
Unfinished Business

Dennis E. White

November 30, 2012



Outline

Introduction
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In the Beginning...



My Inspiration



In 1973...
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In 1973...



L’Étoile du Nord

State Flower (1902)

State Tree (1953)

State Bird (1961)

State Fish (1965)



L’Étoile du Nord

State Grain (1977)

State Fungus (1984)

State Butterfly (1998)

State Fruit (2006)



Minnesota Icons



Big Ten Sports
Big Ten Football

I Gopher football record since I’ve been here: 203-257

I Number of Gopher football coaches with winning records since
I’ve been here: 0

I Number of years before I arrived that the Gophers were last in
a major bowl game: 12

Big Ten Basketball



The Start of Combinatorics at Minnesota



Ed Bender’s Wisdom

“The trick in mathematics is to find problems that are neither
trivially impossible nor impossibly trivial.”



Pólya meets Schensted

George Pólya
Craige Schensted

“Ea”



Some Definitions

I G : a finite permutation group acting on [n].

I ∆µ: the orbits of µ-colorings of [n] under the action of G .

I Cρ: the permutations in Sn of type ρ.

I m, p and s: the usual symmetric function bases: monomial,
power sum and Schur.

I Kλ,µ: the Kostka number, the number of semistandard Young
tableaux (SSYT) of type µ and shape λ.

I fλ: the number of standard Young tableaux (SYT) of shape λ.

I χλρ : the λ irreducible Sn character, at the conjugate class ρ.
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Problems

It follows that
|∆µ| =

∑
λ

Kλ,µKλ,G .

Kλ,G is the number of occurrences of the irreducible λ in the
inducement of the trivial character of G up to Sn.
It is an integer.

Problem
Interpret Kλ,G as a subset of standard Young tableaux of shape λ.

Problem
Give a Schensted-like proof that

|∆µ| =
∑
λ

Kλ,µKλ,G .



Notes

I If G = Sν = Sν1 × Sν2 × . . . , then Kλ,G = Kλ,ν and

|∆µ| =
∑
λ

Kλ,µKλ,ν ,

follows from the Robinson-Schensted-Knuth correspondence.

I For any G , Kλ,G ≤ fλ.



An Example

Write
hG =

∑
λ

Kλ,G sλ .

For cyclic groups Zn, for n = 2, 3, 4, 5, 6:

hZ2 = s2

hZ3 = s3 + s13

hZ4 = s4 + s22 + s2 12

hZ5 = s5 + s3 2 + 2s3 12 + s22 1 + s15

hZ6 = s6 + 2s4 2 + 2s4 12 + s32 + 2s3 2 1 + 2s3 13 + 2s23 + s22 12 + s2 14



Oberwolfach, 1980



Our Group Expands



We Have Somthing in Common



We Have Something in Common



We Have Something Else in Common



We Have Something Else in Common



We Write a Book



G. W. Peck

G. W.

P E C K



Background



Background

I W.- Williamson (1977): All natural matchings in the boolean
algebra Bn are essentially the same and yield a symmetric
chain decomposition (SCD).

I W. (1980): Bn reduced by a group action is rank unimodal.

I Stanley (1984): Unitary Peck posets reduced by a group
action are Peck.

I Peck poset: graded, rank symmetric, rank unimodal, strongly
Sperner.



The Problem

I The most famous example of Stanley’s theorem: partitions
inside a rectangle (Bn reduced by a wreath product of two
symmetric groups). Rank generating function is the
q-binomial coefficient.

I Existence of an SCD would immediately imply Peck.

Problem
For what groups G does Bn/G have an SCD? Can the SCD on Bn

be modified to give an SCD on Bn/G ?



Recent Progress

I Problem dates back to Stanley (1980).

I Stated by Canfield and Mason (2006).

I Hersh and Schilling (2012): True for cyclic groups, using the
natural boolean algebra matching.



IMA Year, 1987-1988



IMA Year, 1987-1988



New Arrivals



Minnesota Events



FPSAC ’96



FPSAC ’96



FPSAC ’96



No one else is to blame for this problem...



The Cone of Log-Concavity

I C k
N : cone generated by products (homogeneous of degree N)

of Schur functions sλ, where l(λ) ≤ k .

I Determine the extreme vectors.

I k = 1: C 1
N is the cone generated by hλ, λ ` N, hλ will be

extreme.

I k ≥ N: CN
N is the cone generated by products of Schur

functions =⇒ sλ will be extreme (Littlewood Richardson
rule).

