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This paper studies representation stability in the sense of Church and Farb for rep-

resentations of the symmetric group Sn on the cohomology of the configuration space

of n ordered points in Rd. This cohomology is known to vanish outside of dimensions

divisible by d − 1; it is shown here that the Sn-representation on the i(d − 1)st coho-

mology stabilizes sharply at n = 3i (resp. n = 3i + 1) when d is odd (resp. even). The

result comes from analyzing Sn-representations known to control the cohomology: the

Whitney homology of set partition lattices for d even, and the higher Lie representations

for d odd. A similar analysis shows that the homology of any rank-selected subposet

in the partition lattice stabilizes by n ≥ 4i, where i is the maximum rank selected.

Further properties of the Whitney homology and more refined stability statements for

Sn-isotypic components are also proven, including conjectures of J. Wiltshire-Gordon.

1 Introduction

Much has been written recently on representation stability, in papers of Church, Ellen-

berg, Farb, and others [3–7, 14, 27, 32, 38, 47, 50], particularly, for sequences of (complex,

finite-dimensional) Sn-representations {Vn}. Recall that the irreducible representations

Vλ of Sn are indexed by integer partitions λ = (λ1 ≥ · · · ≥ λ�) of n = |λ| :=∑i λi. Say that
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2 P. Hersh and V. Reiner

{Vn} stabilizes beyond n = n0 if the unique Sn-irreducible decomposition

Vn0 =
⊕

λ:|λ|=n0

(
Vλ
)⊕cλ

determines Vn for every n ≥ n0 as follows:

Vn =
⊕

λ:|λ|=n0

(
V (λ1+(n−n0),λ2,...,λ�)

)⊕cλ .
If n0 is minimal with the above property, say that {Vn} stabilizes sharply at n0.

Our starting point was the following celebrated result of T. Church on the nth

(ordered) configuration space of a topological space X

Conf(n,X) := {(x1, . . . ,xn) ∈ Xn : xi �= xj for 1 ≤ i < j ≤ n}.

The Sn-action permuting the coordinates in Xn restricts to Conf(n,X), giving rise to

Sn-representations on the cohomology H ∗(Conf(n,X)) := H ∗(Conf(n,X),Q) with rational

co-efficients (All cohomology groups in this paper will be taken with coefficients in Q.).

Theorem. ([3, Theorem 1]) Fix i ≥ 1. For a connected, orientable d-manifold X with

H ∗(X) finite-dimensional, the sequence of Sn-representations {Hi(Conf(n,X))} vanishes
unless d− 1 divides i, in which case it stabilizes beyond⎧⎨⎩n = 2i for d ≥ 3,

n = 4i for d = 2.
�

Our first main result improves this when X = Rd, giving the sharp onset of

stabilization.

Theorem 1.1. Fix integers d ≥ 2 and i ≥ 1. Then Hi(Conf(n,Rd)) vanishes unless d− 1

divides i, in which case it stabilizes sharply at⎧⎨⎩n = 3 i
d−1 for d ≥ 3 odd,

n = 3 i
d−1 + 1 for d ≥ 2 even.

In particular, Hi(Conf(n,R2)) stabilizes sharply at n = 3i+ 1. �

In fact, one has finer information about the onset of stabilization for individual Sn-

irreducible multiplicities in Hi(Conf(n,Rd)); see Theorem 5.1.
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There are several motivations to focus on the manifolds X = Rd in Church’s

result.

• His analysis for more general manifolds relies on the stability properties for

the case of X = Rd as a key input, via a result of Totaro [46]; see Section 11.1.

• One can identify Conf(n,R2) with the complement in Cn of the reflection

arrangement of type An−1, an Eilenberg–MacLane K(PBn, 1) space for the

pure braid group PBn on n strands. Thus H ∗(Conf(n,R2)) computes the group

cohomology H ∗(PBn;Q).

• The Sn-representation on H ∗(Conf(n,R2)) plays a role in counting polyno-

mial statistics on squarefree monic polynomials in Fq[x], the focus of further
work of Church et al. in [4], as well as work of Matchett-Wood and Vakil

in [47]. In fact, our results will give an improvement on the stable range of

H ∗(Conf(n,R2)) that leads to a betterpower-saving bound (see [4, Section 1.1])

for the convergence rate of these counts—see Remark 3.5.

The proof of Theorem 1.1 starts with the descriptions of the Sn-representations

on Hi(Conf(n,Rd)). For d = 2, this is known from work of Arnol’d [1] and of Lehrer

and Solomon [23]. For arbitrary d ≥ 2, such descriptions go back to work of Cohen

[8, Chapter III]; see also Cohen and Taylor [9]. We will use a formulation for d ≥ 2

closer to that of Sundaram and Welker [43]. The descriptions are in terms of higher

Lie characters Lieλ when d is odd, and the Whitney homology of the lattice �n of set

partitions of {1, 2, . . . ,n}when d is even; see Sections 2.3, 2.5, and 2.6 for definitions. The

key to stability is recasting the descriptions in the following form (This was pointed out

in the case d = 2 by Church and Farb [7, Section 4.1] using different language.):

Hi(d−1)(Conf(n,Rd)) ∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2i⊕
m=i+1

Mn(L̂ie
i

m) for d odd

2i⊕
m=i+1

Mn(Ŵ
i
m) for d even.

Here L̂ie
i

m, Ŵ
i
m are certain subrepresentations (These are the subrepresentations carried

by FI-generators of the FI-modules {Hi(Conf(n,Rd))} as in [6].) of higher Lie characters

and Whitney homology which are defined just after Proposition 2.8, and χ 	→ Mn(χ) is

this operation taking Sm-representations to Sn-representations:

Mn(χ) =
⎧⎨⎩
(
χ ⊗ 1Sn−m

) ↑SnSm×Sn−m if m ≤ n,

0 if m < n.
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4 P. Hersh and V. Reiner

Sequences of Sn-representations of the form {Mn(χ)} were shown already by Church

[3] to exhibit representation stability. We will show in Lemma 2.3 that the onset of

stability is controlled by bounds on |λ| + λ1 for λ arising in the irreducible expansion

χ = ∑λ cλχ
λ. The crux of our analysis is to bound the irreducible expansions of the

characters L̂ie
i

n, Ŵ
i
n; this is achieved in Section 4, utilizing symmetric functions and

plethysm (reviewed in Section 2.1).

It remains an open question (see Question 11.1) to give explicit irreducible

decompositions for L̂ie
i

n, Ŵ
i
n in general (Some data on their decompositions are given

in Tables A1 and A2 of Appendix 2.). However, in Theorem 1.3 below we do give explicit

irreducible decompositions for the sums L̂ien := ∑i L̂ie
i

n and Ŵn := ∑i Ŵ
i
n. It is here

that one discovers a close connection to derangements, that is, fixed-point free permu-

tations. It turns out (see Remark 2.9) that these Sn-representations have the following

properties:

• L̂ien, Ŵn have degree equal to the number dn of all derangements in Sn.

• L̂ie
i

n, Ŵ
i
n have degree d

n−i
n , the number of derangements in Sn with n−i cycles.

After writing down product generating functions for the Frobenius characters of

L̂ie
i

n, Ŵ
i
n in terms of power sum symmetric functions (Corollary 2.18), we use the gen-

erating functions in Section 6 to prove representation-theoretic lifts of a well-known

derangement recurrence

dn = ndn−1 + (−1)n for n ≥ 2.

Theorem 1.2. Letting L̂ie0 := Ŵ0 := 1S0 , L̂ie1 := Ŵ1 := 0 by convention, then for n ≥ 1,

L̂ien = L̂ien−1 ↑SnSn−1 +(−1)nεn, (1)

Ŵn = Ŵn−1 ↑SnSn−1 +(−1)nτn, (2)

where εn is the sign character of Sn, and τn is this virtual Sn-character of degree 1:

τn :=
⎧⎨⎩1Sn for n = 0, 1, 2, 3,

χ(3,1n−3) − χ(2,2,1n−4) for n ≥ 4.
�

While (2) appears to be new, the recurrence (1) appears implicitly inwork of Désarménien

and Wachs [10], who studied the symmetric function which is the Frobenius image of

L̂ien. Recurrence (1) is also equivalent, upon tensoring with εn, to a recurrence of Reiner
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and Webb [28, Proposition 2.2] for the Sn-representation on the homology Hn(M) of the

complex of injective words.

Theorem 1.2 also leads to the next result, giving irreducible decompositions for

L̂ien, Ŵn.

Theorem 1.3. One has the following irreducible decompositions

L̂ien =
∑
Q

χ shape(Q) (3)

Ŵn =
∑
Q

χ shape(Q) (4)

in which the sums in (3), (4), respectively, range over the set of desarrangement tableaux,

Whitney-generating tableaux Q of size n (defined in Section 7). �

In this paper, we also address two other conjectures on the structure of Ŵ
i
n,

due to John Wiltshire-Gordon, that were mentioned in [6, Section 3.1, p. 37]. One of his

conjectures is (6) below, an analogue of another derangement recurrence

dk
n = n(dk

n−1 + dk−1
n−2),

and will be proven in Section 8 as part of the following theorem.

Theorem 1.4. For n ≥ 2 and i ≥ 1, one has an isomorphism of Sn−1-representations

L̂ie
i

n ↓ ∼=
(
L̂ie

i−1
n−1 ↓ ⊕ L̂ie

i−1
n−2
)
↑, (5)

Ŵ
i
n ↓ ∼=

(
Ŵ

i−1
n−1 ↓ ⊕ Ŵ

i−1
n−2
)
↑, (6)

where ↑ and ↓ are induction (−) ↑Sn+1Sn and restriction (−) ↓SnSn−1 applied to Sn-

representations. �

He also made a second conjecture

Conjecture 1.5. (J. Wiltshire-Gordon) Fixing n ≥ 2, the Sn-representations {W •
n} admit

a cochain complex structure with cohomology only in degree n− 1, affording character

χ(2,1n−2). �

The following more precise version of this conjecture is discussed in Section 11.4,

and is proven in Appendix 1, joint with Steven Sam. The particular cochain complex
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6 P. Hersh and V. Reiner

Fn(A•) arising in Theorem 1.6 is related to the Orlik–Solomon algebra, as explained in

Section 11.4.

Theorem 1.6. When n ≥ 2, the Sn-cochain complex Fn(A•) has nonvanishing cohomol-

ogy only in degree n − 1, affording the character χ(2,1n−2), thus affirmatively answering

Conjecture 1.5. �

We will also show in Section 9 that Conjecture 1.5 predicts the correct Euler

characteristic:

Theorem 1.7. As virtual characters, for n ≥ 2 one has

∑
i≥0

(−1)iŴ
i
n = (−1)n−1χ(2,1n−2). �

While Theorem 1.7 already follows from Theorem 1.6, Section 9 is included

nonetheless because it gives a self-contained proof of Theorem 1.7, in contrast to the

proof of Theorem 1.6 in Appendix 1 which relies on techniques not appearing elsewhere

in this paper.

