
1 23

Journal of Algebraic Combinatorics
An International Journal
 
ISSN 0925-9899
Volume 40
Number 3
 
J Algebr Comb (2014) 40:663-691
DOI 10.1007/s10801-014-0502-0

Reflection factorizations of Singer cycles

J. B. Lewis, V. Reiner & D. Stanton



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



J Algebr Comb (2014) 40:663–691
DOI 10.1007/s10801-014-0502-0

Reflection factorizations of Singer cycles

J. B. Lewis · V. Reiner · D. Stanton

Received: 03 September 2013 / Accepted: 15 January 2014 / Published online: 25 March 2014
© Springer Science+Business Media New York 2014

Abstract The number of shortest factorizations into reflections for a Singer cycle in
GLn(Fq) is shown to be (qn − 1)n−1. Formulas counting factorizations of any length,
and counting those with reflections of fixed conjugacy classes are also given. The
method is a standard character-theory technique, requiring the compilation of irre-
ducible character values for Singer cycles, semisimple reflections, and transvections.
The results suggest several open problems and questions, which are discussed at the
end.
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1 Introduction and main result

This paper was motivated by two classic results on the number t (n, �) of ordered
factorizations (t1, . . . , t�) of an n-cycle c = t1t2 · · · t� in the symmetric group Sn ,
where each ti is a transposition.

Theorem (Hurwitz [14], Dénes [6]) For n ≥ 1, one has t (n, n − 1) = nn−2.
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Theorem (Jackson [16, p. 368]) For n ≥ 1, more generally t (n, �) has ordinary
generating function

∑

�≥0

t (n, �)x� = nn−2xn−1
n−1∏

k=0

(
1 − xn

(
n − 1

2
− k

))−1

(1.1)

and explicit formulas

t (n, �) = n�

n!
n−1∑

k=0

(−1)k
(

n − 1

k

)(
n − 1

2
− k

)�

= (−n)�

n! (−1)n−1
[
�n−1(x�)

]

x= 1−n
2

. (1.2)

Here, the difference operator �( f )(x) := f (x + 1) − f (x) satisfies �n( f )(x) :=∑n
k=0(−1)n−k

(n
k

)
f (x + k).

Our goals are q-analogs, replacing the symmetric group Sn with the general linear
group GLn(Fq), replacing transpositions with reflections, and replacing an n-cycle
with a Singer cycle c: the image of a generator for the cyclic group F

×
qn

∼= Z/(qn −1)Z

under any embedding F
×
qn ↪→ GLFq (Fqn ) ∼= GLn(Fq) that comes from a choice of Fq -

vector space isomorphism Fqn ∼= F
n
q . The analogy between Singer cycles in GLn(Fq)

and n-cycles in Sn is reasonably well established [25, §7], [26, §§8–9]. Fixing such
a Singer cycle c, denote by tq(n, �) the number of ordered factorizations (t1, . . . , t�)
of c = t1t2 · · · t� in which each ti is a reflection in GLn(Fq), that is, the fixed space
(Fn

q)ti is a hyperplane in F
n
q .

Theorem 1.1 For n ≥ 2, one has tq(n, n) = (qn − 1)n−1.

Theorem 1.2 For n ≥ 2, more generally, tq(n, �) has ordinary generating function:

∑

�≥0

tq(n, �)x� = (qn − 1)n−1xn · (1 + x[n]q
)−1

n−1∏

k=0

(
1 + x[n]q(1 + qk − qk+1)

)−1

(1.3)
and explicit formulas:

tq(n, �) = (−[n]q)�

q(n
2)(q; q)n

(
(−1)n−1(q; q)n−1 +

n−1∑

k=0

(−1)k+n

q(k+1
2 )
[

n − 1
k

]

q
(1 + qn−k−1 − qn−k)�

)
(1.4)

= (1 − q)−1 (−[n]q)�

[n]!q
[
�n−1

q

(
1

x
− (1 + x(1 − q))�

x

)]

x=1
(1.5)

= [n]�−1
q

�−n∑

i=0

(−1)i (q − 1)�−i−1
(

�

i

)[
� − i − 1

n − 1

]

q
. (1.6)
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The q-analogs used above and elsewhere in the paper are defined as follows:

[
n
k

]

q
:= [n]!q

[k]!q [n − k]!q , where [n]!q := [1]q [2]q · · · [n]q and

[n]q : = 1 + q + q2 + · · · + qn−1,

(x; q)n := (1 − x)(1 − xq)(1 − xq2) · · · (1 − xqn−1), and

�q( f )(x) := f (x) − f (qx)

x − qx
, so that

�n
q( f )(x) = 1

q(n
2)xn(1 − q)n

n∑

k=0

(−1)n−kq(k
2)
[

n
k

]

q
f (qn−k x). (1.7)

The equivalence of the three formulas (1.4), (1.5), (1.6) for tq(n, �) is explained in
Proposition 5.1.

In fact, we will prove the following refinement of Theorem 1.2 for q > 2, having no
counterpart for Sn . Transpositions are all conjugate within Sn , but the conjugacy class
of a reflection t in GLn(Fq) for q > 2 varies with its determinant det(t) in F

×
q . When

det(t) = 1, the reflection t is called a transvection [20, XIII §9], while det(t) �= 1
means that t is a semisimple reflection. One can associate to an ordered factorization
(t1, . . . , t�) of c = t1t2 · · · t� the sequence of determinants (det(t1), . . . , det(t�)) in F

�
q ,

having product det(c).

Theorem 1.3 Let q > 2. Fix a Singer cycle c in GLn(Fq) and a sequence α = (αi )
�
i=1

in (F×
q )� with

∏�
i=1 αi = det(c). Let m be the number of values i such that αi = 1.

Then, one has m ≤ � − 1, and the number of ordered reflection factorizations c =
t1 · · · t� with det(ti ) = αi depends only upon � and m. This quantity tq(n, �, m) is
given by these formulas:

tq(n, �, m) = [n]�−1
q

min(m,�−n)∑

i=0

(−1)i
(

m

i

)[
� − i − 1

n − 1

]

q
(1.8)

= [n]�q
[n]!q

[
�n−1

q

(
(x − 1)m x�−m−1)]

x=1
. (1.9)

In particular, setting � = n in (1.8), the number of shortest such factorizations is

tq(n, n, m) = [n]n−1
q ,

which depends neither on the sequenceα = (det(ti ))�i=1 nor on the number of transvec-
tions m.

The equivalence of the formulas (1.8) and (1.9) for tq(n, �, m) is also explained in
Proposition 5.1 below.

Theorems 1.2 and 1.3 are proven via a standard character-theoretic approach. This
approach is reviewed quickly in Sect. 2, followed by an outline of ordinary character
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theory for GLn(Fq) in Sect. 3. Section 4 either reviews or derives the needed explicit
character values for four kinds of conjugacy classes: the identity element, Singer
cycles, semisimple reflections, and transvections. Then, Sect. 5 assembles these cal-
culations into the proofs of Theorems 1.2 and 1.3. Section 6 closes with some further
remarks and questions.

Although Theorem 1.3 is stated for q > 2, something interesting also occurs for
q = 2. All reflections in GLn(F2) are transvections; thus, one always has m = � for
q = 2. Furthermore, one can see that (1.6), (1.8) give the same answer when both
q = 2 and m = �. This reflects a striking dichotomy in our proofs: for q > 2 the only
contributions to the computation come from irreducible characters of GLn(Fq) arising
as constituents of parabolic inductions of characters of GL1(Fq), while for q = 2, the
cuspidal characters for GLs(Fq) with s ≥ 2 play a role, miraculously giving the same
polynomial tq(n, �) in q evaluated at q = 2.

Question 1.4 Can one derive the formulas (1.6) or (1.8) via inclusion-exclusion more
directly?

Question 1.5 Can one derive Theorem 1.1 bijectively, or by an overcount, in the spirit
of Dénes [6], that counts factorizations of all conjugates of a Singer cycle, and then
divides by the conjugacy class size?

2 The character theory approach to factorizations

We recall the classical approach to factorization counts, which goes back to Frobenius
[7].

