)γd |. Comparing this value with (6.6), and assuming
parabolic conjecture 1.5, one finds that proposition 6.18 exactly asserts that the
two kC-modules in (6.5) have the same Brauer characters.

7. Further questions and remarks

7.1. The two limits where t, q go to 1

In [25, (1.3)], it was noted that two different kinds of limits applied to the (q, t)-
binomials yield the same answer after swapping q and t, namely

lim
t→1

[
n

k

]
q,t

=
[
n

k

]
q

and lim
q→1

[
n

k

]
q,t1/(q−1)

=
[
n

k

]
t

.

One can similarly apply these two kinds of limits to Cn,m(t), giving two somewhat
different answers:

lim
t→1

Cn,m(t) =
min(n,m)∑

k=0

[
m

k

]
q

, (7.1)

lim
q→1

Cn,m(t1/(q−1)) =
min(n,m)∑

k=0

t(n−k)(m−k)
[
m

k

]
t

. (7.2)

The limit (7.1) can be interpreted, via theorem 6.16 for α = (n), as counting
GLn(Fq)-orbits on Fn

qm . When m � n, it gives the Galois number Gn counting all
Fq-subspaces of Fn

q and studied, for example, by Goldman and Rota [13]. We have
no insightful explanation or interpretation for the limit (7.2).

In addition, it is perhaps worth noting two further specializations of (7.2): setting
m = n or m = n−1 and then taking the limit as n → ∞, one obtains the left-hand
sides of the two Rogers–Ramanujan identities:

∞∑
k=0

tk
2

(t; t)k
=

1
(t; t5)∞(t4; t5)∞

and
∞∑

k=0

tk
2+k

(t; t)k
=

1
(t2; t5)∞(t3; t5)∞

,

where (x; t)k := (1 − x)(1 − tx) · · · (1 − tk−1x) and (x; t)∞ = limk→∞(x; t)k. We
have no explanation for this.
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7.2. G-fixed divided powers versus G-cofixed polynomials

We reformulate conjecture 1.3 slightly.
Setting V := Fn

q , one can regard the symmetric algebra S = Fq[x1, . . . , xn] =
Sym(V ∗) as a Hopf algebra, which is graded of finite type, meaning that each graded
piece Sd is finite-dimensional. Then the (restricted) dual Hopf algebra D(V ) has as
its dth graded piece D(V )d = S∗

d , the Fq-dual vector space to Sd, and naturally car-
ries the structure of a divided power algebra on V (see, for example, [1, §§ I.3, I.4]).
Consequently, proposition 3.3 implies that the G-fixed space D(V )G

d is Fq-dual to
the G-cofixed space (Sd)G, so that

Hilb(D(V )G, t) = Hilb(SG, t).

This means one can regard conjecture 1.3 as being about Hilb(D(V )G, t) instead.
Since D(V )G is a subalgebra of the divided power algebra D(V ), this suggests the
following.

Question 7.1. For V = Fn
q and G = GLn(Fq), is conjecture 1.3 suggesting a

predictable or well-behaved ring structure for the G-fixed subalgebra D(V )G of the
divided power algebra D(V )?

The invariant theory literature for finite subgroups of GL(V ) acting on divided
powers D(V ) is much less extensive than the literature for actions on polynomial
rings S = Sym(V ), although one finds a few results in [28]. M. Crabb (personal
communication, 2013) informs us that, in work with J. Hubbuck and D. Salisbury,
some results on the structure of D(V )G were known to them for G = GL2(Fp)
acting on V = F2

p with p = 2, 3.

7.3. Homotopy theory

Kuhn [20], mentioned in § 6, is part of a large literature relating modular rep-
resentations of GLn(Fq) and its action on S = Fq[x1, . . . , xn] to questions about
stable splittings in homotopy theory. In this work, an important role is played by
a commuting action on S of the mod p Steenrod algebra; some references are [30,
ch. 10, 11], [7], the two surveys [33] and [34, § 7] and the papers of Doty and
Walker [9–11]. We have not seen how to use these results in attacking parabolic
conjectures 1.5 and 1.6.

7.4. Approaches to conjecture 1.2

In approaching conjecture 1.2 we would like an explicit Fq-basis for QG, where
Q = S/m[qm], in degrees suggested by the (q, t)-binomial summands in (1.2) for
Cn,m(t). For example, when m � n one can at least make a reasonable guess about
part of such a basis that models the k = n summand in (1.2), as follows. It was
shown in [25, (5.6)] that [

m

n

]
q,t

=
∑
(λ,a)

t
∑n−1

i=0 ai(qn−qn−i),

where (λ, a) ranges over all pairs in which λ = (λ1, . . . , λn) satisfies m − n � λ1 �
· · · � λn � 0, and a = (a0, . . . , an−1) is a tuple of non-negative integers q-compatible
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with λ in the sense that ai ∈ [δi, δi + qλi), where δi := qλi+1 + qλi+1+1 + · · ·+ qλi−1.
Thus, one might guess that the images of the monomials

n−1∏
i=0

Dai
n,n−i

as one ranges over the same pairs of (λ, a) form part of an Fq-basis for QG, and their
Fq-linear independence has been checked computationally for a few small values of
n, m and q.