The above results on stability of the Whitney homology of �n suggest other

questions, for instance, the question of representation stability more generally for the

so-called rank-selected homology of �n, described next.

Sundaram [39, Proposition 1.9] related the ith Whitney homology WHi(P) of a

Cohen–Macaulay poset P with G-action to the rank-selected homology representations

βS(P), extensively studied in combinatorics; see Section 2.4 for the definition of Cohen–

Macaulay posets and βS(P). She observed that one has a G-module isomorphism

WHi(P) ∼= β{1,2,...,i−1}(P)⊕ β{1,2,...,i}(P).

Combining this with Theorem 1.1 implies that for fixed i, the Sn-representations

β{1,2,...,i}(�n) also stabilize sharply at n = 3i+1; see Corollary 5.4. More generally, for any

rank set S, we prove the following in Section 10.

Theorem 1.8. For a subset S of positive integers with max(S) = i, the sequence βS(�n)

stabilizes beyond n = 4i. Furthermore, when S = {i}, it stabilizes sharply at n = 4i. �

Section 11 collects further questions and remarks, includingConjecture 11.3 on the sharp

stabilization onset for βS(�n) given any fixed rank subset S.

 at U
niversity of M

innesota - T
w

in C
ities on M

ay 24, 2016
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Representation Stability for Configuration Spaces in R
d 7

2 Review

2.1 Symmetric functions and Sn-representations

Throughout we will make free use of the identification of (complex, finite-dimensional)

representations of a finite group G with their characters, and the fact that when G is the

symmetric group Sn, all such representations can be defined over Q. We will extensively

use the dictionary between characters of symmetric groups and symmetric functions.

This is realized by the Frobenius isomorphism R
ch−→ 	 of graded rings and (Hopf)

algebras. Here

R =
⊕
n≥0

Rn

in which Rn is the Z-lattice of (virtual) complex characters of the symmetric group Sn,

and

	 =
⊕
n≥0

	n

is the ring of symmetric functions (the symmetric power series of bounded degree in an

infinite variable set x1,x2, . . .) with Z coefficients, in which 	n is the set of homogeneous

degree n symmetric functions. See [15, Section 7.3], [24, Section I.7], [31, Section 4.7],

and [36, Section 7.18] for many of the properties of this isomorphism, some of which are

reviewed here.

The isomorphism R
ch−→ 	 can be defined in each degree ch : Rn → 	n. One first

defines the symmetric functions

pλ := pλ1 · · ·pλ�
,

for partitions λ = (λ1, . . . , λ�) of n, where pd := xd1 +xd2 +· · · is the power sum symmetric

function. Regarding a virtual complex character in Rn as a C-valued class function f on

Sn,

ch(f ) := 1

n!
∑
w∈Sn

f (w)pλ(w) =
∑

λ:|λ|=n
f (λ)

pλ

zλ

, (7)

where here

• λ(w) is the cycle type partition of w,

• f (λ) is the value of f on any permutation of cycle type λ, and
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8 P. Hersh and V. Reiner

• if λ = 1m12m2 · · · has mj parts of size j, then zλ := 1m1(m1!)2m2(m2)! · · · is
the size of the Sn-centralizer subgroup ZSn(w) for any permutation of cycle

type λ.

This map ch sends C-valued class functions on Sn to symmetric functions with C coef-

ficients that are homogeneous of degree n. It turns out to restrict to an isomorphism

Rn → 	n between virtual Sn-characters and degree n symmetric functions with Z

coefficients.

One has a distinguished Z-basis of Rn given by the irreducible characters {χλ}
indexed by the set of integer partitions λ = (λ1 ≥ . . . ≥ λ�) of n = |λ| :=∑�

i=1 λi. If λ� > 0,

then the length �(λ) := �. The isomorphism ch sends χλ from Rn to the Schur function

sλ lying in 	n. The induction product on characters

Rn1 × Rn2 −→ Rn1+n2
(χ1,χ2) 	−→ χ1 ∗ χ2 := (χ1 ⊗ χ2) ↑Sn1+n2Sn1×Sn2

is sent by ch to the usual product in 	, that is, ch(χ1 ∗ χ2) = ch(χ1)ch(χ2). In particular,

because each parabolic or Young subgroup Sλ := Sλ1×· · ·×Sλ�
⊂ Sn has a tensor product

description for its trivial and sign characters as

1Sλ
∼= 1Sλ1

⊗ · · · ⊗ 1Sλ�
,

εSλ
∼= εSλ1

⊗ · · · ⊗ εSλ�
,

the map ch sends the induced representations 1Sλ
↑SnSλ

and εSλ
↑SnSλ

to the products

hλ := hλ1 · · ·hλ�
,

eλ := eλ1 · · · eλ�
,

where hλ, eλ, respectively, are the complete homogeneous and elementary symmetric

functions indexed by λ and are defined as products of hd (resp. ed) where

hd =
∑

1≤i1≤i2≤···≤id
xi1xi2 · · ·xid ,

ed =
∑

1≤i1<i2<···<id
xi1xi2 · · ·xid .

In other words, hd is the sum of all monomials of degree d while ed is the sum of all

squarefree monomials of degree d.
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It is worth remarking that as λ runs through the set of partitions of n, the sets

{hλ}, {eλ} and the set {sλ} to be defined shortly all give Z-bases for the free Z-module

	n, while {pλ} gives a Q-basis for the extended C-vector space of all class functions on

Sn. We also record two standard identities [24, Chapter I, Section 2] for later use, with

conventions h0 = e0 = 1:

H(u) :=
∞∑
d=0

hdu
d =

∞∏
i=1

(1− xiu)−1 = exp

(∑
m≥1

pmum

m

)
, (8)

E(u) = H(−u)−1 :=
∞∑
d=0

edu
d =

∞∏
i=1

(1+ xiu) = exp

(
−
∑
m≥1

pm(−u)m

m

)
. (9)

We will also use the well-known identity

hn =
∑

λ:|λ|=n

pλ

zλ

(10)

that follows either from (8) or the fact that hn = ch(1Sn).

There are many ways to define the Schur function (See [36, Section 7.10] for the

combinatorial definition via column-strict tableaux.) sλ. One way is through either of the

Jacobi–Trudi or Nägelsbach–Kostka determinants that express sλ in terms of hn or en:

sλ = det(hλi−i+j)i,j=1,2,...,λt1 , (11)

sλ = det(eλti−i+j)i,j=1,2,...,λ1 . (12)

Here λt is the conjugate of λ, obtained by swapping rows and columns of the Ferrers

diagram:

λ = (4, 2, 1) = λt = (3, 2, 1, 1) = .

The involution on R that sends an Sn-character χ to the tensor product εSn ⊗ χ

corresponds to the fundamental involution 	
ω−→ 	 that swaps hn ↔ en and pn ↔

(−1)n−1pn for each n, along with swapping sλ ↔ sλt .

Branching and induction for Sn−1 ⊂ Sn ⊂ Sn+1 have a well-known symmet-

ric function interpretation [24, Examples I.5.3(c), I.8.26]: for an Sn-character χ with
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10 P. Hersh and V. Reiner

ch(χ) = f (p1,p2, . . .) one has

ch
(
χ ↓SnSn−1

)
= ∂

∂p1
ch(χ),

ch
(
χ ↑Sn+1Sn

)
= p1 · ch(χ).

(13)

The Pieri Rule expresses

sμhr =
∑

λ

sλ, (14)

where the sum is over all partitions λ for which λi+1 ≤ μi ≤ λi for all i.

The description of the Sn-representations on the cohomology of configuration

spaces in Rd, found in Section 2.3 makes crucial use of the plethysm operation on char-

acters and symmetric functions Rn1 × Rn2 −→ Rn1n2 , which we will denote (χ1,χ2) 	−→
χ1[χ2]. One way to describe it [24, Section I.8] is for genuine characters χi with i = 1, 2

of Sni-representations on vector spaces Ui for i = 1, 2. Then, their plethysm χ1[χ2] is the

character of an Sn1n2-representation induced up from the representation of the wreath

product Sn1 [Sn2 ] which is the normalizer subgroup within Sn1n2 of the product (Sn2)
n1 .

The representation to be induced is the one in which Sn1 [Sn2 ] acts on

U1 ⊗
(
U⊗n12

) = U1 ⊗ U2 ⊗ · · · ⊗ U2︸ ︷︷ ︸
n1 factors

by letting

• (Sn2)
n1 act componentwise on the tensor factors in U⊗n12 , and

• Sn1 simultaneously acts on U1, while permuting the tensor positions in U⊗n12 .

In terms of the symmetric functions f and g associatedwith χ1 and χ2 by the characteris-

tic map ch, the plethysm f [g] is the symmetric function obtained bywriting g =∑∞i=1 xα(i)

as a sum of monomials xα(i) = x
α
(i)
1

1 · xα
(i)
2

2 · · · , each with coefficient 1, and then

f [g] := f (x1,x2, . . .)|xi 	→xα(i) .

In particular, f = f [h1] = h1[f ]. We will later use a few plethysm facts; see, for example

[24, Section I.8]:

(f1f2)[g] = (f1[g])(f2[g]) (15)
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ω (f [g]) = ωn(f )[ω(g)] if g ∈ 	n (16)

sλ[g1 + g2] =
∑
μ⊆λ

sμ[g1]sλ/μ[g2]. (17)

In particular, since (11) and (12) show that hn = s(n) and en = s(1n), one deduces from (17)

that

hn[g1 + g2] =
n∑
i=0

hi[g1]hn−i[g2], (18)

en[g1 + g2] =
n∑
i=0

ei[g1]en−i[g2]. (19)

2.2 Representation stability

We start by rephrasing the definition from the introduction.

Definition 2.1. For λ = (λ1, λ2, . . . , λ�) and m ≥ 0, let λ+(m) := (λ1 +m, λ2, . . . , λ�). For

example,

λ = (4, 2, 1) =

will have

λ(+1) = (5, 2, 1) = , λ(+2) = (6, 2, 1) = , etc.

For virtual Sn-characters χ in Rn with χ =
∑

λ:|λ|=n
cλχ

λ, define χ(+m) in Rn+m via the

expansion

χ(+m) =
∑

λ:|λ|=n
cλχ

λ+(m).

The operation χ 	→ χ(+m) is simply the mth iterate of the operation χ 	→ χ(+1).