Definition 2.1 Given a finite group G, let Irr(G) be the set of its irreducible ordinary
(finite-dimensional, complex) representations V . For each V in Irr(G), denote by
deg(V ) the degree dimC V , and let χV (g) = Tr(g : V → V ) be its character value at
g, along with χ̃V (g) := χV (g)

deg(V )
the normalized character value. Both functions χV (−)

and χ̃V (−) on G extend by C-linearity to functionals on the group algebra CG.

Proposition 2.2 (Frobenius [7]) Let G be a finite group, and A1, . . . , A� ⊂ G unions
of conjugacy classes in G. Then, for g in G, the number of ordered factorizations
(t1, . . . , t�) with g = t1 · · · t� and ti in Ai for i = 1, 2, . . . , � is

1

|G|
∑

V ∈Irr(G)

deg(V ) · χV (g−1) · χ̃V (z1) · · · χ̃V (z�). (2.1)

where zi :=∑t∈Ai
t in CG.

This lemma was a main tool used by Jackson [15, §2], as well as by Chapuy
and Stump [5, §4] in their solution of the analogous question in well-generated
complex reflection groups. The proof follows from a straightforward computa-
tion in the group algebra CG coupled with the isomorphism of G-representations
CG ∼= ⊕

V ∈Irr(G) V ⊕ deg(V ); it may be found for example in [19, Thm. 1.1.12], [22,
Thm. 2.5.9].
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3 Review of ordinary characters of GLn(Fq)

The ordinary character theory of GLn := GLn(Fq) was worked out by Green [10],
and has been reworked many times. Apart from Green’s paper, some useful references
for us in what follows will be Macdonald [23, Chaps. III, IV], and Zelevinsky [32,
§11].

3.1 Parabolic or Harish-Chandra induction

The key notion is that of parabolic or Harish-Chandra induction: given an integer com-
position α = (α1, . . . , αm) of n, so that αi > 0 and |α| :=∑i αi = n, and class func-
tions fi on GLαi for i = 1, 2, . . . , m, one produces a class function f1∗ f2∗ · · · ∗ fm

on GLn defined as follows. Regard the m-tuple ( f1, . . . , fm) as a class function on the
block upper-triangular parabolic subgroup Pα inside GLn , whose typical element is

p =

⎡

⎢⎢⎢⎣

A1,1 ∗ · · · ∗
0 A2,2 · · · ∗
...

...
. . .

...

0 0 · · · Am,m

⎤

⎥⎥⎥⎦ (3.1)

with Ai,i an invertible αi × αi matrix, via ( f1, . . . , fm)(p) = ∏m
i=1 fi (Ai,i ). Then,

apply (ordinary) induction of characters from Pα up to GLn . In other words, for an
element g in GLn , one has

( f1∗ f2∗ · · · ∗ fm)(g) := 1

|Pα|
∑

h∈G:
hgh−1∈Pα

f1(A1,1) · · · fm(Am,m)

if hgh−1 looks as in (3.1). (3.2)

Identify representations U up to equivalence with their characters χU . The parabolic
induction product ( f, g) �−→ f ∗g gives rise to a graded, associative product on the
graded C-vector space

Cl(GL∗) =
⊕

n≥0

Cl(GLn)

which is the direct sum of class functions on all of the general linear groups, with
Cl(GL0) = C by convention.

3.2 Parametrizing the GLn-irreducibles

A GLn-irreducible U is called cuspidal if χU does not occur as a constituent in any
induced character f1∗ f2 for compositions n = α1 + α2 with α1, α2 > 0. Denote
by Cuspn the set of all such cuspidal irreducibles U for GLn , and say that weight
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wt(U ) = n. Let Parn denote the partitions λ of n (that is, |λ| := ∑
i λi = n), and

define the sets

Par :=
⊔

n≥0

Parn,

Cusp :=
⊔

n≥1

Cuspn

of all partitions, and all cuspidal representations for all groups GLn . Then, the GLn-
irreducible characters can be indexed as Irr(GLn) = {χλ} where λ runs through the
set of all functions

Cusp
λ−→ Par

U �−→ λ(U )

having the property that ∑

U ∈ Cusp

wt(U ) |λ(U )| = n. (3.3)

Although Cusp is infinite, this condition (3.3) implies that λ can only take on finitely
many non-∅ values λ(U1), . . . , λ(Um), and in this case

χλ = χU1,λ(U1)∗ · · · ∗χUm ,λ(Um ) (3.4)

where each χU,λ is what Green [10, §7] called a primary irreducible character. In
particular, a cuspidal character U in Cuspn is the same as the primary irreducible
χU,(1).

3.3 Jacobi-Trudi formulas

We recall from symmetric function theory the Jacobi-Trudi and dual Jacobi-Trudi
formulas [23, I (3.4),(3.5)]. For a partition λ = (λ1 ≥ · · · ≥ λ�) with largest part
m := λ1, these formulas express a Schur function sλ either as an integer sum of
products of complete homogeneous symmetric functions hn = s(n), or of elementary
symmetric functions en = s(1n):

sλ = det(hλi −i+ j ) =
∑

w∈S�

sgn(w)hλ1−1+w(1) · · · hλ�−�+w(�),

sλ = det(eλ′
i −i+ j ) =

∑

w∈Sm

sgn(w)eλ′
1−1+w(1) · · · eλ′

m−m+w(m).

Here, λ′ is the usual conjugate or transpose partition to λ. Also h0 = e0 = 1 and
hn = en = 0 if n < 0.

The special primary irreducible GLn-characters χU,(n), χU,(1n) corresponding to
the single row partitions (n) and single column partitions (1n) are called general-
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ized trivial and generalized Steinberg characters, respectively, by Silberger and Zink
[27]. One has analogous formulas expressing any primary irreducible character χU,λ

virtually in terms of parabolic induction products of such characters:

χU,λ =
∑

w∈S�

sgn(w)χU,(λ1−1+w(1))∗ · · · ∗χU,(λ�−�+w(�)) (3.5)

χU,λ =
∑

w∈Sm

sgn(w)χU,(1λ′
1−1+w(1)

)∗ · · · ∗χU,(1λ′
m−m+w(m)) (3.6)

where χU,(n), χU,(1n) are both the zero character if n < 0, and the trivial character
1GL0 if n = 0.

3.4 The cuspidal characters: indexing and notation

The set Cuspn of cuspidal characters for GLn(Fq) has the same cardinality
1
n

∑
d|n μ(n/d)qd as the set of irreducible polynomials in Fq [x] of degree n, or the set

of primitive necklaces of n beads having q possible colors (= free orbits under n-fold
cyclic rotation of words in {0, 1, . . . , q − 1}n). There are at least two ways one sees
Cuspn indexed in the literature.

• Green [10, §7] indexes Cuspn via free orbits [β] = {β, βq , . . . , βqn−1} for the

action of the Frobenius map β
F�−→ βq on the multiplicative group F

×
qn ; he calls

such free orbits n-simplices. In his notation, if U lies in Cusps and is indexed by
the orbit [β] within Fqs , then the primary GLn-irreducible character χU,λ for a

partition λ of n
s is (up to a sign) what he denotes I β

s [λ]. The special case I β
s [(m)]

he also denotes I β
s [m]. Thus, the cuspidal U itself is (up to sign) denoted I β

s [1],
and he also uses the alternate terminology Js(β) := I β

s [1]; see [10, p. 433].
• Later authors index Cuspn via free orbits [ϕ] = {ϕ, ϕ ◦ F, . . . , ϕ ◦ Fn−1} for

the Frobenius action on the dual group Hom(F×
qn , C

×). Say that U in Cuspn is
associated to the orbit [ϕ] in this indexing.
When n = 1, one simply has Cusp1 = Hom(F×

q , C
×). In other words, the Frobe-

nius orbits [ϕ] = {ϕ} are singletons, and if U is associated to this orbit then U = ϕ

considering both as homomorphisms

GL1(Fq) = F
×
q

U=ϕ−→ C
×.

Although we will not need Green’s full description of the characters χU,(m) and
χU,λ, we will use (in the proof of Lemma 4.8 below) the following consequence of
his discussion surrounding [10, Lemma 7.2].

