
THE TUTTE POLYNOMIAL OF A FINITE PROJECTIVE

SPACE

MICHAEL BARANY AND VICTOR REINER

Abstract. We compute a p-exponential generating function collating the
Tutte polynomials for the family of matroids coming from finite projective
spaces.

1. The generating function

Fix a prime power p, and consider the arrangement A(p, n) consisting of all

[n]p := pn−1
p−1 possible hyperplanes in F

n
p . Alternatively, these hyperplanes have

normal vectors given by the columns of an n× [n]p matrix, containing one vector
from each line in F

n
p . The point of these notes is to compute a compact generating

function for the Tutte polynomials TA(p,n)(x, y); an explicit formula for each
TA(p,n)(x, y), equivalent to (3) below was computed by Mphako [5].

The generating function is p-exponential, and uses some of these basic hyper-
geometric notations:

(x; p)n := (1 − x)(1 − px)(1 − p2x) · · · (1 − pn−1x)

(x; p)∞ := (1 − x)(1 − px)(1 − p2x) · · ·

[n]p := 1 + p + p2 + · · · + pn−1 =
1 − pn

1 − p

[n]!p := [n]p[n − 1]p · · · [2]p[1]p
[

n

`

]

p

:=
(p; p)n

(p; p)`(p; p)n−`

=
[n]!p

[`]!p[n − `]!p

Theorem 1.

∑

n≥0

TA(p,n)(x, y)
un(y − 1)n

(p; p)n

=
(u; p)∞

((x − 1)(y − 1)u; p)∞

∑

k≥0

y[k]p
uk

(p; p)k

.
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Proof. We employ the finite field method exposed in [1, §3]. Here one computes
instead the equivalent coboundary polynomial

χA(p,n)(q, t) :=
∑

x∈Fn

q

th(x)

where q = pr is some power of p, so that Fq is a field extension of Fp, and where
h(x) is the number of hyperplanes in A(p, n) on which the vector x ∈ F

n
q lies.

This χA(q, t) will be a polynomial in q and t, related to the Tutte polynomial as
follows1:

TA(x, y) =
1

(y − 1)rank(A)
χA((x − 1)(y − 1), y). (1)

To compute χA(p,n)(q, t), we take advantage of the Fp-vector space isomor-

phism Fq
∼= F

r
p to represent a vector x = (x1, . . . , xn) as an r × n matrix over

Fp, whose ith column represents xi. If this matrix has rank `, then x represents
a vector that will lie on exactly [n − `]p = h(x) hyperplanes in A(p, n).

Consequently, if we can count the number of r × n matrices over Fp having
rank `, we can assemble the coefficients of χA(p,n)(q, t). It turns out that there
are

[

n

`

]

p

`−1
∏

i=0

(pr−i − 1) =

[

n

`

]

p

`−1
∏

i=0

(qp−i − 1)

=

[

n

`

]

p

q`(q−1; p)`.

(2)

such matrices, using the fact that GLr(F) × GLn(F) acts transitively on them,
and calculating the stabilizer subgroup of a typical rank ` matrix.

Consequently,

χA(p,n)(q, t) =
n
∑

`=0

[

n

`

]

p

q`(q−1; p)` t[n−`]p . (3)

1We are lying slightly here: the finite field method exposed in [1, §3] assumes an arrangement
of hyperplanes with normal vectors in Z

d, and considers a counting problem for the reduced
arrangement in F

d
q for various primes powers q. However, it applies equally well to an arrange-

ment of hyperplanes in F
d
p for a prime power p, which one then considers as an arrangement

in F
d
q for various powers q = pr; this is the context of Crapo and Rota’s “critical problem” [3,

§16].
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This assembles nicely into a p-exponential generating function.

∑

n≥0

χA(p,n)(q, t)
un

(p; p)n

=
∑

n≥0

(

n
∑

`=0

[

n

`

]

p

q`(q−1; p)` t[n−`]p

)

un

(p; p)n

=
∑

n≥0

n
∑

`=0

q`(q−1; p)` u`

(p; p)`

·
t[n−`]p un−`

(p; p)n−`

=
∑

`≥0

(q−1; p)` (qu)`

(p; p)`

∑

k≥0

t[k]p
uk

(p; p)k

.

The first sum on the last line can be evaluated as an infinite product by the
p-binomial theorem

∑

`≥0

(a; p)` x`

(p; p)`

=
(ax; p)∞
(x; p)∞

.