However, one knows that at least some of the basis elements accounting for
other summands in (1.2) are not sums of products of Dickson polynomials Dn,i, as
the natural map SG → QG is not surjective for n � 2. One seems to need recursive
constructions that produce invariants in n variables from invariants in n−1 variables
with predictable effects on the degrees. Currently, we lack such constructions.

Non-surjectivity of SG → QG appears in another initially promising approach.
As m[qm] = (xqm

1 , . . . , xqm

n ) is generated by a regular sequence on S, one has an
S-free Koszul resolution [23, § XVI.10] for Q = S/m[qm]:

0 → S ⊗F ∧nV → · · · → S ⊗F ∧2V → S ⊗F ∧1V → S → Q → 0.

Taking G-fixed spaces gives a complex, which is generally not exact when FqG is
not semisimple, but at least contains QG at its right end:

0 → (S ⊗F ∧nV )G → · · · → (S ⊗F ∧2V )G → (S ⊗F ∧1V )G → SG → QG → 0. (7.3)

A result of Hartmann and Shepler [15, § 6.2] very precisely describes each term
(S ⊗F ∧iV )G in (7.3) as a free SG-module with explicit SG-basis elements that
are homogeneous with predictable degrees; this is an analogue of a classic result on
invariant differential forms for complex reflection groups due to Solomon [31]. Thus,
each term (S ⊗F ∧iV )G has a simple explicit Hilbert series. However, non-exactness
means that (7.3) is not a resolution of QG, so it does not let us directly compute
its Hilbert series.

7.5. Rational Cherednik algebras for GLn(Fq)

Section 6 alluded to the considerations that led to conjecture 1.2, coming from
the theory of real reflection groups W . When W acts irreducibly on Rn and on the
polynomial algebra C[x] = C[x1, . . . , xn], one can define its graded W -parking space
C[x]/(θ1, . . . , θn), as a quotient by a certain homogeneous system of parameters
θ1, . . . , θn of degree h+1 inside C[x], where h is the Coxeter number of W (see [2]).

Replacing W by G := GLn(Fq), we think of h := qn − 1 as the Coxeter number,
with xqn

i playing the role of θi, and Q = S/mqn

playing the role of the graded
G-parking space.

In the real reflection group theory, the W -parking space carries the structure of
an irreducible finite-dimensional representation Lc(triv) for the rational Cherednik
algebra Hc(W ) with parameter value c = (h + 1)/h. Here the θi span the common
kernel of the Dunkl operators in Hc(W ) when acting on C[x] = Mc(triv). In addi-
tion, the W -fixed space Lc(triv)W is a graded subspace whose Hilbert series is the
W -Catalan polynomial.
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This explains why we examined the Hilbert series of QG in our context. In fact,
rational Cherednik algebras Hc(G) for G = GLn(Fq) and their finite-dimensional
representations Lc(triv) have been studied by Balagović and Chen [4]. However,
their results show that the common kernel of the Dunkl operators in Hc(G) acting
on S = Fq[x] is not spanned by xqn

1 , . . . , xqn

n . In fact, for almost all choices of n
and the prime power q = pr, they show [4, theorem 4.10] that it is spanned by
xp

1, . . . , x
p
n, independent of the exponent r.

Can one modify this rational Cherednik theory for G to better fit our setting,
and gain insight into QG?

Appendix A. Proof of proposition 2.1

We recall here the statement to be proven.

Proposition 2.1. For any m � 0 and any composition α of n, the power series

Hilb(SPα , t) =
�∏

i=1

αi−1∏
j=0

1
1 − tq

Ai−qAi−1+j

is congruent in Z[[t]]/(tq
m

) to the polynomial

Cα,m(t) =
∑

β : β�α,
|β|�m

te(m,α,β)
[

m

β, m − |β|

]
q,t

, e(m, α, β) =
�∑

i=1

(αi − βi)(qm − qBi).

Fix m � 0. Throughout the proof, ‘≡’ denotes equivalence in Z[[t]]/(tq
m

).

Proof. Given the composition α = (α1, . . . , α�), denote its ith partial sum by Ai =
α1 + α2 + · · · + αi as before. Adopting the convention that A0 := 0, A�+1 := +∞,
define L to be the largest index in 0 � L � � for which AL � m, so that AL+1 > m.
Part of the relevance of the index L comes from the truncation to the first L factors
in the product formula

Hilb(SPα , t) =
�∏

i=1

αi−1∏
j=0

(1 − tq
Ai−qAi−1+j

)−1 ≡
L∏

i=1

αi−1∏
j=0

(1 − tq
Ai−qAi−1+j

)−1, (A 1)

where the last equivalence is justified as follows. As q is a prime power, one has
q � 2. Thus, for integers a, b, c, one has

a > b, c =⇒ qa − qb − qc � qa − 2qa−1 = (q − 2)qa−1 � 0. (A 2)

In particular, qAi − qAi−1+j � qAi−1 � qm for all i � L + 1. Thus, all of the factors
in (A 1) with i > L are equivalent to 1 modulo (tq

m

).
We shall make frequent use of (A 2); for example, it helps to prove the following

lemma, which shows that most summands of Cα,m(t) in (1.6) vanish in Z[[t]]/(tq
m

).
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Lemma A.1. Given m and α, with Ai and L defined as above, the weak composi-
tions β = (β1, . . . , β�) with 0 � β � α and |β| � m for which e(m, α, β) < qm are
exactly those of the following two forms: either

β = α̂ :=

{
α if L = �,

(α1, . . . , αL, m − AL, 0, . . . , 0) otherwise,

or, for k = 1, 2, . . . , L,

β = α̂(k)

:=

{
(α1, . . . , αk−1, αk − 1, αk+1, . . . , α�) if L = �,

(α1, . . . , αk−1, αk − 1, αk+1, . . . , αL, m − AL + 1, 0, . . . , 0) otherwise.