Say that a sequence of Sn-characters {χn} stabilizes beyond n0 if χn = χ
(+(n−n0))
n0

for n ≥ n0, and that {χn} stabilizes sharply at n0 if n0 is the smallest integer with the

above property. �

The following basic stability lemma is a variant of Hemmer’s [19, Lemma 2.3,

Theorem 2.4]. To state it, for a character χ in Rn0 , define a sequence of characters
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12 P. Hersh and V. Reiner

M(χ) := {Mn(χ)} via

Mn(χ) =
⎧⎨⎩χ ∗ 1Sn−n0 if n ≥ n0,

0 otherwise.
(20)

Equivalently, if ch(χ) = f , then

ch (Mn(χ)) =
⎧⎨⎩f · hn−n0 if n ≥ n0,

0 otherwise.
(21)

Lemma 2.2. For any partition μ, the sequence M(χμ) obeys this inequality

Mn+1(χμ) ≥ Mn(χ
μ)(+1), (22)

for n ≥ |μ|, with equality if and only if n ≥ |μ| + μ1. Consequently

• M(χμ) stabilizes sharply at n0 = |μ| + μ1, and more generally,

• any genuine character χ =∑μ cμχμ ≥ 0 has M(χ) stabilizing sharply at

n0 = max{|μ| + μ1 : cμ �= 0}. �

Proof. After proving the assertions in the first sentence, the rest follow easily.

The Pieri rule (14) says that for n ≥ |μ| one has Mn(χ
μ) =∑λ χλ in which λ runs

through the set, which we will denote here by L(n), of all partitions of n for which λ/μ is

a horizontal strip of size n− |μ|, that is, λ/μ is a skew shape whose cells lie in different

columns. For example, if μ = (7, 6, 3) then λ = (10, 6, 5, 1) shown below lies in L(n) for

n = |λ| = 22, and squares of the horizontal strip λ/μ are indicated with × (below the

first row) and ⊗ (in the first row):

λ = ⊗⊗⊗
××

×

(23)

The map λ 	→ λ(+1) that adds an extra ⊗ to the first row shown above gives an injection

L(n) ↪→ L(n + 1) which shows the inequality (22). The case of equality follows because

the elements λ of L(n+1) not in the image of this injection are those where the horizontal

strip λ/μ (of size n+ 1− |μ|) is confined within the first μ1 columns. Such λ exist if and

only if n+ 1− |μ| ≤ μ1, or equivalently, n < |μ| + μ1. �
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We need a refinement of Lemma 2.2 for stabilization of individual irreducible

multiplicities.

Lemma 2.3. For ν,μ partitions and n ≥ |μ|, one has

〈χ(n−|ν|,ν) , Mn(χ
μ) 〉Sn =

⎧⎨⎩1 if ν ⊆ μ, with μ/ν a horizontal strip, and n ≥ |ν| + μ1,

0 otherwise.
�

Proof. This is just another restatement of the Pieri rule as in the previous proof: the

partitions λ in L(n) in that proof biject with the ν ⊆ μ for which μ/ν is a horizontal strip

and n ≥ |ν| + μ1, via the inverse bijections ν 	→ λ = (n− |ν|, ν), and λ 	→ ν = (λ2, λ3, . . .).

The horizontal strip μ/ν occupies the columns of λ complementary to those occupied

by the horizontal strip λ/μ. One needs n ≥ |ν| + μ1, or n− |ν| ≥ μ1, so that the first row

of λ = (n− |ν|, ν) contains the first row of μ. �

Example 2.4. To illustrate the bijection in this proof, in (23) with μ = (7, 6, 3), λ =
(10, 6, 5, 1), one has ν = (6, 5, 1), so that μ/ν = (7, 6, 3)/(6, 5, 1) is the horizontal strip

filled with • ’s in this picture:

•
•

• •
. �

2.3 Cohomology of configurations of points in R
d

The combinatorial description of the cohomology of Conf(n,Rd) as an Sn-representation

is known. For d = 2, it follows from work of Arnol’d [1] and of Lehrer and Solomon [23].

For arbitrary d ≥ 2, following on work of Cohen [8, Chapter III] and Cohen and Taylor

[9], Sundaram and Welker [43] proved an equivariant version [43, Theorem 2.5] of the

Goresky–MacPherson formula [18, III.1.3 Theorem A], and used this to show that the

cohomology H ∗(Conf(n,Rd)) affords

• for d even, theWhitney homology of the set partition lattice (see Section 2.5),

and

• for d odd, the closely related higher Lie characters (see Section 2.6).

To state their result more precisely, we introduce a few definitions.
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14 P. Hersh and V. Reiner

Definition 2.5. A partition λ = (λ1, . . . , λ�) = 1m12m2 · · · withmj parts of size j has rank

rank(λ) :=
∑
k≥1

(λk − 1) =
∑
j≥1

(j − 1)mj. �

Definition 2.6. Let Cn be the subgroup 〈c〉 generated by an n-cycle c in Sn. The Lie

character of Sn is the induction of any linear character Cn
χζ−→ C× that sends c to a

primitive nth root of unity:

Lie(n) := χζ ↑SnCn . (24)

Denote by �n the symmetric function which is the Frobenius image of Lie(n), and by πn

the image of its twist by the sign:

�n := ch(Lie(n)),

πn := ch(εSn ⊗ Lie(n)) = ω(�n).

For a partition λ = 1m12m2 · · · of n havingmj parts of size j, define Sn-characters Wλ, Lieλ

as those having as Frobenius images the following symmetric functions:

ch(Lieλ) =
∏
j≥1

hmj
[�j], (25)

ch(Wλ) =
∏

odd j≥1
hmj
[πj]

∏
even j≥2

emj
[πj]. (26)

�

Theorem 2.7. [43, Theorem 4.4(iii)] Fix d ≥ 2 and i ≥ 0. Then Hi(Conf(n,Rd))

• vanishes unless i is divisible by d− 1, say i = j(d− 1),

• in which case, as Sn-representations,

Hj(d−1)(Conf(n,Rd)) ∼=
⎧⎨⎩Lie

j
n := ⊕λLieλ for d odd,

WHj(�n) := ⊕λWλ for d even,

where both direct sums above run over all partitions λ ofnhaving rank(λ) = j.

�

Wewish to reformulate this result in terms of the constructionM(−) fromDefini-

tion (20). Given a partition λ = 1m12m23m3 · · · of n, let λ̂ := 2m23m3 · · · denote the partition
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of n−m1 obtained by removing all of its parts of size 1. Also define

L̂ie
i
:=
⊕

λ

Lieλ,

Ŵ
i
:=
⊕

λ

Wλ,

with both sums running over all partitions λ having rank(λ) = i and no parts of size 1.

Although, these look potentially like infinite sums, they are finite due to the following

fact.

Proposition 2.8. A partition λ with no parts of size 1 and rank(λ) = i has

i+ 1 ≤ |λ| ≤ 2i. �

Proof. Note that λ = 2m23m3 · · · has �(λ) =∑j≥2mj ≤∑j≥2mj(j−1) = rank(λ) = i. Thus

�(λ) lies in the range [1, i], and hence |λ| = i+ �(λ) lies in the range [i+ 1, 2i]. �

Thus one has finer decompositions of L̂ie
i
, Ŵ

i
, illustrated in Tables A1 and A2 of

Appendix 2:

L̂ie
i

:=
2i⊕

m=i+1
L̂ie

i

m, where L̂ie
i

m :=
⊕

λ

Lieλ

Ŵ
i

:=
2i⊕

m=i+1
Ŵ

i
m, where Ŵ

i
m :=

⊕
λ

Wλ

(27)

with the rightmost sums running over λ with |λ| =m, no parts of size 1, and rank(λ) = i.

Remark 2.9. It is not hard to show using the definition of plethysm that for a partition

λ of n, both Lieλ and Wλ are representations induced up to Sn from one-dimensional

characters of the Sn-centralizer Zλ for a permutation wλ having cycle type λ; see Lehrer

and Solomon [23] for a discussion in the case of Wλ. Consequently, Lieλ and Wλ both

have degree equal to the index [Sn : Zλ], which is the number of permutations in Sn of

cycle type λ.

This now allows us to justify some assertions from the introduction about

derangements. A permutation w in Sn with cycle type λ is a derangement if and only

if λ has no parts of size 1. Also, rank(λ) = n− �(λ) where �(λ) is the number of cycles of

w. Thus
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16 P. Hersh and V. Reiner

• L̂ie
i
, Ŵ

i
have degree dn, the number of derangements in Sn, and

• L̂ie
i

n, Ŵ
i
n have degree d

n−i
n , the number of derangements in Sn with n−i cycles,

since

• Lieλ,Wλ have degree [Sn : Zλ], the number of permutations of cycle type λ. �

As mentioned in the introduction, one way to show representation stability is

via the construction χ 	→ Mn(χ).

Corollary 2.10. For any partition λ = 1m12m23m3 · · · of n, with λ̂ := 2m23m3 · · · , one has

Lieλ = Mn (Liêλ) ,

Wλ = Mn (Wλ̂) ,

and consequently

Hi(d−1)(Conf(n,Rd)) ∼=
⎧⎨⎩Mn

(
L̂ie

i
)

for d odd,

Mn

(
Ŵ

i
)

for d even.
�

Proof. Compare (25), (26) with (21), noting �1 = πn = h1, so hm1 [�1] = hm1 [π1] = hm1 . �

Example 2.11. As special cases of Ŵ
i
n, L̂ie

i

n from the introduction, one has

L̂ie
n−1
n = Lie(n),

Ŵ
n−1
n = εSn ⊗ Lie(n).

Thus for n ≤ 5, their irreducible expansions appear as the (i,n) = (n − 1,n) diago-

nal in Tables A1 and A2, respectively. Multiplicities larger than 1 first appear in the

decomposition of Lie(n) at n = 6:

Lie(6) = χ(5,1) + χ(4,2) + 2χ(4,1,1) + χ(3,3) + 3χ(3,2,1) + χ(3,1,1,1) + 2χ(2,2,1,1) + χ(2,1,1,1,1). �

2.4 Posets, Whitney homology, and rank-selection

Good references formuch of thismaterial include Stanley [37], Sundaram [39], andWachs

[48]. Given a finite partially ordered set (poset) P, the order complex of P, denoted �(P),

is the simplicial complex whose i-faces are (i + 1)-chains p0 < p1 < · · · < pi of compa-

rable poset elements. We often consider the (reduced) simplicial homology H̃∗(�(P)) =
H̃∗(�(P),Q) with coefficients in Q, regarded as a representation for any group G of poset
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automorphisms. Throughout we will make free use of the identification of (complex,

finite-dimensional) representations of a finite group G with their characters, and the

fact that when G is the symmetric group Sn, all such representations can be defined

over Q. In particular, we will use that the inner product 〈χ1,χ2〉G := 1
|G|
∑

g∈G χ1(g−1)χ2(g)

of two characters χ1,χ2 of G-representations V1,V2 gives the dimension of their inter-

twiner space HomG(V1,V2), so that when V1 is irreducible, 〈χ1,χ2〉G is the multiplicity of

V1 within V2.

