NOTE ON THE EXPECTED NUMBER OF YANG-BAXTER MOVES APPLICABLE TO REDUCED DECOMPOSITIONS

VICTOR REINER

Consider the symmetric group \mathfrak{S}_n as a Coxeter group generated by the adjacent transpositions $\{s_1, \ldots, s_{n-1}\}$. Its *longest element* w_0 is the permutation sending i to n + 1 - i for each i. A reduced decomposition for w_0 is an expression $w_0 = s_{i_1}s_{i_2}\cdots s_{i_\ell}$ where $\ell = \binom{n}{2}$. See [3] and the references therein for more on these notions, and for undefined terms below.

For any value $k = 1, 2, ..., \ell - 2$, say that a reduced decomposition $s_{i_1}s_{i_2}\cdots s_{i_\ell}$ for w_0 supports a Yang-Baxter move in position k if

$$egin{array}{rcl} (i_k,i_{k+1},i_{k+2}) &=& (&j,&j+1,&j&)\ {
m or}&& (&j+1,&j,&j+1&) \end{array}$$

for some j = 1, 2, ..., n - 2.

Let X_n be the random variable on a reduced decomposition for w_0 in \mathfrak{S}_n (chosen from the uniform probability distribution on all reduced decompositions) which counts the number of positions in which it supports a Yang-Baxter move. Surprisingly, its expectation turns out to be independent of n.

Theorem 1. For all $n \ge 3$, one has $\mathbf{E}(X_n) = 1$.

Proof. Write X_n as the sum of the indicator random variables $X_n^{(k,j)}$ for the event that the reduced decomposition supports a Yang-Baxter move in position k and with value j as described above. The fact that $s_i w_0 s_{n-i} = w_0$ leads to a $\mathbb{Z}/\ell\mathbb{Z}$ -action by cyclic rotation on the set of reduced decompositions:

$$s_{i_1}s_{i_2}s_{i_3}\cdots s_{i_\ell}\mapsto s_{i_2}s_{i_3}\cdots s_\ell s_{n-i_1}.$$

This symmetry implies that the distribution of $X_n^{(k,j)}$ is independent of k, so one only needs to compute $\mathbf{E}(X_n^{(1,j)})$. Note that this is the same

 $Key\ words\ and\ phrases.$ symmetric group, Yang-Baxter, reduced decomposition, reduced word, Poisson.

Supported by NSF grant DMS-9877047.

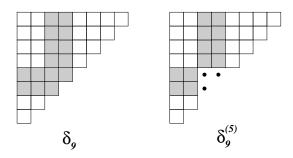


FIGURE 1. For n = 9, j = 5, the staircase partition δ_n and the almost-staircase partition $\delta_n^{(j)}$. Cells in which the hook-lengths for the two diagrams will differ are highlighted.

as the probability that the reduced decomposition for w_0 is of either form

$$s_j s_{j+1} s_j \cdot s_{i_4} s_{i_5} \cdots s_{i_\ell}$$
 or $s_{j+1} s_j s_{j+1} \cdot s_{i_4} s_{i_5} \cdots s_{i_\ell}$.

In either case, this means that $s_{i_4}s_{i_5}\cdots s_{i_\ell}$ is a reduced decomposition for $s_js_{j+1}s_jw_0$, so $\mathbf{E}(X_n^{(1,j)})$ is twice the quotient of the cardinalities of the set of reduced decompositions for $s_js_{j+1}s_jw_0$ and for w_0 . Since these two permutations w_0 and $s_js_{j+1}s_jw_0$ are both *vexillary* (that is, they both satisfy the conditions of [3, Corollary 4.2]), their numbers of reduced decompositions are the numbers $f_{\delta_n}, f_{\delta_n^{(j)}}$ of standard Young tableaux for the staircase and "almost-staircase" Ferrers diagrams δ_n and $\delta_n^{(j)}$ illustrated in Figure 1.

Using the hook-length formula [2, Cor. 7.21.6] for f_{λ} , and the fact that most of the corresponding cells in these two diagrams have the same hook-length, one can then compute

(1)
$$\mathbf{E}(X_n) = \sum_{k=1}^{\ell-2} \sum_{j=1}^{n-2} \mathbf{E}(X_n^{(k,j)}) = (\ell-2) \sum_{j=1}^{n-2} \mathbf{E}(X_n^{(1,j)})$$
$$= (\ell-2) \sum_{j=1}^{n-2} 2 \frac{f_{\delta_n^{(j)}}}{f_{\delta_n}} = \binom{\ell}{2}^{-1} \frac{1}{3} \sum_{j=1}^{n-2} c_j c_{n-j-1}$$

where

$$c_j := \frac{3 \cdot 5 \cdots (2j+1)}{2 \cdot 4 \cdots (2j-2)}$$
 for $j \ge 2$, and $c_1 := 3$.

This last sum is easy to evaluate, for example by noting that

$$\sum_{j\ge 1} c_j x^j = \frac{3x}{(1-x)^{\frac{5}{2}}}.$$

Using this, and letting $[x^m]f(x)$ denote the coefficient of x^m in a formal power series f(x), one has

$$\sum_{j=1}^{n-2} c_j c_{n-j-1} = [x^{n-1}] \left(\sum_{j \ge 1} c_j x^j \right)^2$$
$$= [x^{n-1}] \frac{9x^2}{(1-x)^5} = 9 \binom{n+1}{4} = 3 \binom{\ell}{2}.$$

Combining this with (1) gives $\mathbf{E}(X_n) = 1$.

The referee suggests a nice alternate proof ending: the Murnaghan-Nakayama rule [2, §7.17] shows $\sum_{j=1}^{n-2} \frac{f_{\delta_n^{(j)}}}{f_{\delta_n}} = -\frac{\chi^{\delta_n}(\pi)}{\chi^{\delta_n}(\mathrm{id})}$ where π is a 3-cycle. Now use known explicit formulas for such characters (e.g. [1, 4]).

Conjecture 2. As *n* approaches infinity, the distribution of X_n approaches that of a Poisson random variable with mean 1. That is, for each k = 0, 1, 2, ..., one has $\lim_{n\to\infty} \operatorname{Prob}(X_n = k) = \frac{1}{e \cdot k!}$.

The following conjecture on the variance of X_n was suggested by computations for n = 4, 5, 6, and is consistent with Conjecture 2.

Conjecture 3. For all $n \ge 4$, one has $\operatorname{Var}(X_n) = \frac{\ell-4}{\ell-2}$, where $\ell = \binom{n}{2}$.

Acknowledgements

Thanks to David Gillman for suggesting Conjecture 2 based on preliminary data, and to an anonymous referee for helpful comments.

References

- R. Ingram, Some characters of the symmetric group, Proc. Amer. Math. Soc. 1 (1950), 358–369.
- [2] R.P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics 62. Cambridge University Press, Cambridge, 1999.
- [3] R.P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, *European J. Combin.* 5 (1984), 359–372.
- [4] M. Suzuki, The values of irreducible characters of the symmetric group, AMS Proceedings of Symposia in Pure Mathematics 47(2) (1987), 317–319.

VICTOR REINER

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

E-mail address: reiner@math.umn.edu