Proposition 3.1 For U in Cusps , every χU,(m), and hence also every primary irre-
ducible character χU,λ, is in the Q-span of characters of the form χU1∗ · · · ∗χUt where
Ui is in Cuspni

, with s dividing ni for each i .
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4 Some explicit character values

We will eventually wish to apply Proposition 2.2 with g being a Singer cycle, and with
the central elements zi being sums over classes of reflections with fixed determinants.
For this one requires explicit character values on four kinds of conjugacy classes of
elements in GLn(Fq):

• the identity, giving the character degrees,
• the Singer cycles,
• the semisimple reflections, and
• the transvections.

We review known formulas for most of these, and derive others that we will need, in
the next four subsections.

It simplifies matters that the character value χλ(c−1) vanishes for a Singer cycle
c unless χλ = χU,λ is a primary irreducible character and the partition λ of n

s takes
a very special form; see Proposition 4.7 below. (This may be compared with, for
example, Chapuy and Stump [5, p. 9 and Lemma 5.5].)

Definition 4.1 The hook-shaped partitions of n are λ = (
n − k, 1k

)
for k =

0, . . . , n − 1.

Thus, we only compute primary irreducible character values, sometimes only those
of the form χU,

( n
s −k,1k

)
.

4.1 Character values at the identity: the character degrees

Green computed the degrees of the primary irreducible characters χU,λ as a product
formula involving familiar quantities associated to partitions.

Definition 4.2 For a partition λ, recall [23, (1.5)] the quantity n(λ) :=∑i≥1(i −1)λi .

For a cell a in row i and column j of the Ferrers diagram of λ recall the hooklength
[23, Example I.1]

h(a) := hλ(a) := λi + λ′
j − (i + j) + 1.

Theorem 4.3 ([10, Theorem 12]) The primary irreducible GLn-character χU,λ for a
cuspidal character U of GLs(Fq) and a partition λ of n

s has degree

deg(χU,λ) = (−1)n− n
s (q; q)n

qs·n(λ)

∏
a∈λ(1 − qs·h(a))

= (−1)n− n
s (q; q)nsλ(1, qs, q2s, . . .).

Here, sλ(1, q, q2, . . .) is the principal specialization xi = qi−1 of the Schur function
sλ = sλ(x1, x2, . . .). Observe that this formula depends only on λ and s, and not on
the choice of U ∈ Cusps .

Two special cases of this formula will be useful in the sequel:
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• The case of hook-shapes

deg(χU,
( n

s −k,1k
)
) = (−1)n− n

s qs(k+1
2 ) (q; q)n

(qs; qs) n
s

[ n
s − 1

k

]

qs
. (4.1)

• When s = 1 and U = 1 is the trivial character of GL1(Fq), the degree is given by
the usual q-hook formula [28, §7.21]

deg(χ1,λ) = f λ(q) := (q; q)n
qn(λ)

∏
a∈λ(1 − qh(a))

= (q; q)nsλ(1, q, q2, . . .) =
∑

Q

qmaj(Q) (4.2)

where the last sum is over all standard Young tableaux Q of shape λ, and maj(Q)

is the sum of the entries i in Q for which i + 1 lies in a lower row of Q. (Such
characters are called unipotent characters.)

4.2 Character values on Singer cycles and regular elliptic elements

Recall from the Introduction that a Singer cycle in GLn(Fq) is the image of a generator
for the cyclic group F

×
qn

∼= Z/(qn − 1)Z under any embedding F
×
qn ↪→ GLFq (Fqn ) ∼=

GLn(Fq) that comes from a choice of Fq -vector space isomorphism Fqn ∼= F
n
q . (Such

an embedded subgroup F
×
qn is sometimes called a Coxeter torus or an anisotropic

maximal torus.) Many irreducible GLn-character values χλ(c−1) vanish not only on
Singer cycles, but even for a larger class of elements that we introduce in the following
proposition.

Proposition 4.4 The following are equivalent for g in GLn(Fq).

(i) No conjugates hgh−1 of g lie in a proper parabolic subgroup Pα � GLn.
(ii) There are no nonzero proper g-stable Fq-subspaces inside F

n
q .

(iii) The characteristic polynomial det(x In − g) is irreducible in Fq [x].
(iv) The element g is the image of some β in F

×
qn satisfying Fq(β) = Fqn (that is, a

primitive element for Fqn ) under one of the embeddings F
×
qn ↪→ GLFq (Fqn ) ∼=

GLn(Fq).

The elements in GLn(Fq) satisfying these properties are called the regular elliptic
elements.

Proof (i) is equivalent to (ii). A proper Fq -subspace U , say with dimFq U = d < n,
is g-stable if and only any h in GLn(Fq) sending U to the span of the first d standard
basis vectors in F

n
q has the property that hgh−1 lies in a proper parabolic subgroup Pα

with α1 = d.
(ii) implies (iii). Argue the contrapositive: if det(x In − g) had a nonzero proper

irreducible factor f (x), then ker( f (g) : V → V ) would be a nonzero proper g-stable
subspace.
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(iii) implies (iv). If f (x) := det(x In − g) is irreducible in Fq [x], then f (x) is also
the minimal polynomial of g. Thus, g has rational canonical form over Fq equal to
the companion matrix for f (x). This is the same as the rational canonical form for the
image under one of the above embeddings of any β in F

×
qn having minimal polynomial

f (x), so that Fq(β) ∼= Fqn . Hence, g is conjugate to the image of such an element
β embedded in GLn(Fq), and then equal to such an element, after conjugating the
embedding.

(iv) implies (ii). Assume that g is the image of such an element β in F
×
qn satisfying

Fq(β) = Fqn . Then, a g-stable Fq -subspace W of F
n
q would correspond to a sub-

set of W ⊂ Fqn stable under multiplication by Fq and by β, so also stable under
multiplication by Fq(β) = Fqn . This could only be W = {0} or W = Fqn .

Part (iv) of Proposition 4.4 shows that Singer cycles c in G are always regular elliptic,
since they correspond to elements γ for which F

×
qn = 〈γ 〉, that is, to primitive roots

in Fqn .

Definition 4.5 Recall that associated to the extension Fq ⊂ Fqn is the norm map

Fqn

NFqn /Fq−→ Fq

β �−→ β · βq · βq2 · · ·βqn−1
.

The well-known surjectivity of norm maps for finite fields [20, VII Exer. 28] is equiv-
alent to the following.

Proposition 4.6 If F
×
qn = 〈γ 〉, then F

×
q = 〈N (γ )〉.

Proposition 4.7 Let g be a regular elliptic element in GLn(Fq) associated to β ∈ Fqn ,
as in Proposition 4.4(iv).

(i) The irreducible character χλ(g) vanishes unless χλ is a primary irreducible
character χU,λ, for some s dividing n and some cuspidal character U in Cusps
and partition λ in Par n

s
.

(ii) Furthermore, χU,λ(g) = 0 except for hook-shaped partitions λ = ( n
s − k, 1k

)
.

(iii) More explicitly, if U in Cusps is associated to [ϕ] with ϕ in Hom(F×
qs , C

×), then

χU,
( n

s −k,1k
)
(g) = (−1)kχU,( n

s )(g)

= (−1)
n
s −k−1χU,(1

n
s )(g)

= (−1)n− n
s −k

s−1∑

j=0

ϕ
(

NFqn /Fqs (β
q j

)
)

.

(iv) If in addition g is a Singer cycle then

∑

U

χU,
( n

s −k,1k
)
(g) =

{
(−1)n− n

s −kμ(s) if q = 2,

0 if q �= 2.
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where the sum is over all U in Cusps , and μ(s) is the usual number-theoretic
Möbius function of s.

Proof The key point is Proposition 4.4(i), showing that regular elliptic elements g
are the elements whose conjugates hgh−1 lie in no proper parabolic subgroup Pα .
Hence, the parabolic induction formula (3.2) shows that any properly induced character
f1∗ · · · ∗ fm will vanish on a regular elliptic element g.

Assertion (i) follows immediately, as (3.4) shows non-primary irreducibles are
properly induced.

Assertion (ii) also follows, as a non-hook partition λ = (λ1 ≥ λ2 ≥ · · · ) has
λ2 ≥ 2, so that in the Jacobi-Trudi-style formula (3.5) for χU,λ, each term

χU,(λ1−1+w(1))∗χU,(λ2−2+w(2))∗ · · · ∗χU,(λ�−�+w(�))

begins with two nontrivial product factors, so it is properly induced, and vanishes on
regular elliptic g.