I k = 2: Jacobi-Trudi says cone is generated by products of the
form

hihj − hi+1hj−1 and hi i ≥ j ≥ 1

I Call this last case Cone of Log-Concavity



Extreme Vector Examples

s3,1s2 = s3,2s1 + s12s4

For N = 6, there are 13 extreme vectors:

s6 s4s12 s3s2,1
s5,1 s3,1s12 (s2,1)2

s4,2 s22s2 s2(s12)2

s32 s22s12 (s12)3

s3,2s1



The Problem

Conjecture

A product sα1sα2 . . . is extreme in the cone of log-concavity if and
only if no pair αs = λ and αt = µ satisfies any one of the following
conditions:

1. λ = (λ1 ≥ λ2 > 0), µ = (µ1 ≥ µ2 > 0), with

λ1 > µ1 ≥ λ2 > µ2 ;

2. λ = (λ1 > λ2 > 0), µ = (µ1 > 0), with

λ1 ≥ µ1 ≥ λ2 ;

3. λ = (λ1 > 0), µ = (µ1 > 0).



Notes

I If no such pair satisfies any of these conditions, we say the
collection of Schur functions is nested.

I It is easy to show that if the collection is not nested, then the
product is not extreme (see above example).

I It is also true (but not easy to prove) that if the set of
partitions is nested and the collection of all parts is a distinct
partition, then the product is extreme.

I Proof uses Littlewood-Richardson rule in a non-trivial way.

I Proof relies on Farkas’ Lemma: v is extreme if and only if
there is a hyperplane which separates v from all other
generating vectors.



New Minnesota Icons



More Arrivals and a Departure



Sign-Balanced Posets



Background

I Ruskey (1993) asked: for which posets are the number of odd
linear extensions and the number of even linear extensions
equal (sign-balanced)?

I Most natural posets are sign-balanced (easy).

I For product of two chains Cn × Cm the answer was undecided.

I Ruskey(1993) proved sign-balanced when n and m even,
conjectured sign-balanced when n and m odd, and
conjectured not sign-balanced when m 6= n mod 2 (and did
not conjecture amount of imbalance)



Semi-Self-Complementary Shapes

I α and β rectangular Ferrers shapes with cellwise intersection
E and cellwise union D.

I Semi-self-complementary shapes (SSC): shape λ where

1. λ contains D
2. λ/D has two parts: µ, to the right of D; and ν, below D.
3. µ and ν are complementary inside E

I Twist (tw) is |µ|.



SSC Example

µ
D

ν



Shifted Shapes

I Str(α) is the strict shape associated with a rectangle α.

I Example: α = 63, Str(α) = (8, 6, 4).

I gλ is the number of SYT of shifted shape λ (strict).

I If µ and ν are two shapes, then µ ∪ ν is the partition whose
parts are the multiset of the parts of µ and ν.

I Fact: gStr(α) = fα (Combinatorial proofs: Worley (1984),
Sagan (1987), Haiman (1989))



A Theorem

Theorem (W (2001))

If µ is a shape whose 2-quotient is a pair of rectangles, α and β,
then the poset whose Hasse diagram is µ is sign-balanced if and
only if Str(α) ∪ Str(β) has a repeated part. Otherwise, the
amount of imbalance is ±gStr(α)∪Str(β).

Corollary (W (2001))

Cn × Cm is signed balanced if and only if n = m mod 2. If n 6= m
mod 2, the amount of imbalance is ±gρ where
ρ = ((m + n − 1)/2, (m + n − 3)/2, . . . , (|m − n|+ 1)/2).



The Problems

The theorem above follows from this theorem

Theorem (W (2001))

∑
λ

(−1)tw(λ)fλ =

{
±gStr(α)∪Str(β), if Str(α) ∪ Str(β) distinct;

0, otherwise.

where the sum is over SSC shapes.

Problem
Find a sign-reversing involution on standard Young tableaux of
SSC shapes which proves this theorem.

Note: For Cn × Cm, this involution exists (W).



Shifted Littlewood-Richardson Coefficients

fλ =
∑
ρ

cρ,λgρ ,

where cρ,λ is the number of Littlewood-Richardson fillings of the
shifted skew shape (λ+ δ)/ρ of content δ, δ an appropriate
triangular shape (Stembridge (1989)).



Shimozono’s Refinement

Write: ∑
λ

(−1)tw(λ)fλ =
∑
λ

∑
ρ

(−1)tw(λ)cρ,λgρ

=
∑
ρ

(∑
λ

(−1)tw(λ)cρ,λ

)
gρ

where λ is SSC and ρ is strict.

Theorem (Shimozono (1999))

The inner sum above is 0 unless ρ = Str(α) ∪ Str(β), in which
case it is ±1.

Proof uses Jing vertex operators and Schur Q symmetric functions.



Refined Problem

Problem
Give a sign-reversing involution which proves Shimozono’s result.