In the former case, e(m, α, β) = 0, and in the latter, e(m, α, β) = qm − qAk−1.

Proof of lemma A.1. Assume β = (β1, . . . , β�) has 0 � β � α with |β| � m, and
that e(m, α, β) < qm. As before, let Bi = β1 + β2 + · · · + βi for i = 0, 1, . . . , � + 1,
with conventions B0 := 0 and B�+1 := m. By (A 2), the condition e(m, α, β) < qm

implies that at most one summand in e(m, α, β) may be non-zero, and if the ith
summand (αi − βi)(qm − qBi) is non-zero, then αi − βi = 1. Choose j minimal so
that 0 � j � � + 1 and Bj = m. We consider two cases, depending on whether or
not e(m, α, β) = 0.

Case 1 (e(m, α, β) = 0). In this case all summands in e(m, α, β) are zero, so βi =
αi for all i < j. If j = �+1, then it follows immediately that β = α = α̂. Otherwise,
j � �. Since Bj = m but Ai = Bi < m for i < j, we have j = L. Therefore,
β = (α1, . . . , αL, m − AL, 0, . . . , 0) = α̂ in this case.

Case 2 (e(m, α, β) > 0). In this case there is an index k such that k < j and
αi − βi = 1, and for all other i < j we have βi = αi. If j = � + 1, then
it follows immediately that β = (α1, . . . , αk−1, αk − 1, αk+1, . . . , α�) = α̂(k). Other-
wise, j � �. Since Bj = m but Ai � Bi + 1 � m for i < j, we have j = L.
Therefore, β = (α1, . . . , αk−1, αk − 1, αk+1, . . . , αL, m − AL + 1, 0, . . . , 0) = α̂(k) in
this case.

Returning to the proof of proposition 2.1, note that lemma A.1 implies

Cα,m(t) ≡
[
m

α̂

]
q,t

+
L∑

k=1

tq
m−qAk−1

[
m

α̂(k)

]
q,t

. (A 3)

We next process the summands on the right. By definition, one has that

tq
m−qAk−1

[
m

α̂(k)

]
q,t

= tq
m−qAk−1

AL−1∏
j=0

(1 − tq
m−qj

)
/ L∏

i=1

α̂
(k)
i −1∏
j=0

(1 − tq
Â

(k)
i −q

Â
(k)
i−1+j

),

where here Â
(k)
i := α̂

(k)
1 + · · · + α̂

(k)
i as usual. We shall attempt to simplify the

fraction on the right-hand side, working mod(tq
m

). Note that in its numerator, only
tq

m−qAk−1
survives, as (A 2) implies (qm − qAk−1) + (qm − qj) � qm. Meanwhile, in
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its denominator, only the factors indexed by i = 1, 2, . . . , k survive multiplication
by tq

m−qAk−1
when working mod(tq

m

): since Â
(k)
i � Ak for i � k + 1, (A 2) implies

(qm − qAk−1) + (qÂ
(k)
i − qÂ

(k)
i−1+j) � qm.

Thus, one has

tq
m−qAk−1

[
m

α̂(k)

]
q,t

≡ tq
m−qAk−1

k∏
i=1

α̂
(k)
i −1∏
j=0

(1 − tq
Â

(k)
i −q

Â
(k)
i−1+j

)−1

=
( k−1∏

i=1

αi−1∏
j=0

(1 − tq
Ai−qAi−1+j

)−1
)

× tq
m−qAk−1

αk−2∏
j=0

(1 − tq
Ak−1−qAk−1+j

)−1.

Using (A 2), the last, unparenthesized factor is equivalent mod(tq
m

) to

tq
m−qAk−1

+
αk−2∑
j=0

tq
m−qAk−1+j

=
αk−1∑
j=0

tq
m−qAk−1+j

.

Consequently, one has

tq
m−qAk−1

[
m

α̂(k)

]
q,t

≡
( αk−1∑

j=0

tq
m−qAk−1+j

)/ k−1∏
i=1

αi−1∏
j=0

(1 − tq
Ai−qAi−1+j

). (A 4)

Similarly, one finds that[
m

α̂

]
q,t

=
AL−1∏
j=0

(1 − tq
m−qj

)
/ L∏

i=1

αi−1∏
j=0

(1 − tq
Ai−qAi−1+j

). (A 5)

The numerator on the right-hand side of (A 5) can be rewritten mod(tq
m

) using
(A 2) as

AL−1∏
j=0

(1 − tq
m−qj

) ≡ 1 −
AL−1∑
j=0

tq
m−qj

= 1 −
L∑

k=1

αk−1∑
j=0

tq
m−qAk−1+j

.