Say that a finite poset P is graded if all of itsmaximal chains (namely its totally

ordered subsets which are maximal under inclusion) have the same length. For P a

finite graded poset having unique minimum element 0̂, let rank(x) be the length � of

all the maximal chains 0̂ = x0 < x1 < · · · < x� = x from 0̂ to x. Denote by �(x,y) the

order complex of the open interval (x,y) := {z ∈ P : x < z < y}, so that dim�(x,y) =
rank(y) − rank(x) − 2. When we speak of the simplicial homology of a poset P or of

an interval (u,v) in a poset P, we are always referring to the simplicial homology of

its order complex. Say that P is Cohen–Macaulay (over Q) if every interval (x,y) in

P has

H̃i(x,y) = 0 for i < rank(y)− rank(x)− 2.

It is known that the Cohen–Macaulay property is inherited when passing to

the rank-selected subposets PS := {p ∈ P : rank(p) ∈ S} of a graded Cohen–Macaulay

poset P for any subset S of possible ranks. For a group G of automorphisms of P, let

αS(P) denote theG-representation that is the permutation representation on themaximal

chains in PS induced by the G-action on P. Let βS(P) denote the virtual representation

defined by

βS(P) =
∑
T⊆S

(−1)|S−T |αT (P). (28)

The Hopf trace formula implies that βS(P) is also the virtual representation that is the

alternating sum of G-representations on the homology groups of PS. When P is a Cohen–

Macaulay poset, this second interpretation for βS(P) implies that βS(P) is the actual

G-representation on the top homology H̃|S|−1(PS) since all the other terms comprising the

virtual representation are 0. By inclusion–exclusion, one also has

αS(P) =
∑
T⊆S

βT (P). (29)
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18 P. Hersh and V. Reiner

Sundaram observed the following relation between the rank-selected homologies βS(P)

for initial subsets S = {1, 2, . . .} of ranks, and theWhitney homology, defined as follows:

WHi(P) :=
⊕
x∈P:

rank(x)=i

H̃∗(0̂,x).

Proposition 2.12. (Sundaram [39, Proposition 1.9]) For P any finite Cohen–Macaulay

graded poset with a bottom element, one has

WHi(P) = β{1,2,...,i}(P)+ β{1,2,...,i−1}(P). �

2.5 The lattice of set partitions

A set partition π = {B1, . . . ,B�} of {1, 2, . . . ,n} is a disjoint decomposition {1, 2, . . . ,n} =⊔�

i=1 Bi into sets Bi called the blocks of the partition. The set �n of all such partitions

is ordered by refinement: π ≤ σ if every block of σ is a union of blocks of π . This

partial order gives a well-studied ranked lattice, in which the unique minimum and

maximum elements 0̂, 1̂ of �n are the partitions with n blocks and 1 block, respectively.

The rank of a set partition π turns out to be the same as the rank of the number partition

λ = 1m12m2 · · · of n = |λ| giving its block sizes, that is, mi is the number of blocks of

size i:

rank(π) = rank(λ) =
∑
i≥1

mi(i− 1) = |λ| − �(λ). (30)

It is well-known that �n is Cohen–Macaulay of rank n − 1, and therefore the

open interval (0̂, 1̂) has only top homology H̃n−3(�n) non zero. Stanley [36] described its

Sn-representation.

Theorem 2.13. [36, Theorem 7.3] For n ≥ 1, the homology Sn-representation H̃n−3(�n)

is

εSn ⊗ Lie(n) = εSn ⊗ χζ ↑SnCn . �

More generally, Lehrer and Solomon [23] described its Whitney homology of �n, as

follows; see also Sundaram [39, Theorem 1.8].
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Theorem 2.14. For a partition λ = 1m12m2 · · · of n, the Sn-representation⊕
π∈�n with
block sizes λ

H̃∗(0̂,π)

is isomorphic to Wλ described earlier, with Frobenius characteristic given by (26). �

2.6 Higher Lie characters

The homology Sn-representation πn for the partition lattice is well-known (from work

by Witt, by Brandt, by Thrall, and by Klyachko) to have a close relation with the theory

of free Lie algebras, and higher Lie characters. We review this connection here, drawing

on expositions of Gessel and Reutenauer [16], Reutenauer [30, Chapter 8], Sundaram [39,

Introduction], Schocker [34], and Stanley [36, Exercise 7.89].

For V = Cn, the tensor algebra T(V) := ⊕d≥0Td(V) where Td(V) := V⊗d may be

considered the free associative algebra on n generators e1, . . . , en forming a C-basis for

V . It is also the universal enveloping algebra T(V) = U(L(V)) for the free Lie algebra

L(V), which is the Lie subalgebra of T(V) generated by T1(V) = V , using the usual Lie

bracket operation [x,y] := xy − yx for elements x,y in T(V). The GL(V)-action on V

extends to an action on T(V), preserving L(V), and respecting the graded C-vector space

decomposition L(V) =⊕j≥0 Lj(V) in which

L0(V) := C, L1(V) := V , L2(V) := [V ,V ],

and Lj(V) is the C-span of all Lie monomials bracketing j elements of V . Denote by S(U)

the symmetric algebra of a C-vector space U , that is, S(U) := ⊕d≥0Sd(U), where Sd(U) is

the dth symmetric power. Then, the Poincaré–Birkhoff–Witt vector space isomorphism

U(L) ∼= S(L) for a Lie algebra L here provides a GL(V)-equivariant isomorphism and

decomposition

T(V) = U(L(V)) ∼= S (L(V)) = S

⎛⎝⊕
j≥0

Lj(V)

⎞⎠ ∼= ⊕
(m1,m2,...)≥0

Sm1L1(V)⊗ Sm2L2(V)⊗ · · ·︸ ︷︷ ︸
Lλ(V):=

Definition 2.15. The GL(V)-representation Lλ(V) is the higher Lie representation

for λ. �

Theorem 2.16. Letting n := |λ|, so that V = Cn, the higher Lie representation Lλ(V) is

Schur–Weyl dual to the Sn-representation Lieλ from Definition 2.6: Lieλ is Sn-isomorphic
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20 P. Hersh and V. Reiner

to the multilinear component, or 1n-weight space in Lλ(V), the subspace on which a

matrix in GL(V) having eigenvalues x1, . . . ,xn acts via the scalar x1 · · ·xn. �

Equivalently, the trace of this same diagonal matrix acting on Lλ(V) can be

obtained from the symmetric function ch(Lieλ) in x1,x2, . . . by setting xn+1 = xn+2 =
· · · = 0.

2.7 Product generating functions

The formulas (25) and (26) have the following product generating function reformu-

lations that we will find useful. They appear in work of Sundaram [39, p. 249], [40,

Lemma 3.12], of Hanlon (There are small sign typos which need to be corrected in [22,

Equation (8.1)] to accord with (33).) [22, Equation (8.1)], and of Calderbank et al. [2, Corol-

lary 4.4] (see also Getzler [17, Theorem 4.5] for subsequent results in greater generality).

To state them, we first introduce for � ≤ 1 the Möbius function sum

a�(u) := 1

�

∑
d|�

μ(d)u
�
d . (31)

Theorem 2.17. In 	[[u]], one has the product formulas

L(u) :=
∑

λ

ch(Lieλ)u
�(λ) =

∑
n,i≥0

ch(Liein)u
n−i =

∏
�≥1

(1− p�)
−a�(u) (32)

W(u) :=
∑

λ

ch(Wλ)u
�(λ) =

∑
n,i≥0

ch(Wi(�n))u
n−i =

∏
�≥1

(
1+ (−1)�p�

)a�(−u)
. (33)

�

We also introduce “hatted” versions Ŵ(u), L̂(u) of the generating functions

W(u),L(u):

L̂(u) :=
∑

λ with no parts 1

ch(Lieλ)u
�(λ) =

∑
n,i≥0

ch(Ŵ
i
n)u

n−i (34)

Ŵ(u) :=
∑

λ with no parts 1

ch(Wλ)u
�(λ) =

∑
n,i≥0

ch(Ŵ
i
n)u

n−i. (35)

Corollary 2.18. In 	[[u]], one also has the product formulas

L̂(u) = L(u)

H(u)
= exp

(
−
∑
m≥1

pmum

m

)∏
�≥1

(1− p�)
−a�(u) , (36)
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Ŵ(u) = W(u)

H(u)
= exp

(
−
∑
m≥1

pmum

m

)∏
�≥1

(
1+ (−1)�p�

)a�(−u)
. (37)

�

Proof. Comparing Corollary 2.10 and (21) with the definition in (8) of H(u) gives

∑
n,i≥0

ch(Liein)u
n−i =

(∑
n≥0

hnu
n

)
·
(∑
n,i≥0

ch(L̂ie
i

n)u
n−i
)

L(u) = H(u) · L̂(u).

∑
n,i≥0

ch(Wi(�n))u
n−i =

(∑
n≥0

hnu
n

)
·
(∑
n,i≥0

ch(Ŵ
i
n)u

n−i
)

W(u) = H(u) · Ŵ(u),

giving the first equalities in (36) and (37). Theorem 2.17 and (9) give the second equalities.

�

Remark 2.19. Corollary 2.18 and its proof are modeled on an argument of Hanlon

and Hersh [21, pp. 118–119]. They give a product formula for the generating function∑
i ch(H (i)

n (M))ui recording the Sn-representations on the Hodge components H (i)
n (M) in

the homology Hn(M) of the complex of injective words, discussed in the introduction

and further in Remark 6.2. �

3 New Tools for Polynomial Characters

The goal of this section is Theorem 3.4 below, refining the discussion of polynomial

characters from Church et al. [6, Section 3.3], [4, Section 3.4]. We begin by reviewing this

notion.

Definition 3.1. A polynomial P = P(x1,x2, . . .) in Q[x1,x2, . . .] gives rise to a class

function χP called a polynomial character on Sn for each n, by setting

χP(w) := P(m1,m2, . . .)

if w has cycle type λ = 1m12m2 · · · , that is, w has mj cycles of size j. Define the degree

deg(P) by letting the variable xj have deg(xj) = j. �
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22 P. Hersh and V. Reiner

As pointed out in [4, Section 3.4], when working with polynomial characters, there is

a particularly convenient Q-basis for Q[x1,x2, . . .]. Specifically, since Q[x] has Q-basis

{(x
�

)}�≥0, one has for Q[x1,x2, . . .] a Q-basis {(X
λ

)} given by

(
X

λ

)
:=
(
x1

m1

)(
x2

m2

)
· · · ,

as λ = 1m12m2 · · · runs through all number partitions. Additionally, the subset {(X
λ

)
: |λ| ≤

d} gives a Q-basis for the subspace {P ∈ Q[x1,x2, . . .] : deg(P) ≤ d}.
The next result uses this basis to give a dictionary between polynomial char-

acters and symmetric functions. It will also be used to further analyze the stability

of χP .