Hence taking a = q−1 and x = qu, one obtains

∑

n≥0

χA(p,n)(q, t)
un

(p; p)n

=
(u; p)∞
(qu; p)∞

∑

k≥0

t[k]p
uk

(p; p)k

. (4)

According to (1), we should now substitute q = (x − 1)(y − 1) and t = y. After
noting that rank(A(p, n)) = n, the theorem follows. �

2. Known specializations

Here are two well-known specializations of the foregoing calculations.

2.1. The characteristic polynomial. Setting t = 0 in (3) (or equivalently,
setting ` = n in (2)) yields the number of vectors in F

n
q that lie on none of the

hyperplanes in A(p, n), which is equivalent (up to rescaling) to the characteristic

polynomial of the matroid of A(p, n):

qn(q−1; p)n = (q − 1)(q − p)(q − p2) · · · (q − pn−1).

2.2. Dual Hamming and Hamming codes. The theorem can be used to de-
rive the weight enumerator A(z) for the dual Hamming code, whose code vectors

consist of the n-dimensional row-space in F
[n]p
p for the n × [n]p matrix that rep-

resents the matroid A(p, n). Greene [4] showed that the weight enumerator is
related to the Tutte polynomial by

A(z) = (1 − z)nz[n]p−nTA(p,n)

(

1 + (p − 1)z

1 − z
,
1

z

)

.

He computes [4, Example 3.4] that the dual Hamming code has the extremely
simple weight enumerator

A(z) = 1 + (pn − 1)zpn−1

. (5)
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Indeed this follows from the theorem with a little algebra, noting that the spe-

cialization x = 1+(p−1)z
1−z

and y = 1
z

leads to the relation (x − 1)(y − 1) = p, and
using the fact that

(u; p)∞
(pu; p)∞

= 1 − u.

One can, of course, also deduce from the theorem the weight enumerator for the
Hamming code itself, rather than its dual. But this also follows from (5) via the
MacWilliams identity (see [4]).

3. Alternate approach: p-cones

Lastly, we mention an alternate approach to the derivation of Theorem 1. In
[2], the authors derive a nice formula expressing the Tutte polynomial TM ′(x, y)
for the p-cone2 M ′ of a matroid M of rank r represented inside a finite projective
space P

r
Fp

, in terms of TM (x, y). Phrased instead in terms of the coboundary

polynomials, their formula reads

χM ′(q, t) = tχM (q, tp) + pr(q − 1)χM

(

q

p
, t

)

. (6)

One can construct the tower of finite projective geometries P
n
Fp

by iterating this

p-cone construction, beginning with the “seed” geometry M0 = P
−1
Fp

of rank 0.

Then the p-exponential generating function

F (q, t, u) :=
∑

n≥0

χA(p,n)(q, t)
un

(p; p)n

obeys the following recurrence derived from (6):

F (q, t, u) − tuF (q, tp, u) = u(q − 1)F

(

q

p
, t, pu

)

+ F (q, t, pu). (7)

On the face of it, this recurrence looks hard to solve. However, with the hindsight
of formula (4) which one hopes to derive for F (q, t, u), it is better to rephrase
this recurrence in terms of the generating function

F̂ (q, t, u) :=
(qu; p)∞
(u; p)∞

F (q, t, u),

which we expect to (miraculously!) be independent of q. The recurrence (7)
becomes

F̂ (q, t, u) − tuF̂ (q, tp, u) =
1

1 − u

[

u(q − 1)F̂

(

q

p
, t, pu

)

+ (1 − qu)F̂ (q, t, pu)

]

.

(8)

2Here is a definition of the p-cone construction M ′, starting with a matroid M represented
by points in P

r
Fp

. First embed P
r
Fp

in P
r+1

Fp
. Then choose an apex point a in P

r+1

Fp
− P

r
Fp

. Then

let M ′ be the union of all lines spanned by a together with points of M .
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One can use this last recurrence to prove that the coefficient of un in F̂ (q, t, u) is
independent of q by induction on n. With this knowledge in hand, the recurrence
(8) then greatly simplifies to

F̂ (t, u) − tuF̂ (tp, u) = F̂ (t, pu) . (9)

This is easily solved (e.g. by writing down the recurrence it gives for the coefficient

of un

(p;p)n

on both sides), yielding

F̂ (q, t, u) =
∑

k≥0

t[k]p
uk

(p; p)k

,

in agreement with (4).
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