Comparing this with (A 1) shows that

[
m

α̂

]
q,t

= Hilb(SPα , t) −
L∑

k=1

( αk−1∑
j=0

tq
m−qAk−1+j

)/ L∏
i=1

αi−1∏
j=0

(1 − tq
Ai−qAi−1+j

)

≡ Hilb(SPα , t) −
L∑

k=1

( αk−1∑
j=0

tq
m−qAk−1+j

)/ k−1∏
i=1

αi−1∏
j=0

(1 − tq
Ai−qAi−1+j

).

(A 6)
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The last equivalence mod(tq
m

) arises since if i � k, then Ai � Ak, so

(qm − qAk−1+j) + (qAi − qAi−1+j) � qm

by (A 2). Finally, combining (A 3), (A 4) and (A 6) shows that

Cα,m(t) ≡ Hilb(SPα , t),

as desired.

Appendix B. Proofs in the bivariate case

Our goal here is to prove parabolic conjectures 1.5 and 1.6 for n = 2. Their equiva-
lence for n = 2 was shown in corollary 3.6, so we only prove parabolic conjecture 1.6.

The group G = GL2(Fq) has only two parabolic subgroups Pα, namely the whole
group G = P(2) itself and the Borel subgroup B = P(1,1). We establish parabolic
conjecture 1.6 for these subgroups in theorems B.15 and B.10, respectively.

We consider the chain of subgroups

1 ⊂ T ⊂ B ⊂ G (B 1)

where

T =
{[

a 0
0 d

]
: a, d ∈ F×

q

}
,

B =
{[

a b

0 d

]
: a, d ∈ F×

q , b ∈ Fq

}
,

G =
{[

a b

c d

]
: ad − bc ∈ F×

q

}
.

We first recall the known descriptions of the invariant subrings for each of these
subgroups, and then prove some preliminary facts about their cofixed quotients.
Using this, we complete our analysis first for the quotient SB , and then for the
quotient SG.

B.1. The invariant rings

Acting on S = Fq[x, y], the tower of subgroups (B 1) induces a tower of invariant
subalgebras S ⊃ ST ⊃ SB ⊃ SG, with the following explicit descriptions. Abbre-
viate X := xq−1, Y := yq−1, and recall from § 1 that for n = 2 the two Dickson
polynomials D2,0, D2,1 are defined by∏

(c1,c2)∈F2
q

(t + c1x + c2y) = tq
2
+ D2,1t

q + D2,0t. (B 2)

Proposition B.1. For S = Fq[x, y] one has

(i) ST = Fq[X, Y ],

(ii) SB = Fq[X, D2,1] and

(iii) SG = Fq[D2,0, D2,1],
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with explicit formulae

D2,1 = Y q + XY q−1 + · · · + Xq−1Y + Xq,

D2,0 = XY q + X2Y q−1 + · · · + XqY = XD2,1 − Xq+1.

Proof. Assertion (i) is straightforward. Assertion (ii) follows from the work of Mui
[24] or Hewett [16]. Assertion (iii) is Dickson’s theorem [8] for n = 2. The last two
equalities follow from Dickson’s expressions

D2,1 =
∣∣∣∣ x y

xq2
yq2

∣∣∣∣
/ ∣∣∣∣ x y

xq yq

∣∣∣∣
=

xyq2 − xq2
y

xyq − xqy
= Y q + XY q−1 + · · · + Xq−1Y + Xq,

D2,0 =
∣∣∣∣ xq yq

xq2
yq2

∣∣∣∣
/ ∣∣∣∣ x y

xq yq

∣∣∣∣
=

xqyq2 − xq2
yq

xyq − xqy
= XY q + X2Y q−1 + · · · + XqY,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 3)

for the Dn,i as quotients of determinants.

B.2. The cofixed spaces

The tower of subgroups in (B 1) induces quotient maps S � ST � SB � SG.
The quotient map S � ST is easily understood.

Proposition B.2. A monomial xiyj in S survives in the T -cofixed space ST if and
only if q − 1 divides both i and j, i.e. if and only if xiyj = Xi′

Y j′
for some i′, j′.

Furthermore, these monomials {XiY j}i,j�0 form an Fq-basis for ST .

Proof. Proposition 5.1(iv) implies that ST is the quotient of S by the Fq-subspace
spanned by all elements t(xiyj)−xiyj . A typical element t in T sends x 	→ c1x and
y 	→ c2y for some c1, c2 in F×

q . Therefore,

t(xiyj) − xiyj = (ci
1c

j
2 − 1)xiyj .

If both i and j are divisible by q − 1, then this will always be zero, and otherwise,
there exist choices of c1, c2 for which it is a non-zero multiple of xiyj .

In understanding the quotients SP , SG, it helps to define two Fq-linear functionals
on S that descend to one or both of SP , SG. They will be used in the proof of
corollary B.6 to detect certain non-zero products.

Definition B.3. Define two Fq-linear functionals S
µ,ν−−→ Fq by setting µ(xiyj) =

ν(xiyj) = 0 unless q − 1 divides both i, j, and setting

µ(XiY j) =

{
1 if i, j � 1,

0 if i = 0 or j = 0
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and

ν(XiY j) =

{
1 if i = 0,

0 if i � 1.

In other words, µ applied to f(x, y) sums the coefficients in f on monomials of
the form XiY j that are not pure powers Xi or Y j , while ν sums the coefficients on
the pure Y -powers Y j . It should be clear from their definitions and proposition B.2
that both µ and ν descend to well-defined Fq-linear functionals on ST .