Proposition 3.2. For a partition λ, consider the polynomial character χP of degree |λ|
corresponding to the Q-basis element P = (X

λ

)
of Q[x1,x2, . . .] as a class function on Sn.

Then one has

ch(χP) =

⎧⎪⎨⎪⎩
pλ

zλ

hn−|λ| for n ≥ |λ|,
0 for n < |λ|.

(38)

�

Proof. One calculates as follows:

ch (χP) =
∑
μ:
|μ|=n

χP(μ)
pμ

zμ

=
∑

μ=1n12n2 ···:
|μ|=n,
nj≥mj

pμ ·
∏
j≥1

(nj
mj

)
jnj (nj!) .

When n < |λ|, the sum is empty and hence ch(χP) vanishes. On the other hand, if n ≥ |λ|,
one can reindex the sum over μ = 1m12m2 · · · via μ̂ := 1n1−m12n2−m2 · · · , to obtain

ch (χP) =
∑
μ̂:

|μ̂|=n−|λ|

pλpμ̂

zλzμ̂

= pλ

zλ

∑
μ̂:

|μ̂|=n−|λ|

pμ̂

zμ̂

= pλ

zλ

hn−|λ|

using (10) in the very last equality. �

Corollary 3.3. For any polynomial P in Q[x1,x2, . . .], one can express its polynomial

character as χP = M
(∑

μ cμχμ
)
with cμ ∈ Q and each μ satisfying |μ| ≤ deg(P). �
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Proof. It suffices to show this assertion for the Q-basis elements P = (X
λ

)
. In this case,

Proposition 3.2 showed that χP = M(χ) where χ = ch−1
(
pλ

zλ

)
is a class function on Sn for

n = |λ| = deg(P). Hence χ =∑μ:|μ|=deg(P) cμχμ, as desired. �

This has an important consequence for the stability of polynomial characters,

allowing one to sometimes improve on the bound given in [4, Proposition 3.9].

Theorem 3.4. Fix P in Q[x1,x2, . . .].

(i) The polynomial character χP on Sn can be expressed as

χP =
∑

ν

dνχ
(n−|ν|,ν) for n ≥ 2deg(P),

with each ν having |ν| ≤ deg(P), and some dμ in Q.

(ii) If χ =∑μ cμχμ in which each μ has μ1 ≤ b, then

〈χP , Mn(χ) 〉Sn

becomes a constant function of n for n ≥ max{2deg(P), deg(P)+ b}. �

Proof. For assertion (i), note that by Lemma 2.2, Mn(χ
μ) has such an expansion of the

form
∑

ν dνχ
(n−|ν|,ν) inwhich each ν has |ν| ≤ |μ|, oncen ≥ |μ|+μ1. But then Proposition 3.3

expresses χP as a sum of χμ with |μ| ≤ deg(P), so that |μ| + μ1 ≤ 2|μ| ≤ 2deg(P). Thus,

once n ≥ 2deg(P), the assertion follows.

For assertion (ii), write χP =∑ν χ(n−|ν|,ν) with |ν| ≤ deg(P) as in assertion (i). Then,

Lemma 2.3 says that each term
〈
χ(n−|ν|,ν) , Mn(χ)

〉
Sn

is constant in n once n ≥ |ν|+b. Hence

all of them are constant once n ≥ deg(P)+ b. �

Remark 3.5. We explain here how this can be used to sharpen results of Church et al.

[4] on polynomial statistics over the set

Cn(Fq) := {monic squarefree f (T) of degree n in Fq[T]}.

A fixed polynomial P in Q[x1,x2, . . .] gives rise to a statistic on Cn(Fq) defined by P(f ) :=
[P(x1,x2, . . .)]xi=mi

if f (T) has mi irreducible factors in Fq[T] of degree i. Church et al.

discuss the following result at the end of [4, Section 1.1]:
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24 P. Hersh and V. Reiner

Theorem 3.6. This limit exists:

L := lim
n→∞

n∑
i=0

(−q)−i 〈χP , H
i(Confn(C))

〉
Sn

.

Furthermore, given constants K,C such that

〈
χP , H

i(Confn(C))
〉
Sn

is constant when n ≥ Ki+ C,

then the above limit L also estimates the average of the statistic P as follows:

q−n
∑

f∈Cn(Fq)

P(f ) = L+ O(q−
n
K ). �

They showed that
〈
χP ,Hi(Confn(C))

〉
Sn

stabilizes for n ≥ 2i+deg(P), which is of the form

n ≥ Ki + C where K = 2. We explain here why it stabilizes for n ≥ i + (2deg(P) + 1),

replacing the K = 2 with K = 1.

Start by taking d = 2 in Corollary 2.10 and (27) to see that Hi(Confn(C)) ∼= Mn(χ)

where χ is the sum of charactersWλ where λ is a partition having no parts of size 1 and

rank(λ) = i. Theorem 4.4(d) below then implies that χ =∑μ χμ having μ1 ≤ i+ 1 for all

μ in the sum. Finally, taking b = i+ 1 in Theorem 3.4 above shows that

〈
χP , H

i(Confn(C))
〉
Sn

is constant for n ≥ max{2deg(P), deg(P)+ i+ 1}. (39)

Thus it is constant when n ≥ Ki+ C for the constants K := 1 and C := 2deg(P)+ 1. �

4 Bounding the Higher Lie and Whitney Homology Characters

Theorem 2.7 expressedHi(Conf(n,Rd)) in the form of {Mn(χ)} for certain representations

χ . To apply Lemma 2.2 in determining the onset of stability {Mn(χ)}, one needs bounds

on the shapes λ appearing in the irreducible expansion χ =∑λ cλχ
λ.

We start by developing some simple tools for finding such bounds. For exam-

ple, the following standard partial order lets one compare characters or symmetric

functions.

Definition 4.1. Partially order Rn by decreeing χ1 ≤ χ2 when χ2− χ1 is the character of

a genuine, not virtual, Sn-representation, that is, the unique expansion χ2−χ1 =∑λ cλχ
λ

has cλ ≥ 0 for all partitions λ of n. In particular, 0 ≤ χ1 ≤ χ2 means that χ1 and χ2 are

characters of genuine representations, with χ1 a subrepresentation of χ2. Analogously
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partially order 	n by decreeing f1 ≤ f2 if f2− f1 is Schur-positive, that is, f2− f1 =∑λ cλsλ

with cλ ≥ 0. Thus χ1 ≤ χ2 if and only if ch(χ1) ≤ ch(χ2). �

Definition 4.2. Say that a virtual Sn-character χ is bounded by N if the unique expan-

sion χ =∑λ cλχ
λ has the property that λ1 ≤ N whenever cλ �= 0. Analogously, say that a

symmetric function f is bounded by N if its Schur function expansion f = ∑λ cλsλ has

λ1 ≤ N whenever cλ �= 0.

When N is smallest with the above property, say that χ or f is sharply bounded

by N .

Alternatively, a sharp bound for a symmetric function f is the largest power d1

on the variable x1 occurring among all monomials xd11 xd22 · · · appearing in f . �

Proposition 4.3. Boundedness in 	 enjoys these inheritance properties.

(a) If f1, f2 are bounded by N , then so is f1 + f2.
(b) If f ≥ g ≥ 0 and f is bounded by N , then so is g.

(c) If f1, f2 are bounded by N1,N2, then f1f2 is bounded by N1 + N2.

(d) If g ≥ 0 is bounded by N , and if f lies in 	n, then f [g] is bounded by nN . �

Proof. Assertions (a) and (b) are straightforward exercises in the definition of bound-

edness.

Assertion (c) arises either from the characterization of boundedness by highest

powers of x1 in symmetric functions, or from various versions of the Littlewood–

Richardson rule (e.g., [24, Section I.9], [36, Theorem A1.3.3]) for sμsν = ∑λ c
λ
μ,νsλ which

show that cλ
μ,ν �= 0 forces λ1 ≤ μ1 + ν1.

For assertion (d), note that it will follow by property (a) if we can show it in the

special case where f is any of the Z-basis elements {hλ}λ of 	n. Furthermore, note that

the special case where f = hλ = hλ1 · · ·hλ�
follows using (15) and part (c), if we can show

it in the special case where f = hn. To show it when f = hn, start with the assumption

g ≥ 0 and write g = ch(χ) where χ is the character of a genuine Sm-representation V .

Then note that

f [g] = hn[g] = ch
(
χ⊗n ↑SnmSn[Sm]

)
,

gn = ch
(
χ⊗n ↑Snm(Sm)n

)
,

and hence gn ≥ f [g](≥ 0) via the surjection of the corresponding CSnm-modules

CSnm ⊗C(Sm)n V
⊗n � CSnm ⊗CSn[Sm] V

⊗n
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26 P. Hersh and V. Reiner

sending 1 ⊗ v 	→ 1 ⊗ v. Thus gn is bounded by nN via part (c), so f [g] is also via

part (b). �

Proposition 4.3 helps us bound the factors appearing in the Definition (2.6) of

Lieλ,Wλ.

Theorem 4.4. For m ≥ 1, one has the following column bounds.

(a) All of hm[�n],hm[πn], em[�n], em[πn], are bounded by m(n− 1) if n ≥ 3.

(b) hm[�2] is sharply bounded by m.

(c) em[π2] is sharply bounded by m+ 1.

(d) Lieλ,Wλ are bounded by i, i + 1, resp. when λ has no parts of size 1, and

rank(λ) = i.

(e) Writing L̂ie
i
, Ŵ

i
as
∑

μ cμχμ, one has n0 = max{|μ| +μ1 : cμ �= 0} = 3i, 3i+ 1,

resp. �

Proof. Part (a) reduces, via Proposition 4.3(d), to the casem = 1, that is, showing �n,πn

are both bounded by n−1. To see this, note that χζ is the trivial character of Cn only for

n = 1, and the sign character of Cn only for n = 2. Thus for n ≥ 3, one has

〈
χζ , 1Sn ↓SnCn

〉 = 0 = 〈χζ , εSn ↓SnCn
〉
.

Frobenius reciprocity then shows that Lie(n) = χζ ↑SnCn has both �n = ch(Lie(n)) and πn =
ch(εSn ⊗ Lie(n)) bounded by n− 1.

