NOTE ON THE EXPECTED NUMBER OF YANG-BAXTER MOVES APPLICABLE TO REDUCED DECOMPOSITIONS

VICTOR REINER

Consider the symmetric group \mathfrak{S}_{n} as a Coxeter group generated by the adjacent transpositions $\left\{s_{1}, \ldots, s_{n-1}\right\}$. Its longest element w_{0} is the permutation sending i to $n+1-i$ for each i. A reduced decomposition for w_{0} is an expression $w_{0}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{\ell}}$ where $\ell=\binom{n}{2}$. See [3] and the references therein for more on these notions, and for undefined terms below.

For any value $k=1,2, \ldots, \ell-2$, say that a reduced decomposition $s_{i_{1}} s_{i_{2}} \cdots s_{i_{\ell}}$ for w_{0} supports a Yang-Baxter move in position k if

$$
\begin{aligned}
&\left(i_{k}, i_{k+1}, i_{k+2}\right)= \\
& \text { or }
\end{aligned}\left(\begin{array}{ccc}
j, & j+1, & j \\
j+1, & j, & j+1
\end{array}\right)
$$

for some $j=1,2, \ldots, n-2$.
Let X_{n} be the random variable on a reduced decomposition for w_{0} in \mathfrak{S}_{n} (chosen from the uniform probability distribution on all reduced decompositions) which counts the number of positions in which it supports a Yang-Baxter move. Surprisingly, its expectation turns out to be independent of n.

Theorem 1. For all $n \geq 3$, one has $\mathbf{E}\left(X_{n}\right)=1$.
Proof. Write X_{n} as the sum of the indicator random variables $X_{n}^{(k, j)}$ for the event that the reduced decomposition supports a Yang-Baxter move in position k and with value j as described above. The fact that $s_{i} w_{0} s_{n-i}=w_{0}$ leads to a $\mathbb{Z} / \ell \mathbb{Z}$-action by cyclic rotation on the set of reduced decompositions:

$$
s_{i_{1}} s_{i_{2}} s_{i_{3}} \cdots s_{i_{\ell}} \mapsto s_{i_{2}} s_{i_{3}} \cdots s_{\ell} s_{n-i_{1}} .
$$

This symmetry implies that the distribution of $X_{n}^{(k, j)}$ is independent of k, so one only needs to compute $\mathbf{E}\left(X_{n}^{(1, j)}\right)$. Note that this is the same

[^0]

Figure 1. For $n=9, j=5$, the staircase partition δ_{n} and the almost-staircase partition $\delta_{n}^{(j)}$. Cells in which the hook-lengths for the two diagrams will differ are highlighted.
as the probability that the reduced decomposition for w_{0} is of either form

$$
s_{j} s_{j+1} s_{j} \cdot s_{i_{4}} s_{i_{5}} \cdots s_{i_{\ell}} \quad \text { or } \quad s_{j+1} s_{j} s_{j+1} \cdot s_{i_{4}} s_{i_{5}} \cdots s_{i_{\ell}}
$$

In either case, this means that $s_{i_{4}} s_{i_{5}} \cdots s_{i_{\ell}}$ is a reduced decomposition for $s_{j} s_{j+1} s_{j} w_{0}$, so $\mathbf{E}\left(X_{n}^{(1, j)}\right)$ is twice the quotient of the cardinalities of the set of reduced decompositions for $s_{j} s_{j+1} s_{j} w_{0}$ and for w_{0}. Since these two permutations w_{0} and $s_{j} s_{j+1} s_{j} w_{0}$ are both vexillary (that is, they both satisfy the conditions of [3, Corollary 4.2]), their numbers of reduced decompositions are the numbers $f_{\delta_{n}}, f_{\delta_{n}^{(j)}}$ of standard Young tableaux for the staircase and "almost-staircase" Ferrers diagrams δ_{n} and $\delta_{n}^{(j)}$ illustrated in Figure 1.

Using the hook-length formula [2, Cor. 7.21.6] for f_{λ}, and the fact that most of the corresponding cells in these two diagrams have the same hook-length, one can then compute

$$
\begin{align*}
\mathbf{E}\left(X_{n}\right) & =\sum_{k=1}^{\ell-2} \sum_{j=1}^{n-2} \mathbf{E}\left(X_{n}^{(k, j)}\right)=(\ell-2) \sum_{j=1}^{n-2} \mathbf{E}\left(X_{n}^{(1, j)}\right) \tag{1}\\
& =(\ell-2) \sum_{j=1}^{n-2} 2 \frac{f_{\delta_{n}^{(j)}}}{f_{\delta_{n}}}=\binom{\ell}{2}^{-1} \frac{1}{3} \sum_{j=1}^{n-2} c_{j} c_{n-j-1}
\end{align*}
$$

where

$$
c_{j}:=\frac{3 \cdot 5 \cdots(2 j+1)}{2 \cdot 4 \cdots(2 j-2)} \text { for } j \geq 2, \text { and } c_{1}:=3 .
$$

This last sum is easy to evaluate, for example by noting that

$$
\sum_{j \geq 1} c_{j} x^{j}=\frac{3 x}{(1-x)^{\frac{5}{2}}}
$$

Using this, and letting $\left[x^{m}\right] f(x)$ denote the coefficient of x^{m} in a formal power series $f(x)$, one has

$$
\begin{aligned}
\sum_{j=1}^{n-2} c_{j} c_{n-j-1} & =\left[x^{n-1}\right]\left(\sum_{j \geq 1} c_{j} x^{j}\right)^{2} \\
& =\left[x^{n-1}\right] \frac{9 x^{2}}{(1-x)^{5}}=9\binom{n+1}{4}=3\binom{\ell}{2}
\end{aligned}
$$

Combining this with (1) gives $\mathbf{E}\left(X_{n}\right)=1$.
The referee suggests a nice alternate proof ending: the MurnaghanNakayama rule $[2, \S 7.17]$ shows $\sum_{j=1}^{n-2} \frac{f_{\delta_{n}^{(j)}}}{f_{\delta_{n}}}=-\frac{\chi^{\delta_{n}}(\pi)}{\chi^{\delta_{n}(\text { (id })}}$ where π is a 3 -cycle. Now use known explicit formulas for such characters (e.g. [1, 4]).

Conjecture 2. As n approaches infinity, the distribution of X_{n} approaches that of a Poisson random variable with mean 1. That is, for each $k=0,1,2, \ldots$, one has $\lim _{n \rightarrow \infty} \operatorname{Prob}\left(X_{n}=k\right)=\frac{1}{e \cdot k!}$.

The following conjecture on the variance of X_{n} was suggested by computations for $n=4,5,6$, and is consistent with Conjecture 2 .
Conjecture 3. For all $n \geq 4$, one has $\operatorname{Var}\left(X_{n}\right)=\frac{\ell-4}{\ell-2}$, where $\ell=\binom{n}{2}$.

Acknowledgements

Thanks to David Gillman for suggesting Conjecture 2 based on preliminary data, and to an anonymous referee for helpful comments.

References

[1] R. Ingram, Some characters of the symmetric group, Proc. Amer. Math. Soc. 1 (1950), 358-369.
[2] R.P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics 62. Cambridge University Press, Cambridge, 1999.
[3] R.P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin. 5 (1984), 359-372.
[4] M. Suzuki, The values of irreducible characters of the symmetric group, AMS Proceedings of Symposia in Pure Mathematics 47(2) (1987), 317-319.

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

E-mail address: reiner@math.umn.edu

[^0]: Key words and phrases. symmetric group, Yang-Baxter, reduced decomposition, reduced word, Poisson.

 Supported by NSF grant DMS-9877047.