Proposition B.4. One has the following:

(i) the functional S
ν−→ F descends to a well-defined functional on SB;

(ii) the functional S
µ−→ F descends to a well-defined functional on both SB and

SG.

Proof. The Borel subgroup B is generated by the torus T together with a transvec-
tion

x
u	−→ x

y
u	−→ x + y,

}
(B 4)

while the full general linear group G is generated by B together with a transposition
σ that swaps x, y. Hence, by proposition 5.1(iv), it suffices to check that for every
monomial xiyj , both µ and ν vanish on

u(xiyj) − xiyj =
j−1∑
k=0

(
j

k

)
xi+j−kyk (B 5)

and that µ vanishes on

σ(xiyj) − xiyj = xjyi − xiyj . (B 6)

The fact that µ vanishes on (B 6) is clear from the symmetry between X and Y
in its definition.

To see that ν vanishes on (B 5), observe that ν vanishes on every monomial
xi+j−kyk appearing in the sum, as k < j means it is never a pure power of y (or
Y ).

To see that µ vanishes on (B 5), we do a calculation. Applying µ to the right-hand
side gives

j−1∑
k=0

(
j

k

)
µ(xi+j−kyk) =

∑
k=1,2,...,j−1,

q−1|k

(
j

k

)
, (B 7)

which equals the sum (in Fq) of the coefficients on the monomials of the form x�(q−1)

within the polynomial

f(x) :=
j−1∑
k=1

(
j

k

)
xk = (x + 1)j − (xj + 1).
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One can then advantageously rewrite (B 7) by taking advantage of a root of unity
fact: ∑

β∈F
×
q

βk =

{
q − 1 = −1 if k = �(q − 1) for some � ∈ Z,

0 otherwise.

Noting also that f(0) = 0, this lets one rewrite the right-hand side of (B 7) as

−
∑

β∈F
×
q

f(β) = −
∑
β∈Fq

f(β) = −
∑
β∈Fq

(β + 1)j +
∑
β∈Fq

βj +
∑
β∈Fq

1

= −
∑
β∈Fq

βj +
∑
β∈Fq

βj + q

= 0.

The following technical lemma on vanishing and equalities lies at the heart of our
analysis of SB , SG.

Lemma B.5. Beyond the vanishing in ST of monomials except for {XiY j}i,j�0, in
the further quotient SB one also has

(i) Xi = 0 for all i � 1,

(ii) XiY j = Xi′
Y j′

for all i, i′ � 1 and 1 � j, j′ � q if i + j = i′ + j′.

In the even further quotient SG, one additionally has

(iii) Y j = 0 for all j � 1, and

(iv) XiY j = Xi′
Y j′

for all i, i′, j, j′ � 1 with i + j = i′ + j′ � 2q.

Proof. For (i), since B contains the transvection u from (B 4), one has in SB for
any k > 0 that

0 ≡ u(xk−1y) − xk−1y = xk−1(x + y) − xk−1y = xk.

Hence, Xi = xi(q−1) vanishes in SB for all i > 0.

For (ii), we claim that it suffices to show that whenever i, j � 1 and 2 � j � q, one
can express XiY j as a sum of Xi′

Y j′
having i+ j = i′ + j′ and j′ < j: then all such

monomials XiY j will be scalar multiples of each other, but they all take the same
value 1 when one applies the functional µ from definition B.3 and proposition B.4,
so they must all be equal.

To this end, let d := (i + j)(q − 1) = deg(XiY j). Using the transvection u from
(B 4), and taking advantage of the vanishing of xiyj in SB unless q − 1 divides i, j,
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one has

0 ≡ u(xd−(jq−1)yjq−1) − xd−(jq−1)yjq−1

= xd−(jq−1)(x + y)jq−1 − xd−(jq−1)yjq−1

=
( jq−1∑

k=0

(
jq − 1

k

)
xd−kyk

)
− xd−(jq−1)yjq−1

≡
(

jq − 1
j(q − 1)

)
xi(q−1)yj(q−1) +

j−1∑
m=0

(
jq − 1

m(q − 1)

)
x(i+j−m)(q−1)ym(q−1)

=
(

jq − 1
j(q − 1)

)
XiY j +

j−1∑
m=0

(
jq − 1

m(q − 1)

)
Xi+j−mY m.

Thus, it remains only to show that
(

jq−1
j(q−1)

)

= 0 in Fq when 1 � j � q. Letting

q = ps for some prime p and exponent s � 1, we have(
jq − 1

j(q − 1)

)
=

(jq − 1)(jq − 2) · · · (jq − j + 1)
1 · 2 · · · (j − 1)

. (B 8)

For any integers a, b such that 1 � a � ps − 1 and b � 1, the largest power of p
dividing b ·ps −a is equal to the largest power of p dividing a. Since j � q, it follows
that the largest power of p dividing the numerator of the right-hand side of (B 8)
is equal to the largest power of p dividing the denominator, so

(
jq−1

j(q−1)

)

= 0 in Fq.

For (iii), note that, since (i) implies Xi vanishes in SB , the same vanishing holds
in the further quotient SG. But then Y i also vanishes in SG by applying the trans-
position σ in G swapping x and y.