The first two equalities asserted in (iii) follow from similar analysis of terms in
(3.5), (3.6) for χU,λ when λ = ( n

s − k, 1k
)
. These formulas have 2k+1 and 2

n
s −k

nonvanishing terms, respectively, of the form

(−1)k−m χU,(α1)∗χU,(α2)∗ · · · ∗χU,(αm )

(−1)
n
s −k−m χU,(1β1 )∗χU,(1β2 )∗ · · · ∗χU,(1βm )

corresponding to compositions (α1, . . . , αm) and (β1, . . . , βm) of n
s with α1 ≥ k + 1

and β1 ≥ n
s −k, respectively. All such terms vanish on regular elliptic g, being properly

induced, except the m = 1 terms:

χU,
( n

s −k,1k
)
(g) = (−1)k−1χU,( n

s )(g)

= (−1)
n
s −k−1χU,(1

n
s )(g).

The last equality in (iii) comes from a result of Silberger and Zink [27, Theorem 6.1],
which they deduced by combining various formulas from Green [10].

For assertion (iv), say that the regular elliptic element g corresponds to an element
β in Fqn under the embedding F

×
qn ↪→ GLn(Fq), and let γ := NFqn /Fqs (β) be its

norm in F
×
qs . Assertion (iii) and the multiplicative property of the norm map NFqn /Fqs

imply

∑

U

χU,
( n

s −k,1k
)
(g) = (−1)n− n

s −k
∑

U

s−1∑

j=0

ϕ
(
γ q j
)

= (−1)n− n
s −k

∑

U

∑

γ ′
ϕ(γ ′)

(4.3)
where the inner sum runs over all γ ′ lying in the Frobenius orbit of γ within Fqs .
When one further assumes that g is a Singer cycle, then Proposition 4.6 implies
F

×
qs = 〈γ 〉, so that a homomorphism ϕ : F

×
qs → C

× is completely determined by its
value z := ϕ(γ ) in C

×. Furthermore, ϕ will have a free Frobenius orbit if and only
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if the powers {z, zq , zq2
, · · · , zqs−1} are distinct roots of unity. Thus, one can rewrite

the rightmost summation
∑

U
∑

γ ′ ϕ(γ ′) in (4.3) above as the sum over all z in C
×

for which zqs−1 = 1 but zqt −1 �= 1 for any proper divisor t of s. Number-theoretic
Möbius inversion shows this is

∑
t |s μ

( s
t

)
f (t) where

f (t) :=
∑

z∈C
×:

zqt −1=1

z =
{

1 if q = 2, t = 1,

0 if q �= 2 or t �= 1.

Hence
∑

U

∑

γ ′
ϕ(γ ′) =

{
μ(s) if q = 2,

0 if q �= 2.
(4.4)

��

4.3 Character values on semisimple reflections

Recall that a semisimple reflection t in GLn(Fq) has conjugacy class determined by
its non-unit eigenvalue det(t), lying in F

×
q \ {1}. Recall also the notion of the content

c(a) := j − i of a cell a lying in row i and column j of the Ferrers diagram for a
partition λ.

Lemma 4.8 Let t be a semisimple reflection in GLn(Fq).

(i) Primary irreducible characters χU,λ vanish on t unless wt(U ) = 1, that is, unless
U is in Cusp1.

(ii) For U in Cusp1, so F
×
q

U→ C
×, and λ in Parn, the normalized character χ̃U,λ has

value on t

χ̃U,λ(t) = U (det(t)) ·
∑

a∈λ qc(a)

[n]q
.

(iii) In particular, for U in Cusp1 and hook shapes λ = (n − k, 1k), this simplifies to

χ̃U,(n−k,1k )(t) = U (det(t)) · q−k .

Proof For assertion (i), we start with the fact proven by Green [10, §5 Example (ii),
p. 430] that cuspidal characters for GLn vanish on non-primary conjugacy classes, that
is, those for which the characteristic polynomial is divisible by at least two distinct
irreducible polynomials in Fq [x].

This implies cuspidal characters for GLn with n ≥ 2 vanish on semisimple reflec-
tions t , since such t are non-primary: det(x I − t) is divisible by both x − 1 and x − α

where α = det(t) �= 1.
Next, the parabolic induction formula (3.2) shows that any character of the form

χU1∗ · · · ∗χU�
in which each Ui is a GLni -cuspidal with ni ≥ 2 will also vanish on
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all semisimple reflections t : whenever hth−1 lies in the parabolic P(n1,...,n�) and has
diagonal blocks (g1, . . . , g�), one of the gi0 is also a semisimple reflection, so that
χUi0

(gi0) = 0 by the above discussion.

Lastly, Lemma 3.1 shows that every primary irreducible χU,λ with wt(U ) ≥ 2
will vanish on every semisimple reflection: χU,λ is in the Q-span of characters
χU1∗ · · · ∗χU�

with each Ui a GLni -cuspidal in which wt(U ) divides ni , so that ni ≥ 2.
Assertion (iii) is an easy calculation using assertion (ii), so it only remains to prove

(ii). We first claim that one can reduce to the case where character U in Cusp1 is the

trivial character F
×
q

U=1−→ C
×. This is because one has χU,(n) = U = U ⊗ χ1,(n) and

hence using (3.5) one has

χU,λ = U ⊗ χ1,λ for λ in Parn when U lies in Cusp1. (4.5)

Thus, without loss of generality, U = 1, and we wish to show

χ̃1,λ(t) = 1

[n]q

∑

a∈λ

qc(a). (4.6)

Lemma 4.9 A semisimple reflection t has χ1,λ(t) = �(sλ) where � is the linear map
on the symmetric functions � = Q[p1, p2, . . .] expressed in terms of power sums that
sends f (x1, x2, . . .) �→ (q; q)n−1

∂ f
∂p1

(1, q, q2, . . .).

Proof (Proof of Lemma 4.9) By linearity and (3.5), it suffices to check for composi-
tions α = (α1, . . . , αm) of n that χ1,α := χ1,(α1)∗ · · · ∗χ1,(αm ) has χ1,α(t) = �(hα)

where hα = hα1 · · · hαm . The character χ1,α is just the usual induced character
IndGLn

Pα
1Pα , so the permutation character on the set of α-flags of subspaces

{0} ⊂ Vα1 ⊂ Vα1+α2 ⊂ · · · ⊂ Vα1+α2+···+αm−1 ⊂ F
n
q ,

which are counted by the q-multinomial coefficient

[
n
α

]

q
:=
[

n
α1, . . . , αm

]

q
= [n]!q

[α1]!q · · · [αm]!q = (q; q)nhα(1, q, q2, . . .).

Thus, χ1,α(t) counts the number of such flags stabilized by the semisimple reflection
t . To count these let H and L denote, respectively, the fixed hyperplane for t and the
line which is the det(t)-eigenspace for t . Then, one can classify the α-flags stabilized
by t according to the smallest index i for which L ⊂ Vα1+···+αi . Fixing this index i ,
such flags must have their first i − 1 subspaces Vα1 , Vα1+α2 , . . . , Vα1+···+αi−1 lying
inside H , and their remaining subspaces from Vα1+···+αi onward containing L . From
this description, it is not hard to see that the quotient map F

n
q � F

n
q/L is a bijection

between such t-stable α-flags and the (α−ei )-flags in F
n
q/L ∼= F

n−1
q , where α−ei :=

(α1, . . . , αi−1, αi − 1, αi+1, . . . , αm). Consequently
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χ1,α(t) =
m∑

i=1

[
n − 1
α − ei

]

q
= (q; q)n−1

m∑

i=1

hα−ei (1, q, q2, . . .)

= (q; q)n−1
∂hα

∂p1
(1, q, q2, . . .) = �(hα)

using the fact [23, Example I.5.3] that ∂hn
∂p1

= hn−1, and hence ∂hα

∂p1
=∑m

i=1 hα−ei via
the Leibniz rule.

Resuming the proof of (4.6), since [23, Example I.5.3] shows ∂sλ/∂p1 =∑
μ⊂λ:|μ|=|λ|−1 sμ, one concludes from Lemma 4.9 and (4.2) that

χ̃1,λ(t) = χ1,λ(t)

deg(χ1,λ)
=

∑

μ⊂λ:
|μ|=|λ|−1

(q; q)n−1sμ(1, q, q2, . . .)