Table of cρ,λ for SSC shapes, α = 32, β = 22 with (−1)tw(λ):

ρ
7 3 7 2 1 6 4 6 3 1 5 4 1 5 3 2 4 3 2 1

[+] 52 0 0 1 0 0 0 0
[−] 5 4 1 1 0 2 1 1 0 0
[+] 5 3 2 1 1 1 2 1 1 0

λ [+] 42 12 1 0 1 1 1 1 0
[−] 4 3 2 1 1 1 2 3 2 3 1
[+] 32 22 0 0 1 1 1 1 0



More Arrivals and Departures



Cyclic Sieving



Cyclic Sieving Phenomenon

I X a set; X (q) a generating function, X (1) = |X |; C a cyclic
action of order n on X .

I For c ∈ C , write X (c) to mean X (q) evaluated at the nth
root of unity corresponding to c .

I (X ,X (q),C ) is an instance of the cyclic sieving phenomenon
(Reiner, Stanton, W, (2004)) if X (c) is the number of x ∈ X
fixed by c ∈ C .

I Many instances of CSP discovered over the last several years
(Sagan (2011)).



Promotion

Schützenberger (1963)

T =
1 2 6
3 4 7
5 8 9

1 2 6
3 4 7
5 8 9

2 4 6
3 7 9
5 8

p(T ) =
1 3 5
2 6 8
4 7 9

2 4 6
3 7 9
5 8 1



CSP on promotion

I X is standard tableaux of shape nm.

I Promotion on X is a cyclic action C of order mn

I fλ(q) is the q-analog of the Frame-Robinson-Thrall hook
formula for fλ



Rhoades Result

Theorem (Rhoades (2010))

(X , fnm(q),C ) is an instance of CSP.

The proof uses Kazdan Lustig representation theory.

Is there a combinatorial proof?



A Combinatorial Framework, Part 1

I fλ(q) evaluated at a primitive kth root of unity is the number
of k rim hook tableaux of shape λ.

I The number of k rim hook tableaux of shape λ is the number
of k-tuples of SYT R = (R1, . . . ,Rk) (using one alphabet)
whose shapes are the k-quotient of λ.

I For rectangle nm, with k |m or k|n, the k-quotient is a k-tuple
of rectangles of the “same” size.

I The number of possible R which rectify to T (r(R) = T ) of
shape λ (plactic product of the Ri ) is a Littlewood-Richardson
coefficient cm,n,k,λ.

I Promotion p is a cyclic action of order mn/k on the quotient
R.



An Example

For m = 4, n = 6, k = 3.

c4,6,3,(4,3,1) = 2

R = (4 6, 1 3,
2 5
7 8

)

r(R) =
1 2 5 8
3 6 7
4

p(R) = (3 5, 2 8,
1 4
6 7

)



A Combinatorial Framework, Part 2

I A standard tableau T of rectangular shape mn fixed by mn/k
promotions is a k-banded standard tableau, having k bands of
size mn/k .

I If T is k-banded and R is the corresponding k-quotient of T ,
then the first band B1(T ) should be the rectification of R.

I The orbit of T (of size mn/k) should correspond to the orbit
of R under promotion.

I Corresponding to the rectification of any band Bi (T ) to
B1(T ) is a Littlewood-Richardson word. But the
Littlewood-Richardson coefficients are greater than the
number of possible bandings. Some of the
Littlewood-Richardson words do not correspond to banded
tableaux.



Another Example

m = 4, n = 6, k = 3, two tableaux, where each band rectifies to
B1(T ).
For this T , p8(T ) = T :

T =

1 2 5 8 5 8
3 6 7 2 7 2
4 1 3 1 3 5
4 6 4 6 7 8

For this T , p8(T ) 6= T :

T =

1 2 5 8 2 5
3 6 7 7 8 2
4 1 3 1 3 5
4 6 4 6 7 8



The Table Definition

I For m = 4, n = 6 and k = 3

I First column gives possible shape λ for B1

I Second column gives Littlewood-Richardson “flag” for
possible 3-banded tableaux

I Third column gives cm,n,k,λ from Part 1

I Last column gives fλ. Dotting the last two columns gives the
number of such 3-banded tableaux (840)



The Table

λ LR Flag c4,6,3,λ fλ
6 2 (1, 1, 1) 1 20
6 12 (1, 0, 1) 0 21
5 3 (1, 1, 1) 1 28

5 2 1 (1, 2, 1) 2 64
5 13 (1, 0, 1) 0 35
42 (1, 1, 1) 1 14

4 3 1 (1, 5, 1) 2 70
4 22 (1, 3, 1) 3 56

4 2 12 (1, 1, 1) 1 90
32 2 (1, 1, 1) 1 42
32 12 (1, 1, 1) 1 56
3 22 1 (1, 2, 1) 2 70

24 (1, 1, 1) 1 14



The Problem

Problem
Suppose α = nm and k divides n or m. Prove Rhoades’ result by
finding a bijection between k-banded SYT of shape α and k-rim
hook tableaux of shape α.



My Students

Here are three of the over 6000 undergraduates I have taught:



My Graduate Students



Thanks!



That’s All Folks
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