For (iv), note that (ii) shows that, fixing d := i + j, all monomials XiY j with
i, j � 1 and j � q are equal in SB , and hence also equal in the further quotient
SG. Applying the transposition σ as before, one concludes that these monomials
are also all equal to the monomials XiY j with i, j � 1 and i � q. But when
d = i + j � 2q these two sets of monomials exhaust all of the possibilities for XiY j

with i, j � 1.

The following corollary will turn out to be a crucial part of the structure of SG

as an SG-module in the bivariate case, used in the proof of theorem B.15.

Corollary B.6. In the G-fixed quotient space SG, the images of the monomials

{1, XY, X2Y, . . . , Xq−2Y } (B 9)

are all annihilated by D2,0, but none of them is annihilated by any power of D2,1.

Proof. Proposition B.1 shows that D2,0 is a sum of q monomials of the form XiY j

with i, j � 1. The same is true for the product D2,0 · M , where M is any of the
monomials in (B 9). Since these monomials M have degree at most (q − 1)2, the
product D2,0·M has degree at most q2−1+(q−1)2 = 2q(q−1), and hence all q of the
monomials in the product are equal to the same monomial M ′ by lemma B.5(iv).
Therefore, D2,0M ≡ qM ′ = 0 in SG, as desired.
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Proposition B.1 shows that D2,1 = Y q + XY q−1 + · · · + Xq−1Y + Xq, a sum of
q + 1 monomials. Hence, for j � 0, the power Dj

2,1 is a sum of (q + 1)j monomials,
of the form

Dj
2,1 = Y qj +

( ∑
i,j�1

ci,jX
iY j

)
+ Xqj

with
∑

i,j�1 ci,j = (q + 1)j − 2. Thus, the Fq-linear functional µ from definition B.3
and proposition B.4 has

µ(Dj
2,1 · 1) = µ(Dj

2,1) = (q + 1)j − 2 = 1j − 2 = −1 
= 0,

while for any of the rest of the monomials M = XiY with i � 1 in (B 9), it has

µ(D2,1 · M) = (q + 1)j = 1j = 1 
= 0.

Thus, no power Dj
2,1 annihilates any of the monomials in (B 9) within SG.

B.3. Analysing the fixed quotient SB for the Borel subgroup B = P(1,1)

One can regard the polynomial algebra S with its B-action as a module for
the group algebra SB [B] having coefficients in the B-invariant subalgebra SB =
Fq[D2,1, X]. We begin by describing the SB [B]-module structure on S, and thereby
deduce the SB-module structure on the B-cofixed space SB . For this purpose, we
borrow an idea from Karagueuzian and Symonds [17, § 2.1].

Definition B.7. Let Ŝ be the Fq-subspace of S spanned by the monomials

{xiyj : 0 � j � q2 − q}.

It is easily seen that Ŝ is stable under the action of B, and also under multi-
plication by x and so, by its B-invariant power, X = xq−1, so that Ŝ becomes an
Fq[X][B]-module. Thus, the tensor product

Fq[D2,1] ⊗Fq Ŝ

is naturally a module for the ring

Fq[D2,1] ⊗Fq Fq[X][B] ∼= Fq[D2,1, X][B] = SB [B]

via the tensor product action

(a ⊗ c)(b ⊗ d) = ab ⊗ cd

for any elements

a, b ∈ Fq[D2,1], c ∈ Fq[X][B] and d ∈ Ŝ.

Proposition B.8 (Karagueuzian and Symonds [17, lemma 2.5]). The multipli-
cation map

Fq[D2,1] ⊗Fq Ŝ → S

f1 ⊗ f2 	→ f1f2



Invariants of GLn(Fq) in polynomials modulo Frobenius powers 867

induces an SB [B]-module isomorphism. Hence, as a module over SB = Fq[D2,1, X],
one has an isomorphism

Fq[D2,1] ⊗Fq ŜB
∼= SB .

Proof. The multiplication map is easily seen to be a morphism of SB [B]-modules,
so it remains only to check that it is an Fq-vector-space isomorphism. This follows
by iterating a direct sum decomposition

D2,1Sd ⊕ Ŝd+q2−q = Sd+q2−q (B 10)

justified for d � 0 as follows. The leftmost summand D2,1Sd in (B 10) has as Fq-
basis the set {D2,1x

iyj}i+j=d. Since (B 3) shows that D2,1 = yq2−q+xq−1yq2−2q+1+
· · · + xq2−q, the leading monomials in y-degree for D2,1Sd are

{xiyj′
: i + j′ = d + q2 − q and j′ � q2 − q}.

Meanwhile the summand Ŝd+q2−q has as Fq-basis the complementary set of mono-
mials

{xiyj : i + j = d + q2 − q and j < q2 − q}
within the set of all monomials {xiyj : i + j = d + q2 − q} that form an Fq-basis for
Sd+q2−q.

In analysing SB , it therefore suffices to analyse ŜB .

Proposition B.9. Within the quotient space ŜB, one has the following.

(i) XiY j ≡ Xi+j−1Y for all i � 1 and 1 � j � q − 1.