Parts (b) and (c) follow from two identities of Littlewood [36, Exercise 7.28(c),

7.29(b)]:

hm[�2] = hm[e2] =
∑

λ

sλ, (40)

em[π2] = em[h2] =
∑

λ

sλ, (41)

where both sums are over partitions λ of 2m, but the first sum is over those having only

even column sizes, and the second sum over those having Frobenius notation of the form

λ = (α1 + 1 · · ·αr + 1|α1 · · ·αr). The first sum is bounded by m, and sharply so because

s(m,m) occurs within it; the second is bounded bym+ 1, sharply because s(m+1,1m) occurs

within it.

Part (d) for λ = 2m23m3 · · · reduces to the case where λ = imi has only one part

size, using the definitions (25) and (26) of Lieλ,Wλ, together with Proposition 4.3(c), and
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the additivity rank(λ) =∑i mi(i− 1) =∑i rank(imi). When λ = imi , the assertions follow

from part (a) for i ≥ 3, and parts (b) and (c) for i = 2.

For part (e), note that L̂ie
i
, Ŵ

i
are the sums of Lieλ,Wλ over all partitions λ of

rank i with no parts of size 1. Proposition 2.8 showed that all such λ have |λ| ≤ 2i.

Thus, the irreducibles χμ that can occur within the expansions of these Lieλ,Wλ have

|μ| = |λ| ≤ 2i. They also have μ1 ≤ i, i + 1, respectively, by part (d). Hence they satisfy

|μ| +μ1 ≤ 3i, 3i+ 1. The sharpness comes from parts (b) and (c), as λ = (2i) is a partition

of rank i, and

ch(Lie(2i)) = hi[�2] has n0 = 2i+ i = 3i,

ch(W(2i)) = ei[π2] has n0 = 2i+ (i+ 1) = 3i+ 1.
�

5 Proof of Theorem 1.1

Recall the statement of the theorem.

Theorem 1.1. Fix integers d ≥ 2 and i ≥ 1. Then Hi(Conf(n,Rd)) vanishes unless d− 1

divides i, in which case, it stabilizes sharply at⎧⎨⎩n = 3 i
d−1 for d odd,

n = 3 i
d−1 + 1 for d even.

In particular, Hi(Conf(n,R2)) stabilizes sharply at n = 3i+ 1. �

Proof. The vanishing assertion is part of Theorem 2.7. Using Corollary 2.10 to recast

the cohomology Hi(d−1)(Conf(n,Rd)) as Mn(L̂ie
i
),Mn(Ŵ

i
) when d is odd, even, it remains

to show that the latter Sn-representations stabilize sharply at 3i, 3i+1, respectively. But
this follows from Lemma 2.2 applied to L̂ie

i
, Ŵ

i
using Theorem 4.4(e). �

Theorem 1.1 can also be deduced from the following more precise result on the

stabilization as a function of n of individual irreducible multiplicities:

fi,ν(n) := 〈χ(n−|ν|,ν) , Hi(d−1)(Conf(n,Rd))
〉
Sn

.

Theorem 5.1. Fix i ≥ 0. Then fi,ν(n) vanishes unless |ν| ≤ 2i and becomes constant

when

n ≥ n0 :=
⎧⎨⎩|ν| + i for d odd,

|ν| + i+ 1 for d even.
�
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28 P. Hersh and V. Reiner

Proof. Let
∑

μ cμχμ be the irreducible expansion of L̂ie
i
, Ŵ

i
ford odd, even, respectively.

Then Corollary 2.10 shows that

fi,ν(n) =
∑

μ

cμ

〈
χ(n−|ν|,ν) , Mn(χ

μ)
〉 =∑

μ

cμ,

where Lemma 2.3 tells us that the last sum runs over all partitions μ with

• cμ > 0,

• ν ⊆ μ,

• μ/ν a horizontal strip,

• n ≥ |ν| + μ1.

For the vanishing, note cμ > 0 and Proposition 2.8 show |μ| ≤ 2i, hence ν ⊆ μ forces

|ν| ≤ 2i.

For the second assertion, note that as the cμ are nonnegative, the last sum

becomes constant as a function of n once n reaches the maximum of all |ν| + μ1 among

those μ having cμ �= 0 with μ/ν a horizontal strip. Theorem 4.4(d) implies cμ = 0 unless

μ1 ≤ i for d odd, or μ1 ≤ i+ 1 for d even. Thus the sum is constant for n ≥ |ν| + i when

d is odd, and for n ≥ |ν| + i+ 1 when d is even. �

Remark 5.2. Stabilization for the multiplicity of χ(n),χ(n−1,1) within the Whitney

homology of �n (relevant for d even) was noted already by Sundaram [39, Proposi-

tion 1.9, Corollary 2.3(i)], who observed that 〈χ(n) , WHi(�n) 〉 = 0 for n ≥ 2, and

〈χ(n−1,1) , WHi(�n) 〉 = 2 for n ≥ 3. �

Along similar lines, we next obtain an improvement of the stable range in [4,

Theorem 1], where Church, et al. showed
〈
χP , Hi(Conf(n,R2))

〉
Sn

is constant for n ≥
deg(P)+ 2i.

Theorem 5.3. Fix P = P(x1,x2, . . .) in Q[x1,x2, . . .]. Then the polynomial character χP on

Sn has
〈
χP , Hi(d−1)(Conf(n,Rd))

〉
Sn

constant for

n ≥
⎧⎨⎩max{2deg(P), deg(P)+ i} if d is odd,

max{2deg(P), deg(P)+ i+ 1} if d is even.
�

Proof. Since Corollary 2.10 expresses Hi(d−1)(Conf(n,Rd)) = Mn(χ), with χ = L̂ie
i
, Ŵ

i

for d odd, even, and Theorem 4.4(d) shows χ is bounded by i, i + 1 for d odd, even, the

result then follows directly from Theorem 3.4. �
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We close this section by observing the following consequence of Theorem 1.1.

Corollary 5.4. The rank-selected homology β{1,...,i}(�n) stabilizes sharply at n = 3i+ 1.

�

Proof. Induct on i, with trivial base cases i = 0, 1. Proposition 2.12 gives the expression

β{1,...,i}(�n) =WHi(�n)− β{1,...,i−1}(�n).

As WHi(�n) stabilizes sharply at n = 3i + 1 (Theorem 1.1) and β{1,...,i−1}(�n) stabilizes

beyondn ≥ 3(i−1)+1 = 3i−2 by induction, β{1,...,i}(�n) stabilizes sharply atn = 3i+1. �

6 Proof of Theorem 1.2

Recall the statement of the theorem.

Theorem 1.2. Letting L̂ie0 := Ŵ0 := 1S0 , L̂ie1 := Ŵ1 := 0 by convention, then for n ≥ 1,

L̂ien = L̂ien−1 ↑SnSn−1 +(−1)nεn,

Ŵn = Ŵn−1 ↑SnSn−1 +(−1)nτn,

where εn is the sign character of Sn, and τn is this virtual Sn-character of degree 1:

τn :=
⎧⎨⎩1Sn for n = 0, 1, 2, 3,

χ(3,1n−3) − χ(2,2,1n−4) for n ≥ 4.
�

Proof. We will work instead with the symmetric functions

κn := ch(L̂ien) =∑i ch(L̂ie
i

n) νn := ch(Ŵn) =∑i ch(Ŵ
i
n),

κ := κ0 + κ1 + κ2 + · · · ν := ν0 + ν1 + ν2 + · · · .
(42)

Abusing notation, let τn also denote the Frobenius image ch(τn) in 	n, that is, τn := hn =
s(n) for 0 ≤ n ≤ 3 and τn = s(3,1n−3) − s(2,2,1n−4) for n ≥ 4. The theorem then asserts

κ = p1κ + 1− e1 + e2 − e3 + · · · ,
ν = p1ν + 1− τ1 + τ2 − τ3 + · · · .

(43)

To show this, start by setting u = 1 in (37), giving

κ = L̂(1) = exp

(
−
∑
m≥1

pm
m

)∏
�≥1

(1− p�)
−a�(1) = 1

1− p1

∑
k≥0

(−1)kek, (44)
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30 P. Hersh and V. Reiner

ν = Ŵ(1) = exp

(
−
∑
m≥1

pm
m

)∏
�≥1

(
1+ (−1)�p�

)a�(−1) = 1+ p2

1− p1

∑
k≥0

(−1)kek. (45)

The last equality on each line applied the following consequence of (9) at u = −1

exp

(
−
∑
m≥1

pm
m

)
= 1− e1 + e2 − e3 + · · · =

∑
k≥0

(−1)kek,

along with these Möbius function calculations:

a�(1) = 1

�

∑
d|�

μ(d) =
⎧⎨⎩+1 if � = 1,

0 if � ≥ 2.

a�(−1) = 1

�

∑
d|�

μ(d)(−1)
�
d = 1

�

⎛⎜⎜⎜⎝ ∑
d|�

�
d even

μ(d)−
∑
d|�

�
d odd

μ(d)

⎞⎟⎟⎟⎠ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if � = 1,

+1 if � = 2,

0 if � ≥ 3.

Then (44) can be rewritten

(1− p1)κ = 1− e1 + e2 − e3 + · · · ,

which is equivalent to the first equation in (43). Meanwhile (45) can be rewritten

(1− p1)ν = (1− e1 + e2 − e3 + · · · )(1+ p2) = 1− e1 +
∑
n≥2

(−1)n(en + p2en−2). (46)

The identity (12) lets one identify the far right terms en + p2en−2 as τn for n ≥ 4:

τn = s(3,1n−3) − s(2,2,1n−4) = det

⎡⎢⎢⎣
en−2 en−1 en

1 e1 e2

0 1 e1

⎤⎥⎥⎦− det

[
en−2 en−1
e1 e2

]

= en + (e21 − 2e2)en−2 = en + p2en−2.

(47)

But one also has τ2 = h2 = e2+p2 and τ1 = h1 = e1, so (46) becomes the following identity,

equivalent to the second equation in (43):

(1− p1)ν = 1− τ1 + τ2 − τ3 + τ4 − · · · . �
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Remark 6.1. The authors thank S. Sam for pointing out the following more uniform

rephrasing of the definition for the symmetric function τn. One has

τn = ω
(
sn−2,1,1 − sn−2,2

)
,

for all n ≥ 0, not just n ≥ 4, if one broadens the definition of the Schur function sα to α

in Z� in a standard way via the Jacobi–Trudi determinant:

sα := det
(
hαi−i+j

)�
i,j=1 , where h0 := 1 and hi := 0 for i < 0.