(q; q)nsλ(1, q, q2, . . .)

=
∑

μ⊂λ:
|μ|=|λ|−1

f μ(q)

f λ(q)

where f λ(q) is the q-hook formula from (4.2). Thus, the desired Eq. (4.6) becomes
the assertion ∑

μ⊂λ:
|μ|=|λ|−1

f μ(q)

f λ(q)
= 1

[n]q

∑

a∈λ

qc(a) (4.7)

which follows from either of two results in the literature: (4.7) is equivalent1, after
sending q �→ q−1, to a result of Kerov [18, Theorem 1 and Eqn. (2.2)], and (4.7) is
also the t = q−1 specialization of a result of Garsia and Haiman [8, (I.15), Theorem
2.3]. ��

4.4 Character values on transvections

The GLn-irreducible character values on transvections appear in probabilistic work
of M. Hildebrand [12]. For primary irreducible characters, his result is equivalent2 to
the following.

1 In checking this equivalence, it is useful to bear in mind that f λt
(q) = q(n

2) f λ(q−1), along with the
fact that if μ ⊂ λ with |μ| = |λ| − 1 and the unique cell of λ/μ lies in row i and column j , then
n(λ) − n(μ) = i − 1 and n(λt ) − n(μt ) = j − 1.
2 In seeing this equivalence, note that Hildebrand uses Macdonald’s indexing [23, p. 278] of GLn -
irreducibles, where partition values are transposed in the functions λ : Cusp −→ Par relative to our
convention in Sects. 3.2 and 3.3.
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Theorem 4.10 ([12, Theorem 2.1]) For U in Cusps with λ in Par n
s
, a transvection t

in GLn(Fq) has

χ̃U,λ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

1 − qn−1

⎛

⎜⎜⎝1 − qn−1
∑

μ⊂λ:
|μ|=|λ|−1

f μ(q)

f λ(q)

⎞

⎟⎟⎠ if s = 1,

1

1 − qn−1 if s ≥ 2.

One can rephrase the s = 1 case similarly to Lemma 4.8(ii).

Corollary 4.11 For U in Cusp1 with λ in Parn, a transvection t in GLn(Fq) has

χ̃U,λ(t) =
1 − qn−1

(∑
a∈λ qc(a)

[n]q

)

1 − qn−1 .

In particular, for U in Cusp1 and 0 ≤ k ≤ n − 1, one has

χ̃U,
(
n−k,1k

)
(t) = 1 − qn−k−1

1 − qn−1 .

Proof The first assertion follows from Theorem 4.10 using (4.7), and the second from
the calculation

∑

a∈(n−k,1k)

qc(a) = q−k + q−k+1 + · · · + qn−k−1 = q−k[n]q .

��

5 Proofs of Theorems 1.2 and 1.3.

In proving the main results Theorems 1.2 and 1.3, it is convenient to know the equiv-
alences between the various formulas that they assert. After checking this in Proposi-
tion 5.1, we assemble the normalized character values on reflection conjugacy class
sums, in the form needed to apply (2.1). This is then used to prove Theorem 1.3 for
q > 2, from which we derive Theorem 1.2 for q > 2. Lastly, we prove Theorem 1.2
for q = 2.
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5.1 Equivalences of the formulas

We will frequently use the easy calculation

[
�N

q

(
x A
)]

x=1
= (q A−N+1; q)N

(1 − q)N
(5.1)

which can be obtained by iterating �q , or via (1.7) and the q-binomial theorem
[9, p. 25, Exer. 1.2(vi)]

(x; q)N =
N∑

k=0

(−x)kq(k
2)
[

N
k

]

q
. (5.2)

The following assertion was promised in the Introduction.

Proposition 5.1 As polynomials in q,

(i) the three expressions (1.4), (1.5), (1.6) for tq(n, �) asserted in Theorem 1.2 all
agree, and

(ii) the two expressions (1.8), (1.9) for tq(n, �, m) asserted in Theorem 1.3 agree if
m ≤ � − 1.

Proof Assertion (i). Starting with (1.5)

tq(n, �) = (1 − q)−1 (−[n]q)�

[n]!q
[
�n−1

q

(
1

x
− (1 + x(1 − q))�

x

)]

x=1
,

linearity of the operator g(x) �−→
[
�n−1

q g(x)
]

x=1
lets one expand in two different

ways its subexpression

[
�n−1

q

(
1

x
− f (x)

)]

x=1
where f (x) := (1 + x(1 − q))�

x
. (5.3)

The first way will yield (1.4), by expanding (5.3) as
[
�n−1

q

( 1
x

)]

x=1

−
[
�n−1

q f (x)
]

x=1
. Note that

[
�n−1

q

(
1

x

)]

x=1
= (q1−n; q)n−1

(1 − q)n−1 = (−1)n−1

q(n
2)(1 − q)n−1

(q; q)n−1

via (5.1), which accounts for the (−1)n−1(q; q)n−1 term inside the large parentheses

of (1.4). Meanwhile, applying (1.7) to
[
�n−1

q f (x)
]

x=1
and noting that f (qn−1−k) =

q1−nqk(1+qn−k−1−qn−k)�, one obtains a summation that accounts for the remaining
terms inside the large parentheses of (1.4). This shows the equivalence of (1.4), (1.5).
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The second way will yield (1.6), by expanding f (x) = ∑�
i=0

(
�
i

)
(1 − q)�−i x�−i−1,

and noting that the i = � term cancels with the 1
x appearing inside (5.3). Therefore,

(1.5) becomes

tq(n, �) =(−[n]q)�
(1 − q)n−1

(q; q)n

�−1∑

i=0

−
(

�

i

)
(1 − q)�−i

[
�n−1

q

(
x�−i−1

)]

x=1

=[n]�−1
q

�−n∑

i=0

(−1)i (q − 1)�−i−1
(

�

i

)[
� − i − 1

n − 1

]

q
,

using (5.1). The summands with �−n+1 ≤ i ≤ �−1 vanish, showing the equivalence
of (1.5), (1.6).

Assertion (ii). Starting with (1.9),

tq(n, �, m) = [n]�q
[n]!q

[
�n−1

q

(
(x − 1)m x�−m−1)]

x=1
,

expand the (x − 1)m factor via the binomial theorem. Using (5.1), this expression for
tq(n, �, m) becomes

tq(n, �, m) = [n]�−1
q

m∑

i=0

(−1)i
(

m

i

) [
� − i − 1

n − 1

]

q
.

As i ≤ m ≤ � − 1, one has � − i − 1 ≥ 0 and the sum is actually over 0 ≤ i ≤ � − n,
agreeing with (1.8). ��

5.2 The normalized characters on reflection conjugacy class sums

Definition 5.2 For α in F
×
q , let zα :=∑t :det(t)=α t in CGLn be the sum of reflections

of determinant α.

Corollary 5.3 For U in Cusps , and k in the range 0 ≤ k ≤ n
s , and any α in F

×
q \ {1},

one has

χ̃U,
( n

s −k,1k
)
(zα) = [n]q

{
qn−k−1U (α) if s = 1

0 if s ≥ 2.

}
, (5.4)

χ̃U,
( n

s −k,1k
)
(z1) = [n]q

{
qn−k−1 − 1 if s = 1,

−1 if s ≥ 2.

}
. (5.5)

Proof First we count the reflections t in GLn(Fq). There are [n]q = 1 + q + q2 +
· · ·+ qn−1 choices for the hyperplane H fixed by t . To count the reflections fixing H ,
without loss of generality one can conjugate t and assume that H is the hyperplane
spanned by the first n standard basis vectors e1, . . . , en−1.
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If t is a semisimple reflection then its conjugacy class is determined by its determi-
nant, lying in F

×
q \ {1}. Having fixed α := det(t), there will be qn−1 such reflections

that fix e1, . . . , en−1: each is determined by sending en to αen +∑n−1
i=1 ci ei for some

(c1, . . . , cn−1) in F
n−1
q . Hence, (5.4) follows from Lemma 4.8.

The nonsemisimple reflections t are the transvections, forming a single conjugacy
class, with det(t) = 1. There will be qn−1 −1 transvections that fix e1, . . . , en−1: each
is determined by sending en to en +∑n−1

i=1 ci ei for some (c1, . . . , cn−1) in F
n−1
q \ {0}.