(ii) There is an Fq-basis

{Y, XY, X2Y, X3Y, . . . } ∪ {1, Y 2, Y 3, . . . , Y q−1}. (B 11)

(iii) There is an Fq[X]-module direct sum decomposition ŜP = M1 ⊕ M2, where

• M1 = Fq[X] · Y is a free Fq[X]-module on the basis {Y }, and

• M2 is the Fq[X]-submodule spanned by

{1, Y 2 − XY, Y 3 − X2Y, . . . , Y q−1 − Xq−2Y }, (B 12)

having Fq[X]-module structure isomorphic to a direct sum of copies of
the quotient module Fq[X]/(X) with the elements of (B 12) as basis.

Proof.
(i) This follows from lemma B.5(ii).

(ii) We first argue that the monomials in (B 11) span ŜB . By definition B.7, one
has that Ŝ is Fq-spanned by {xiyj : i � 0 and 0 � j < q2 − q}. Since monomials
other than those of the form XiY j vanish in ST and thus in its further quotient
SB , one concludes that ŜB is Fq-spanned by

{XiY j : i � 0 and 0 � j < q}.
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Table 1.

degree monomial µ value ν value

0 1 0 1

1 Y 0 1

2 XY 1 0
Y 2 0 1

3 X2Y 1 0
Y 3 0 1

...
...

...
...

q − 1 Xq−2Y 1 0
Y q−1 0 1

q Xq−1Y 1 0

q + 1 Xq−2Y 1 0

q + 2 Xq−3Y 1 0
...

...
...

...

Lemma B.5(i) says that Xi vanishes in SB for i � 1, so one may discard these
monomials and still have a spanning set. Also, assertion (i) of this proposition
shows that one may further discard monomials of the form XiY j with i � 1 and
j > 1. Thus, ŜB is Fq-spanned by

{XiY }i�0 ∪ {Y j}0�j�q−1,

which is the same set as in (B 11).
To see that these monomials are Fq-linearly independent in ŜB or SB , table 1

shows that they are separated in each degree by the Fq-linear functionals µ and ν
on SB from definition B.3 and proposition B.4.

(iii) First, note that, since {Y, XY, X2Y, X3Y, . . . } is a subset of an Fq-basis for ŜB ,
the submodule M1 = Fq[X] · Y indeed forms a free Fq[X]-module on the basis {Y }
inside of ŜB . Since

{1} ∪ {Y j}2�j�q−1

extends {Y, XY, X2Y, X3Y, . . . } to an Fq-basis for ŜB , so does the set (B 12):

{1} ∪ {Y j − Xj−1Y }2�j�q−1.

In particular, none of these elements vanish in ŜB , and ŜB = M1+M2, where M2 is
the Fq[X]-span of (B 12). On the other hand, each element of (B 12) is annihilated
on multiplication by X: this holds for the monomial 1 since X vanishes in SB by
lemma B.5(i), and it holds for Y j − Xj−1Y with 2 � j � q − 1 since XY j ≡ XjY
in SB by lemma B.5(ii). Thus, M2 has (B 12) as an Fq-basis, and its Fq[X]-module
structure is that of a free Fq[X]/(X)-module on this same basis. This also shows
that one has a direct sum ŜB = M1 ⊕ M2.



Invariants of GLn(Fq) in polynomials modulo Frobenius powers 869

The following is immediate from propositions B.8 and B.9.

Theorem B.10. One has a direct sum decomposition SB = M ′
1 ⊕ M ′

2 as modules
for SB = Fq[D2,1, X], where

• M ′
1 is a free Fq[D2,1, X]-module on {Y }, and

• M ′
2 is a direct sum of copies of the quotient SB-module Fq[D2,1, X]/(X) with

basis listed in (B 12).

In particular, one has

Hilb(SB , t) =
tq−1

(1 − tq−1)(1 − tq2−q)
+

1 + t2(q−1) + t3(q−1) + · · · + t(q−1)2

1 − tq2−q
,

which equals the prediction from parabolic conjecture 1.6 for α = (1, 1), namely

Hilb(SB , t) = 1 +
tq−1

1 − tq−1 +
t2(q−1)

1 − tq−1 +
tq

2+q−2

(1 − tq−1)(1 − tq2−q)
,

with the four summands corresponding to β = (0, 0), (0, 1), (1, 0) and (1, 1), respec-
tively.

B.4. Analysing the fixed quotient SG for the full group
G = GL2(Fq) = P(2)

One can again regard the polynomial algebra S with its G-action as a mod-
ule for the group algebra SG[G] with coefficients in the G-invariant subalgebra
SG = Fq[D2,0, D2,1]. Our strategy here in understanding SG as an SG-module dif-
fers from the previous section, as we do not have a G-stable subspace in S acted
on freely by D2,1 to play the role of the B-stable subspace Ŝ ⊂ S. Instead we shall
work with quotients by D2,1.

Proposition B.11. One has an SG-module isomorphism

(S/(D2,1))G
∼= SG/D2,1SG.

Proof. Both are isomorphic to S/(D2,1S + span
Fq

{g(f) − f}g∈G,f∈S).

We wish to first analyse (S/(D2,1))G as an SG-module. For this it helps that we
already understand (S/(D2,1))B as an SB-module, due to the following result.

Proposition B.12. The composite map Ŝ ↪→ S � S/(D2,1) is an isomorphism
of Fq[X][B]-modules, which then induces an isomorphism of Fq[X]-modules ŜB

∼=
(S/(D2,1))B.

Proof. The first assertion comes from proposition B.8, and the second assertion
follows from the first.