See, for example Tamvakis [44, Sections 2.2 and 3.5]. This convention is consistent with

Bott’s vanishing theorem for cohomology of line bundles on flag manifolds (see, e.g.,

Weyman [49, Corollay 4.1.7]): setting ρ := (�− 1, �− 2, . . . , 1, 0), then sα = 0 unless there

is a partition λ and (unique)w in S� with α+ρ = w(λ+ρ), in which case sα = ε(w)sλ. �

Remark 6.2. As mentioned in the introduction, Désarménien andWachs [10] first stud-

ied the symmetric function denoted κn which appears in the above proof. It was later

noted by Reiner and Webb [28, Theorem 2.4] that ω(κn) is the Frobenius characteristic

of the Sn-representation on the homology Hn(M) of the complex of injective words. They

noted [28, Proposition 2.2] that it satisfies the following recurrence equivalent to (1):

ch(Hn(M)) = p1ch(Hn−1(M))+ (−1)nhn.

Hanlon and Hersh [21, Theorem 2.3] used the Eulerian idempotents in QSn

to further decompose the homology Hn(M) of the complex of injective words into a

so-called Hodge decomposition Hn(M) = ⊕n
i=1 H

(i)
n (M). The summands H (i)

n (M) are Sn-

representations having degree equal to the number of derangements in Sn with i cycles.

In fact, one can prove an isomorphismH (n−i)
n (M) ∼= εn⊗L̂ien−in by comparing their formula

[21, bottom of p. 118]

∑
i

ch(H (i)
n (M))ui = exp

(∑
m≥1

pm(−u)m

m

)∏
�≥1

(1+ (−1)�p�)
−a�(u)

with the product formula (37), and using ω(pm) = (−1)m−1pm. �

Remark 6.3. To further tighten the analogy between recurrences (1) and (2), note that

the sequence of symmetric functions {τn} in Theorem 1.2 shares the following property

with {en} (or {hn}): one has ∂

∂p1
τn = τn−1, using, for example, the expression τn = en+p2en−2
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appearing in (47). In particular, their corresponding virtual Sn-representations Tn :=
ch−1(τn) satisfy Tn ↓SnSn−1= Tn−1, and they all have (virtual) degree 1. �

7 Proof of Theorem 1.3

We next use Theorem 1.2 to derive an explicit irreducible expansion for Ŵn. An analo-

gous expansion is already known for the Désarménien–Wachs derangement symmetric

function κn and the homology Hn(M) of the complex of injective words discussed in

Remark 6.2. These expansions involve the notions of tableaux and ascents, which we

now recall.

Definition 7.1. A standard Young tableau Q of shape λ with |λ| = n is a filling of the

cells of the Ferrers diagram of λ with {1, 2, . . . ,n} bijectively, increasing left-to-right in

rows, and top-to-bottom in columns. Call i an ascent of Q if i+ 1 lies in a weakly higher

row than i in Q, or if i = n the size (For this convention, it helps to imagine Q extended

by entries n+ 1,n+ 2, ... at the end of its first row.) of Q. �

Example 7.2.

Q = 1 3 6 8
2 4 7
5

is a standard Young tableau of shape λ = (4, 3, 1) having ascents {2, 5, 7, 8} �

Definition 7.3. A desarrangement tableau is a standard tableau Q with even first

ascent (Wachs dubbed the permutations w having even first ascent desarrangements.

These are the permutations whose Robinson–Schensted recording tableau Q is a

desarrangement tableau as defined here.). �

Definition 7.4. A Whitney-generating tableau is a standard tableau Q that either has

size n ≤ 3 and one of the following forms

Q = ∅, Q = 1 2 , Q = 1 2
3

,

or has the restriction Q|{1,2,3,4} to its first four values taking one of the following forms⎧⎪⎨⎪⎩ T1 = 1 2
3
4

, T2 = 1 2 4
3

, T3 = 1 2
3 4

, T4 = 1 2 3
4

⎫⎪⎬⎪⎭
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with the following further restrictions in the cases Q|{1,2,3,4} = T3,T4:

(a) If Q|{1,2,3,4} = T3 then the first ascent (Recall from Definition 7.1 that n is

always an ascent of Q, so this first ascent exists.) k ≥ 4 is odd, that is, Q

contains the entries shown below for some odd k ≥ 5:

1 2 . . .

3 4 · · ·

5 · · · k+1

6

.

.

.

k−1

k

In particular, Q �= T3 itself.

(b) If Q|{1,2,3,4} = T4 then the first ascent (As in the previous footnote, this first

ascent exists.) k ≥ 4 is even, that is, Q contains the entries shown below for

some even k ≥ 4:

1 2 3 . . .

4 . . .

5 . . . k+1

.

.

.
.
.
.

k−1

k

�

Theorem 1.3. One has the following irreducible decompositions

L̂ien =
∑
Q

χ shape(Q),

Ŵn =
∑
Q

χ shape(Q)

in which the sums in (3), (4), respectively, range over the set of desarrangement tableaux,

Whitney-generating tableaux Q of size n. �
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34 P. Hersh and V. Reiner

That is, the desarrangement (resp.Whitney-generating) tableauxpredicts the sumacross

each row of Table A1 (resp. Table A2). Here are both kinds of tableaux up to size n = 5,

for comparison to Tables A1 and A2:

n Desarrangement tableaux of size n Whitney-generating tableaux of size n

0 ∅ ∅

1

2 1
2

1 2

3 1 3
2

1 2
3

4 1 3
2 4

1
2
3
4

1 3 4
2

1 3
2
4

1 2
3
4

1 2 3
4

1 2 4
3

5 1 3
2
4
5

1 3
2 4
5

1 3 4
2
5

1 3 4
2 5

1 2
3
4
5

1 2
3 5
4

1 2 5
3
4

1 2
3 4
5

1 2 3
4 5

1 3 4 5
2

1 3 5
2 4

1 3 5
2
4

1 3
2 5
4

1 5
2
3
4

1 2 3 5
4

1 2 4
3
5

1 2 4
3 5

1 2 4 5
3

Proof of Theorem 1.3. The theorem is equivalent to the following expansions for the

symmetric functions κn, νn defined in (42):

κn =
∑
Q

sshape(Q), (48)

νn =
∑
Q

sshape(Q) (49)

with the sums ranging over the desarrangement and Whitney-generating tableaux Q of

size n, respectively.
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It was shown by Désarménien and Wachs [10] and by Reiner and Webb [28,

Proposition 2.3] that

κn =
∑
Q

sshape(Q), or equivalently,

ch(Hn(M)) =
∑
Q

sshape(Q)t ,
(50)

whereQ runs over all standard Young tableaux of sizenwhose first ascent is even. Thus,

it only remains to prove the analogous expansion for Ŵn.

Let ν̃n be the sum on the right in (49). We will check that ν̃n = νn by induction on

n. The base cases where n ≤ 4 are easily checked. In the inductive step for n ≥ 5, one

need only check that ν̃n satisfies the recurrence from Theorem 1.2, that is

ν̃n = p1ν̃n−1 + (−1)nτn. (51)

By the special case of the Pieri rule (14) for multiplying a Schur function sλ by p1(= s(1)),

one wants to show that if one adds a new entry n to all theWhitney-generating tableaux

of size n − 1, in all possible corner cell locations, one obtains a set of tableaux (call it

Tn) that almost contains exactly one copy of each Whitney-generating tableaux of size

n. The exceptions come from considering these two families of tableaux, A(n) for n ≥ 3,

and B(n) for n ≥ 4:

A(n) := 1 2 3

4

5

.

.

.

n−1

n

B(n) := 1 2

3 4

5

.

.

.

n−1

n

.

Note that A(n)|{1,2,3,4} = T4, that B(n)|{1,2,3,4} = T3, and that sshape(A(n)) − sshape(B(n)) = τn. We

explain here why the (−1)nτn term in the theorem exactly accounts for the discrepancy

resulting from these exceptions.

First assume n is even and at least 4. Then B(n − 1) is Whitney-generating,

but adding n to the bottom of its first column produces B(n) which is not Whitney-

generating. However, removing B(n) from the set Tn and replacing it with A(n) produce
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36 P. Hersh and V. Reiner

a set Tn \{B(n)}∪{A(n)} that has eachWhitney-generating tableau of size n exactly once.

This replacement models adding τn.

Next assume n is odd and at least 5. Then A(n − 1) is Whitney-generating, but

addingn to the bottomof the first columnofA(n−1)producesA(n)which is notWhitney-

generating. Similarly to the previous case, removing A(n) from the set Tn and replacing

it with B(n) produce a set Tn \ {A(n)} ∪ {B(n)} that has each Whitney-generating tableau

of size n exactly once. This replacement models subtracting τn.

This shows that ν̃n satisfies the recurrence (51), completing the proof of the

theorem. �

8 Proof of Theorem 1.4

Recall the statement of the theorem.

Theorem 1.4. For n ≥ 2 and i ≥ 1, one has an isomorphism of Sn−1-representations

L̂ie
i

n ↓ ∼=
(
L̂ie

i−1
n−1 ↓ ⊕ L̂ie

i−1
n−2
)
↑,

Ŵ
i
n ↓ ∼=

(
Ŵ

i−1
n−1 ↓ ⊕ Ŵ

i−1
n−2
)
↑,

where ↑ and ↓ are induction (−) ↑Sn+1Sn , restriction (−) ↓SnSn−1 applied to Sn-representations.

�

Recall from (13) that ↓,↑ correspond via the Frobenius map ch to the operations

of ∂

∂p1
and multiplying by p1 on symmetric functions. We will prove Theorem 1.4 there-

fore, by applying ∂

∂p1
to (36), (37). To this end, extend ∂

∂p1
as an operator on 	 to one on

	[[u]] via

∂

∂p1

∑
n

fnu
n :=

∑
n

(
∂

∂p1
fn

)
un.

Proof of Theorem 1.4. We give the proof for the second recurrence in the theorem by

applying ∂

∂p1
to Ŵ(u); the proof of the first recurrence is exactly the same using L̂ie(u)

instead.

Recall that (37) factors Ŵ(u) = H(u)−1W(u) where

H(u)−1 = exp
(
−∑m≥1

pmum

m

)
= exp(−p1u) · exp

(
−∑m≥2

pmum

m

)
W(u) = ∏

�≥1
(
1+ (−1)�p�

)a�(−u) = (1− p1)
−u ·∏�≥2

(
1+ (−1)�p�

)a�(−u)
.
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These expressions show that

∂H(u)−1

∂p1
= −u · H(u)−1,

∂W(u)

∂p1
= u

1− p1
·W(u),

and hence by the Leibniz rule applied to Ŵ(u) = H(u)−1W(u) one has

∂Ŵ(u)

∂p1
= H(u)−1

∂W(u)

∂p1
+ ∂H(u)−1

∂p1
W(u)

= u

1− p1
· H(u)−1W(u)− u · H(u)−1W(u)

= up1

1− p1
Ŵ(u).