Hence (5.5) follows from Theorem 4.10 and Corollary 4.11. ��

5.3 Proof of Theorem 1.3 for q > 2.

For a Singer cycle c in GLn(Fq), and α = (α1, . . . , α�) in (F×
q )� with

∏�
i=1 αi =

det(c), Proposition 2.2 counts the reflection factorizations c = t1t2 · · · t� with det(ti ) =
αi as

1

|GLn|
∑

(s,U ):
s|n

U∈Cusps

n
s −1∑

k=0

deg(χU,
( n

s −k,1k
)
) · χU,

( n
s −k,1k

)
(c−1) ·

�∏

i=1

χ̃U,
( n

s −k,1k
)
(zαi ).

(5.6)

There are several simplifications in this formula.
Firstly, note that the outermost sum over pairs (s, U ) reduces to the pairs with

s = 1: since det(c) is a primitive root in F
×
q by Proposition 4.6 and q > 2, one knows

that det(c) �= 1, so that at least one of the αi is not 1. Thus, its factor χ̃U,
( n

s −k,1k
)
(zαi )

in the last product will vanish if s ≥ 2 by (5.4).
Secondly, when s = 1 then Corollary 5.3 evaluates the product in (5.6) as

�∏

i=1

χ̃U,
( n

s −k,1k
)
(zαi ) = [n]�q (qn−k−1 − 1)m q(n−k−1)(�−m) U (det(c)) (5.7)

if exactly m of the αi are equal to 1, that is, if the number of transvections in the
factorization is m. This justifies calling it tq(n, �, m) where m ≤ � − 1.

Thirdly, for s = 1 Proposition 4.7(iii) shows3 that χU,
(
n−k,1k

)
(c−1) =

(−1)kU (det(c−1)), so there will be cancellation of the factor U (det(c)) occurring
in (5.7) within each summand of (5.6).

Thus, plugging in the degree formula from the s = 1 case of (4.1), one obtains
the following formula for (5.6), which we denote by tq(n, �, m), emphasizing its
dependence only on � and m, not on the sequence α:

3 Here, we use the fact that c−1 is also a Singer cycle.

123

Author's personal copy



J Algebr Comb (2014) 40:663–691 681

tq(n, �, m) = (q − 1)[n]�q
|GLn|

n−1∑

k=0

q(k+1
2 )
[

n − 1
k

]

q
(−1)k (qn−k−1 − 1)m q(n−k−1)(�−m).

This expression may be rewritten using the q-difference operator �q and (1.7) as

tq(n, �, m) = [n]�q
|GLn|q(n

2)(q − 1)n
[
�n−1

q

(
(x − 1)m x�−m−1)]

x=1
.

Since |GLn| = q(n
2)(−1)n(q; q)n , this last expression is the same as (1.9). Hence, by

Proposition 5.1, this completes the proof of Theorem 1.3 for q > 2.

5.4 Proof of Theorem 1.2 when q > 2.

We will use Theorem 1.3 for q > 2 to derive (1.5) for q > 2. First note that one can
choose a sequence of determinants α = (α1, . . . , α�) in F

×
q that has

∏�
i=1 αi = det(c)

and has exactly m of the αi = 1 in a two-step process: first choose m positions out

of � to have αi = 1, then choose the remaining sequence in
(
F

×
q \ {1}

)�−m
with

product equal to det(c). Simple counting shows that in a finite group K , the number
of sequences in (K \ {1})N whose product is some fixed nonidentity element4 of K is

(|K | − 1)N − (−1)N

|K | . (5.8)

Applying this to K = F
×
q with N = � − m gives

tq(n, �) =
�∑

m=0

tq(n, �, m)

(
�

m

)
(q − 2)�−m − (−1)�−m

q − 1
.

Thus, from (1.9) one has

tq(n, �)Z = (q − 1)[n]�q
|GLn| q(n

2)(q − 1)n−1

×
[
�n−1

q

(
�∑

m=0

(
�

m

)
(x − 1)m x�−m−1 (q − 2)�−m − (−1)�−m

q − 1

)]

x=1

4 In fact, Theorem 1.2 is stated for n ≥ 2, but remains valid for when n = 1 and q > 2. It is only in the
trivial case where GL1(F2) = {1} that the “Singer cycle” c is actually the identity element, so that the count
(5.8) fails.
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= (−[n]q)�

|GLn| q(n
2)(q − 1)n−1

[
�n−1

q

(
(1 + x(1 − q))�

x
− 1

x

)]

x=1

= (1 − q)−1 (−[n]q)�

[n]!q
[
�n−1

q

(
1

x
− (1 + x(1 − q))�

x

)]

x=1

which is (1.5). Hence, by Proposition 5.1, this completes the proof of Theorem 1.2
when q > 2.

5.5 Proof of Theorem 1.2 when q = 2.

Here, all reflections are transvections and (2.1) gives us

tq(n, �) = 1

|GLn|
∑

χλ∈Irr(GLn)

deg(χλ) · χλ(c−1) · χ̃λ(z1)
�

= 1

|[GLn|
∑

(s,U ):
s|n

U∈Cusps

n
s −1∑

k=0

deg(χU,
( n

s −k,1k
)
) · χU,

( n
s −k,1k

)
(c−1) · χ̃U,

( n
s −k,1k

)
(z1)

�

︸ ︷︷ ︸
Call this f (s,U )

using the vanishing of χλ(c−1) from Proposition 4.7(i,ii). We separate the computation
into s = 1 and s ≥ 2, and first compute

∑
U∈Cusp1

f (s, U ). As q = 2 there is only
one U in Cusp1, namely U = 1, and hence

∑

U∈Cusp1

f (s, U ) = f (1, 1) =
n−1∑

k=0

deg(χ1,(n−k,1k )) · χ1,(n−k,1k )(c−1) · χ̃1,(n−k,1k )(z)�

=
n−1∑

k=0

q(k+1
2 )
[

n − 1
k

]

q
· (−1)k · [n]�q(qn−k − qn−k−1 − 1)�

using the degree formula (4.1) at s = 1, the fact that χ(1,n−k,1k )(c−1) =
(−1)kχ1,(n)(c−1) = (−1)k from Proposition 4.7(iii), and the value χ̃1,(n−k,1k)(z1) =
[n]q(qn−k − qn−k−1 − 1) from (5.5).

For s ≥ 2, we compute

∑

(s,U ):
s|n,s≥2
U∈Cusps

f (s, U ) =
∑

(s,U ):
s|n,s≥2
U∈Cusps

n
s −1∑

k=0

deg(χU,
( n

s −k,1k
)
) · χU,

( n
s −k,1k

)
(c−1)

·χ̃U,
( n

s −k,1k
)
(z1)

�
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=
∑

s|n
s≥2

n
s −1∑

k=0

(−1)n− n
s qs(k+1

2 )(q; q)n

(qs; qs) n
s

[ n
s − 1

k

]

qs

·
⎛

⎝
∑

U∈Cusps

χU,
( n

s −k,1k
)
(c−1)

⎞

⎠ · (−[n]q)�

again via (4.1), Proposition 4.7(iii), and (5.5). The parenthesized sum is (−1)n− n
s −k

μ(s) by Proposition 4.7(iii, iv), so

∑

(s,U ):
s|n,s≥2
U∈Cusps

f (s, U ) = (−[n]q)�(q; q)n

∑

s|n
s≥2

1

(qs; qs) n
s

×
⎛

⎝
n
s −1∑

k=0

(−1)kqs(k+1
2 )
[ n

s − 1
k

]

qs

⎞

⎠μ(s)

= (−[n]q)�(q; q)n

∑

s|n
s≥2

μ(s)

(qs; qs) n
s

(qs; qs) n
s −1

= (−[n]q)�(q; q)n−1

∑

s|n
s≥2

μ(s)

= −(−[n]q)�(q; q)n−1,

where the second equality used the q-binomial theorem (5.2). Thus, one has for q = 2
that

tq(n, �) = 1

|GLn|
(
−(−[n]q)�(q; q)n−1

+
n−1∑

k=0

q(k+1
2 )
[

n − 1
k

]

q
· (−1)k · [n]�q(qn−k − qn−k−1 − 1)�

)
. (5.9)