Proposition B.13. The set

{1, XY, X2Y, . . . , Xq−2Y } ∪ {XqY } (B 13)

generates SG/D2,1SG as a module over Fq[D2,0], and hence generates SG as module
over Fq[D2,0, D2,1] = SG.
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Proof. The second assertion follows from the first via the following well-known
general lemma.

Lemma B.14. Let R be an N-graded ring. Let I ⊂ R+ :=
⊕

d>0 Rd be a homoge-
neous ideal of positive degree elements. Let M be a Z-graded R-module with non-zero
degrees bounded below.

Then a subset generates M as an R-module if and only if its images generate
M/IM as R/I-module.

Proof of lemma B.14. The ‘only if’ direction is clear. For the ‘if’ direction, one
assumes that {mi} in M have {mi + IM} generating M/IM as R/I-module, and
shows that every homogeneous element m in M lies in

∑
i Rmi via a straightforward

induction on the degree of m.

Returning to the proof of the first assertion in the proposition, we use proposi-
tion B.11 to work with (S/(D2,1))G rather than SG/D2,1SG. As noted in proposi-
tion B.1, D2,0 = XD2,1 − Xq+1, and hence

D2,0 ≡ −Xq+1 mod (D2,1).

Thus, via the quotient map (S/(D2,1))B � (S/(D2,1))G, one obtains an Fq[D2,0]-
spanning set for (S/(D2,1))G from any Fq[Xq+1]-spanning set of (S/(D2,1))B , or
equivalently via proposition B.12, from any Fq[Xq+1]-spanning set of ŜB . Since ŜB

has as Fq-basis the monomials {XiY }i�0 ∪ {1, Y 2, Y 3, . . . , Y q−1} from (B 11), it
has as an Fq[Xq+1]-spanning set

{XiY }0�i�q ∪ {1, Y 2, Y 3, . . . , Y q−1}.

Thus, this set is an Fq[D2,0]-spanning set for (S/(D2,1))G. However, lemma B.5(iii)
says that the pure powers {Y j}j�1 all vanish in SG, so one obtains this smaller
Fq[D2,0]-spanning set for (S/(D2,1))G:

{1, XY, X2Y, . . . , Xq−2Y, Xq−1Y, XqY }.

We claim that the second-to-last element Xq−1Y on this list is also redundant, as
it vanishes in (S/(D2,1))G. To see this claim, note that in (S/(D2,1))G one has

0 ≡ D2,1 = Y q + (XY q−1 + X2Y q−2 + · · · + Xq−2Y 2 + Xq−1Y ) + Xq.

Here the two pure powers Xq, Y q vanish in SG and also in (S/(D2,1))G due to
(i) and (iii) of lemma B.5. Similarly, the q − 1 monomials inside the parentheses,
XiY q−i for i = 1, 2, . . . , q − 1, are all equal to Xq−1Y due to lemma B.5(i). This
implies 0 ≡ (q − 1)Xq−1Y = −Xq−1Y as claimed.

Theorem B.15. One has an SG-module direct sum decomposition SG = N1 ⊕ N2,
in which

• N1 = SG · XqY is a free SG-module on the basis {XqY }, and

• N2 is the SG-submodule spanned by the elements of (B 9), whose SG-module
structure is a direct sum of q − 1 copies of SG/(D2,0) with the elements of
(B 9) as basis.
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In particular, in the bivariate case n = 2, question 5.9 has an affirmative answer,
and one has

Hilb(SG, t) =
tq

2−1

(1 − tq2−1)(1 − tq2−q)
+

1 + t2(q−1) + t3(q−1) + · · · + t(q−1)2

1 − tq2−q

= 1 +
t2(q−1)

1 − tq−1 +
t2(q

2−1)

(1 − tq2−1)(1 − tq2−q)
,

so that conjecture 1.3 holds.

Proof. Define N1, N2 to be the SG submodules of SG spanned by {XqY } and of the
elements of (B 9), respectively. Then proposition B.13 implies SG = N1 + N2. Note
that corollary B.6 already shows that the submodule N2 has the claimed structure.
In particular, D2,0 · N2 = 0, i.e. N2 ⊂ AnnSG

D2,0.
We claim that this forces N2 = SG · XqY ∼= SG, i.e. no element f in SG can

annihilate XqY . Otherwise, there would be an element D2,0f in SG annihilating
both N1 and N2, and hence annihilating all of SG, contradicting the assertion from
proposition 5.7 that SG is a rank 1 SG-module.

Once one knows N2 = SG · XqY ∼= SG, one can also conclude that the sum
SG = N1 + N2 is direct, since

N1 ∩ N2 ⊂ AnnSG
(D2,0) ∩ N2 = 0.

Remark B.16. Our proof for parabolic conjectures 1.5 and 1.6 with n = 2 is hands-
on and technical. One might hope to use more of the results of Karagueuzian
and Symonds [17–19]. They give a good deal of information about the action of
G = GLn(Fq) on S = Fq[x1, . . . , xn], by analysing in some detail the structure of S
as an FqU -module, where U is the p-Sylow subgroup of G consisting of all unipotent
upper-triangular matrices. We have not seen how to apply this toward resolving our
conjectures in general.
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Note added in proof

The m = 2 special case of conjecture 1.2 was recently verified by Goyal in [14].
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