Since |GLn| = (−1)nq(n
2)(q; q)n , one finds that (5.9) agrees with the expression (1.4)

tq(n, �) = (−[n]q)�

q(n
2)(q; q)n

(
(−1)n−1(q; q)n−1 +

n−1∑

k=0

(−1)k+nq(k+1
2 )
[

n − 1
k

]

q

(1 + qn−k−1 − qn−k)�

)

after redistributing the [n]�q and powers of −1. This completes the proof of Theorem 1.2
for q = 2.
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6 Further remarks and questions

6.1 Product formula versus partial fraction expansions

The equivalence between (1.1), (1.2), and between (1.3), (1.4) are explained as follows.
One checks the partial fraction expansion of (1.1) is

∑

�≥0

t (n, �)x� = nn−2xn−1

∏n−1
k=0

(
1 − xn

( n−1
2 − k

)) = 1

n!
n−1∑

k=0

(−1)k
(n−1

k

)

1 − xn
( n−1

2 − k
)

and comparing coefficients of x� gives the first equality in (1.2).
Similarly, one checks that the partial fraction expansion of the right side of (1.3) is

(qn − 1)n−1 · xn

(
1 + x[n]q

)∏n−1
k=0

(
1 + x[n]q(1 + qk − qk+1)

)

= (−1)n

q(n
2)(qn − 1)

(
1

1 + x[n]q
+

n−1∑

k=0

(−1)k+1q(k+1
2 )

(q; q)k(q; q)n−1−k

· 1

1 + x[n]q(1 + qn−k−1 − qn−k)

)
.

(6.1)

Comparing coefficients of x� in (6.1) gives (1.4). This proves (1.3).

6.2 More observations about tq(n, �, m)

From (1.6) and (1.8) one can derive q = 1 limits

t1(n, �) := limq→1
tq (n,�)

(1−q)n−1 = (−n)�−1
(
�
n

)

t1(n, �, m) := limq→1 tq(n, �, m) = n�−1
(
�−m−1

�−n

)
.

We do not know an interpretation for these limits.

6.3 Exponential generating function

The classical count t (n, �) of factorizations of an n-cycle into � transpositions has both
an elegant ordinary generating function (1.1) and exponential generating function

∑

�≥0

t (n, �)
u�

�! = 1

n!
(

eu n
2 − e−u n

2

)n−1
. (6.2)

This was generalized by Chapuy and Stump [5] to well-generated finite complex
reflection group W as follows; we refer to their paper for the background on such
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groups. If W acts irreducibly on C
n , with a total of Nref reflections and Nhyp reflecting

hyperplanes, then for any Coxeter element c, the number a� of ordered factorizations
c = t1 · · · t� into reflections satisfies

∑

�≥0

a�

u�

�! = 1

|W |
(

eu Nref
n − e−u Nhyp

n

)n

= 1

|W |e−uNhyp
(

eu Nref +Nhyp
n − 1

)n

= 1

|W |e−uNhyp
[
�n
(

eux Nref +Nhyp
n

)]

x=0
(6.3)

where the last equality uses the fact that the difference operator � satisfies[
�n(eax )

]
x=0 = (ea − 1)n .

One can derive an exponential generating function analogous to (6.3) for the number
tq(n, �) of Singer cycle factorizations in W = GLn(Fq),

∑

�≥0

tq(n, �)
u�

�! = (q − 1)n−1q(n
2)

|W | e−uNhyp

[
�n−1

q

(
1

x

(
e

ux Nref +Nhyp

qn−1 − 1

))]

x=1

,

(6.4)
where Nhyp, Nref denote the number of reflecting hyperplanes and reflections in W =
GLn(Fq), that is,

Nhyp = [n]q ,

Nref = [n]q(qn − qn−1 − 1).

To prove (6.4), use (1.5) to find

∑

�≥0

tq(n, �)
u�

�! = (1−q)n−1

(q;q)n

[
�n−1

q

(
1
x

(
e−u[n]q − e−u[n]q (1+x(1−q))

))]

x=1

= (−1)n(1−q)n−1q(n
2)

|W | e−u[n]q
[
�n−1

q

(
1
x

(
1 − eux[n]q (q−1))

))]

x=1
.

Noting that [n]q = Nhyp, and [n]q(q − 1) = qn − 1 = (Nhyp + Nref)/qn−1, and
distributing some negative signs, gives (6.4).

6.4 Hurwitz orbits

In a different direction, one can consider the Hurwitz action of the braid group on �

strands acting on length � ordered factorizations c = t1t2 · · · t�. Here, the braid group
generator σi acts on ordered factorizations as follows:
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(t1, . . . , ti−1, ti , ti+1, ti+2, . . . , t�)
σi�−→

(t1, . . . , ti−1, ti+1, t−1
i+1ti ti+1, ti+2, . . . , t�).

For well-generated complex reflection groups W of rank n and taking � = n, Bessis
showed [3, Prop. 7.5] that the set of all shortest ordered factorizations (t1, . . . , tn) of a
Coxeter element c = t1t2 · · · tn forms a single transitive orbit for this Hurwitz action.

One obvious obstruction to an analogous transitivity assertion for c a Singer cycle
in GLn(Fq) and factorizations c = t1t2 · · · t� is that the unordered �-element multiset
{det(ti )}�i=1 of F

×
q is constant on a Hurwitz orbit, but (when q �= 2) can vary between

different factorizations, even when � = n. Nevertheless, we make the following con-
jecture.

Conjecture 6.1 Any two factorizations c = t1t2 · · · t� with the same multiset
{det(ti )}�i=1 lie in the same Hurwitz orbit. In particular, there is only one Hurwitz
orbit of factorizations when q = 2 for any �.

We report here some partial evidence for Conjecture 6.1.

• It is true when n = � = 2; here is a proof. Fix a Singer cycle c in GL2(Fq) and
α1, α2 in F

×
q having det(c) = α1α2. Theorem 1.3 in the case � = n = 2 tells

us that there will be exactly [2]q = q + 1 factorizations c = t1 · t2 of c as a
product of two reflections with (det(t1), det(t2)) = (α1, α2), and similarly q + 1
for which (det(t1), det(t2)) = (α2, α1). This gives a total of either q +1 or 2(q +1)

factorizations with this multiset of determinants, depending upon whether or not
α1 = α2. Now note that applying the Hurwitz action σ1 twice sends

(t1, t2)
σ1�−→ (t2 , t−1

2 t1t2)
σ1�−→ (t−1

2 t1t2, t−1
2 t−1

1 t2t1t2︸ ︷︷ ︸
=c−1t2c

),

yielding a factorization with the same determinant sequence, but whose second
factor changes from t2 to c−1t2c. This moves the reflecting hyperplane (line) H
for t2 to the line c−1 H for c−1t2c. Since F

×
q2 = 〈c〉, one knows that the powers

of c act transitively on the lines in Fq2 ∼= F
2
q , and hence there will be at least

q + 1 different second factors {c−i t2ci } achieved in the Hurwitz orbit. This shows
that the Hurwitz orbit contains at least q + 1 or 2(q + 1) different factorizations,
depending upon whether or not α1 = α2, so it exhausts the factorizations that
achieve this multiset of determinants. This completes the proof.

• Conjecture 6.1 has also been checked
– for q = 2 when n = � ≤ 5 and n = 3, � = 4,
– for q = 3 when n = 2 and � ≤ 4, and also when n = � = 3,
– for q = 5 when n = 2 and � ≤ 3.

One might hope to prove Conjecture 6.1 by a method similar to the uniform proof for
transitivity of the Hurwitz action on short reflection factorizations of Coxeter elements
in real reflection groups, given in earlier work of Bessis [2, Prop. 1.6.1]. His proof is
via induction on the rank, and relies crucially on proving these facts:
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• The elements w ≤ c in the absolute order, that is, the elements which appear as
partial products w = t1t2 · · · ti in shortest factorizations c = t1t2 · · · tn , are all
themselves parabolic Coxeter elements, that is, Coxeter elements for conjugates
of standard parabolic subgroups of W .

• All such parabolic Coxeter elements share the property that the Hurwitz action is
transitive on their shortest factorizations into reflections.

One encounters difficulties in trying to prove this analogously, when one examines
the interval [e, c] of elements lying below a Singer cycle c in GLn(Fq):

• It is no longer true that the elements g in [e, c] all have a transitive Hurwitz action
on their own short factorizations. For example in GL4(F2), the unipotent element
u equal to a single Jordan block of size 4 appears as a partial product on the way to
factoring a Singer cycle, but its 64 short factorizations u = t1t2t3 into reflections
break up into two Hurwitz orbits, of sizes 16 and 48.

• It also seems nontrivial to characterize intrinsically the elements in [e, c] for a
fixed Singer cycle c. For example, the elements g which are c-noncrossing in the
following sense appear5 to be always among them: arranging the elements F

×
qn =

{1, c, c2, . . . , cqn−2} clockwise circularly, g permutes them (after embedding them
via Fqn ∼= F

n
q ) in cycles that are each oriented clockwise, and these oriented arcs

do not cross each other. However, starting already with GL4(F2) and GL3(F3),
there are other element below the Singer cycle besides these c-noncrossings.

6.5 q-Noncrossings?

The poset of elements [e, c] lying below a Singer cycle c in the absolute order on
GLn(Fq) would seem like a reasonable candidate for a q-analog of the usual poset of
noncrossing partitions of {1, 2, . . . , n}; see [1]. However, [e, c] does not seem to be
so well behaved in GLn(Fq), although a few things were proven about it by Jia Huang
in [13].

For instance, he showed that the absolute length of an element g in GLn(Fq), that is,
the minimum length of a factorization into reflections, coincides with the codimension
of the fixed space (Fn

q)g . Hence, the poset [e, c] is ranked in a similar fashion to the
noncrossing partitions of real reflection groups, and has an order- and rank-preserving
map

[e, c] π−→ L(Fn
q)

g �−→ (Fn
q)g

to the lattice L(Fn
q) of subspaces of F

n
q . Because conjugation by c acts transitively

on lines and hyperplanes, this map is surjective for n ≤ 3; empirically, it seems to
be surjective in general. The poset [e, c] also has a Kreweras complementation anti-
automorphism w �→ w−1c.

5 That is, it is true for GLn(F2) with n = 2, 3, 4 and also for GLn(F3) with n = 2, 3.
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However, Huang noted that the rank sizes of [e, c] do not seem so suggestive. E.g.,
for [e, c] in GL4(F2) they are (1, 60, 240, 60, 1), and preclude π being an N -to-one
map for some integer N , since L(F4

2) has rank sizes (1, 15, 35, 15, 1) and 35 does not
divide 240.

Question 6.2 Are the c-noncrossing elements mentioned in Sect. 6.4 a better-behaved
subposet of [e, c]?

6.6 Regular elliptic elements versus Singer cycles

Empirical evidence supports the following hypothesis regarding the regular elliptic
elements of GLn(Fq) that appeared in Proposition 4.4.

Conjecture 6.3 The number of ordered reflection factorizations g = t1t2 · · · t� is the
same for all regular elliptic elements g in GLn(Fq), namely the quantity tq(n, �) that
appears in Theorem 1.2.

Conjecture 6.3 has been verified for n = 2 and n = 3 using explicit character values
[29]. In the case det g �= 1, only minor modifications are required in our arguments
to prove Conjecture 6.3. The spot in our proof that breaks down for regular elliptic
elements with det g = 1 is the identity (4.4). For example, when s = n = 4 and
q = 2, if one chooses β in F

×
24 with β5 = 1 (so still one has F24 = F2(β), but

F
×
24 �= 〈β〉), then there are three homomorphisms ϕ with free Frobenius orbits and∑
ϕ

(
ϕ(β) + ϕ(β2) + ϕ(β4) + ϕ(β8)

) = −3 ( �= 0 = μ(4)). Nevertheless, in this
GL4(F2) example it appeared from GAP [30] computations that such regular elliptic
g with g5 = 1 had the same number of factorizations into � reflections for all � as did
a Singer cycle in GL4(F2).

Remark 6.4 On the other hand, in considering transitivity of Hurwitz actions, we
did see a difference in behavior for regular elliptic elements versus Singer cycles: in
GL4(F2), there are 3375 = (24 −1)4−1 short reflection factorizations t1t2t3t4 both for
the Singer cycles (the elements whose characteristic polynomials are x4 + x3 + 1 or
x4 + x +1) and for the non-Singer cycle regular elliptic elements (the elements whose
characteristic polynomials are x4 + x3 + x2 + x + 1). However, for the Singer cycles,
these factorizations form one Hurwitz orbit, while for the non-Singer cycle regular
elliptic elements they form four Hurwitz orbits.

6.7 The approach of Hausel, Letellier, and Rodriguez-Villegas

The number of factorizations g = t1t2 · · · t� where t1, . . . , t�, g come from specified
GLn(Fq) conjugacy classes C1, . . . , C�, C�+1 appears in work of Hausel, Letellier, and
Rodriguez-Villegas [11] and more recently Letellier [21]. They interpret it in terms of
the topology of objects called character varieties under certain genericity conditions
[21, Definition 3.1] on the conjugacy classes. One can check that these conditions
are satisfied in the case of interest to us, that is, when C�+1 is a conjugacy class of
Singer cycles and the C1, . . . , C� are all conjugacy classes of reflections. Assuming
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these genericity conditions, [21, Theorem 4.14] gives an expression for the number

of such factorizations in terms of a specialization Hω(q− 1
2 , q

1
2 ) of a rational function

Hω(z, w) defined in [11, §1.1] via Macdonald symmetric functions. In principle, this
expression should recover Theorem 1.3 as a very special case. However, in practice,
the calculation of Hω(z, w) is sufficiently intricate that we have not verified it.

6.8 Jucys-Murphy approach?

The formulas for character values on semisimple reflections and transvections in
Lemma 4.8(ii) and Corollary 4.11 are remarkably simple compared to the machinery
used in their proofs. Can they be developed using a q-analog of the Okounkov-Vershik
approach [4,31] to the ordinary character theory of Sn , using the commuting family of
Jucys-Murphy elements [17,24], a multiplicity-free branching rule, a Gelfand-Zetlin
basis, etc.? Such a theory might even allow one to prove q-analogs for more general
generating function results, such as one finds in Jackson [16].

A feature of the Sn theory (see Chapuy and Stump [5, §5], Jucys [17, §4]) is
that any symmetric function f (x1, . . . , xn) when evaluated on the Jucys-Murphy
elements J1, . . . , Jn acts as a scalar in each Sn-irreducible V λ, and this scalar is
f (c(a1), . . . , c(an)) where c(ai ) are the contents of the cells of λ. Taking f =∑n

i=1 xi

gives a quick calculation of the irreducible characters evaluated on
∑n

i=1 Ji , the sum
of all transpositions. Lemma 4.8(ii) and Corollary 4.11 seem suggestive of a q-analog
for this assertion.

It is at least clear how one might define relevant Jucys-Murphy elements.

Definition 6.5 For 1 ≤ m < n embed GLm ⊂ GLn as the subgroup fixing
em+1, . . . , en . Then, for each α ∈ F

×
q , let Jα

m := ∑
t t be the sum inside the group

algebra CGLn over this subset of reflections:

{reflections t ∈ GLm : det(t) = α and t �∈ GLm−1}. (6.5)

Proposition 6.6 The elements {Jα
m} for m = 1, 2, . . . , n and α in F

×
q pairwise com-

mute.

Proof Note that Jα
n commutes with any g in GLn−1, or equivalently, g Jα

n g−1 = Jα
n ,

since conjugation by g induces a permutation of the set in (6.5). This shows that
Jα

n , Jβ
m commute when n �= m, since if one assumes m < n, then every term of Jβ

m

lies in GLn−1. To see that [Jα
n , Jβ

n ] = 0, note that our conjugacy sums zα =: zn,α

from Definition 5.2 lie the center of CGLn and can be expressed as zn,α =∑n
i=1 Jα

i .

Therefore,

0 = [zn,α, Jβ
n ] =

[
n∑

i=1

Jα
i , Jβ

n

]
= [Jα

n , Jβ
n ] +

[
∑

i<n

Jα
i , Jβ

n

]
= [Jα

n , Jβ
n ]

using bilinearity of commutators, and the commutativity of Jα
i , Jβ

n for i < n. ��
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