From here, an easy algebraic manipulation reformulates this as follows:

∂Ŵ(u)

∂p1
= p1

∂Ŵ(u)

∂p1
+ up1Ŵ(u). (52)

This is an identity in 	[[u]]. Extracting terms of appropriate degree from (52), that is,

taking the 	n homogeneous component within the coefficient of un+1−i, yields

∂

∂p1
ch(Ŵ

i
n+1) = p1 · ∂

∂p1
ch(Ŵ

i−1
n )+ p1 · ch(Ŵ

i−1
n−1), (53)

which is equivalent to the assertion of the theorem via (13). �

9 Proof of Theorem 1.7

Recall the statement of the theorem.

Theorem 1.7. As virtual characters, for n ≥ 2 one has∑
i≥0

(−1)iŴ
i
n = (−1)n−1χ(2,1n−2). �

Proof. Setting u = −1 in Corollary 37, and noting a�(1) = 1
�

∑
d|� μ(d) = 0 for � ≥ 2 gives

−Ŵ(−1) =
∑
n≥0

(∑
k≥0

ch(Ŵ
k
n)(−1)n−1−k

)
= − exp

(
−
∑
m≥1

pm(−1)m

m

)∏
�≥1

(
1+ (−1)�p�

)a�(1)

= − exp

(∑
m≥1

(−1)m−1pm
m

)
(1− p1).
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38 P. Hersh and V. Reiner

Applying (9) at u = 1, and noting that p1 = e1, this last expression equals

(1+ e1 + e2 + · · · )(e1 − 1) = −1+ (e1 − e1)+ (e1e1 − e2)+ (e1e2 − e3)+ (e1e3 − e4)+ · · ·
= −1+

∑
n≥2

s(2,1n−2),

where the last step applied (12) to rewrite e1en−1 − en = s(2,1n−2) for n ≥ 2. �

In addition to Theorem 1.7, we point out a simple fact about the Sn-characters

{Ŵi
n}n−1i=1 closely related to Conjecture 1.5; it follows, for example, from Sundaram [39,

Corollary 2.3(ii)].

Proposition 9.1. For n ≥ 2 one has

〈χ(2,1n−2) , Ŵ
i
n 〉 =

⎧⎨⎩0 for 0 ≤ i ≤ n− 2,

1 for i = n− 1.

Thus, any cochain complex (Ŵ
•
n,d) would have one copy of χ(2,1n−2) in the homology

Hn−1(Ŵ
•
n). �

This unique copy of χ(2,1n−2) inside πn predicted by Proposition 9.1 is distin-

guished in at least two ways. On one hand it is the top filtration factor in Reutenauer’s

derived series for the free Lie algebra, as discussed in Reutenauer [29] and Sundaram

and Wachs [42, p. 951].

On the other hand, Lehrer and Solomon [23]modelWHi(�n) via theOrlik–Solomon

algebra of type An−1, that is, the quotient A(n) = E/I of an exterior algebra E on

generators {aij}1≤i<j≤n, by the ideal I having generators

aijaik − aijajk + aikajk = 0 for 1 ≤ i < j < k ≤ n.

This gives a skew-commutative graded algebra A = ⊕n−1
i=0 A

i, carrying an Sn-

representation defined by w(eij) = ew(i),w(j), and for which WHi(�n) ∼= Ai. In particular,

An−1 ∼= πn. It is then not hard to show that the images of these n monomials

m(i) := a1,ia2,i · · ·ai−1,iai,i+1,ai,i+2 · · ·ai,n−1ai,n for 1 ≤ i ≤ n, (54)

satisfy a single relation
∑n

i=1(−1)im(i) = 0, and span an (n − 1)-dimensional Sn-stable

subspace of An−1, carrying the unique copy of χ(2,1n−2) predicted by Proposition 9.1.
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10 Proof of Theorem 1.8

Recall the statement of the theorem.

Theorem 1.8. For a subset S of positive integers with max(S) = i, the sequence βS(�n)

stabilizes beyond n = 4i. Furthermore, when S = {i}, it stabilizes sharply at n = 4i. �

Webreak this into two statements, Theorem 10.1 and Proposition 10.2 below, addressing

αS,βS simultaneously.

Theorem 10.1. For S ⊂ {1, 2, . . . ,n−2}with i = max(S), both {αS(�n)}, {βS(�n)} stabilize
beyond n = 4i. �

See Sundaram [41, Section 5], as well as Hanlon–Hersh [20, Theorem 2.5], Stanley [37,

p. 152], and Sundaram [39, Remark 4.10.2], for some related stability results on

αS(�n),βS(�n).

Proof of Theorem 10.1. Since (28) expresses βS(�n) as an alternating sum of αT (�n)

with max(T) ≤ max(S), it suffices to prove the desired stability bound for αS(�n) for

each S. Since αS(�n) is the Sn-permutation representation on the Sn-orbits of chains c

passing through the rank set S, we are further reduced to understanding each of the

transitive coset representations 1G ↑SnG where G := StabSn(c), and showing that they

stabilize beyond n = 4i.

To this end, choose a representative chain c within each Sn-orbit so that the

top element π at rank i in c has as the union of its nonsingleton blocks some initial

segment ofn0 elements {1, 2, . . . ,n0}, alongwith singleton blocks {n0+1}, {n0+2}, . . . , {n−
1}, {n}. It follows from Proposition 2.8 that n0 ≤ 2i because rank(π) = i. Restricting π

to {1, 2, . . . ,n0} gives an element π0 within the subposet �n0 , where here we consider

the partition lattices as a tower �1 ⊂ �2 ⊂ �3 ⊂ · · · , with �n included within �n+1
as the subset of partitions having {n + 1} as a singleton block. Then the entire chain

c in �n similarly restricts to a chain c0 in �n0 , visiting the same rank set S, for which

G = StabSn(c) = G0 × Sn−n0 where G0 := StabSn0
(c0). Hence

1G ↑SnG ∼= Mn(χ) where χ := 1G0 ↑
Sn0
G0

.

As an Sn0-character, χ is trivially bounded by n0, and expands into irreducibles χλ with

|λ| = n0. Hence, Lemma 2.2 shows Mn(χ) stabilizes beyond n = n0 + n0 ≤ 2 · 2i = 4i. �
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40 P. Hersh and V. Reiner

The next result shows that, in the worst case for S, the bound of Theorem 1.8 is

tight.

Proposition 10.2. For 1 ≤ i ≤ n−2, both α{i}(�n),β{i}(�n) stabilize sharply at n = 4i. �

Proof. Since (29) shows α{i}(�n) = β{i}(�n)+ χ(n), the two representations will stabilize

sharply at the same value of n, and we need only prove the assertion for α{i}(�n). Similar

to the analysis in the previous proof, α{i}(�n) is a sum of representations 1 ↑SnStabSn (π) for

Sn-orbits of set partitions π in �n having rank i. In light of Theorem 10.1 we need only

find one such set partition π0 for which 1 ↑SnG , where G := StabSn(π0), stabilizes sharply

at n = 4i.

We claim that any π0 whose block size number partition is (2i, 1n−2i) will do the

trick. To see this, note that, by the definition of plethysm given in Section 2.1, any such

π0 has

1G ↑SnG ∼= 1Si [1S2 ] ∗ 1Sn−2i = Mn(1Si [1S2 ]).

On the other hand, applying ω to (40) and using (16) give the expansion

ch(1Si [1S2 ]) = hi[h2] =
∑

λ

sλ

as λ runs through all partitions of 2iwith all even parts. Thismeans that it is bounded by

2i, and sharply so because the single row λ = (2i) occupies 2i columns. Thus, Lemma 2.2

shows that 1 ↑SnG stabilizes sharply at n = 4i. �

Conjecture 11.3 below suggests for each S the sharp onset of stabilization for

βS(�n).

Remark 10.3. Theorem 1.8 does not preclude the possibility for individual irreducible

multiplicities
〈
χ(n−|ν|,ν) , βS(�n)

〉
Sn

for fixed S to stabilize sooner than n ≥ 4max(S). �

11 Further Questions and Remarks

11.1 Cohomology of configuration spaces in R
d need not stabilize fastest

Church’s main tool in [3] was the spectral sequence for the inclusion Conf(n,X) ↪→ Xn,

converging to H ∗(Conf(n,X)), and in particular, Totaro’s description [46] of its E2-page.

Totaro noted that H ∗(Conf(n,Rd)) for configurations of points in Rd is Sn-isomorphic to
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the p = 0 column E0,∗
2 (Conf(n,X) ↪→ Xn) on the E2-page, regardless of the choice of X ;

see [46, Lemma 1].

For this reason, the authors had wondered whether if, after fixing i ≥ 1,

among all connected orientable d-manifolds X with dimQ H ∗(X) < ∞, the cohomology

H ∗(Conf(n,X)) stabilizes earliest for X = Rd. They thank J. Wiltshire-Gordon for point-

ing out that this fails already when i = 1 with d = 2 when X is a surface of Genus 1,

that is, a two-dimensional torus. Here a direct calculation shows that the two filtration

factors E1,0
∞ and E0,1

∞ for H1(Conf(n,X)) have

• E0,1
∞ = ker

(
E0,1
2

d2→ E1,2
2

)
vanishing for n ≥ 2, and

• E1,0
∞ = H1(Xn) = M(χ(1) ⊕ χ(1)), stabilizing sharply at n = 2.

Thus H1(Conf(n,X)) stabilizes at n = 2, while H1(Conf(n,R2)) stabilizes (sharply) at

n = 4.

11.2 Tableau model for L̂ie
i
n, Ŵ

i
n?

Question 11.1. Can one refine the tableaumodels in Theorem 1.3, for the Sn-irreducible

decomposition of L̂ien, Ŵn, so as to give a tableau model for each L̂ie
i

n, Ŵ
i
n individually?

�

In other words, can one model each entry of Tables A1 and A2 via shapes of tableaux,

not just the sum across each row? Perhaps the constraints provided by Theorems 1.5

and 1.7 can help in guessing such a model.

Question 11.1 would essentially be answered for both L̂ien, Ŵn if one had

a solution to a more basic question that goes back to Thrall [45]; see also [36,

Exercise 7.89(i)]:

What is the explicit Schur function expansion of each ch(Lλ), that is, the GL(V)-

irreducible decomposition of each higher Lie representation Lλ(V)?

An answer to Question 11.1 would help to address the following question,

suggested by computer data. Recall that Theorem 5.1 predicts

fi,ν(n) := 〈χ(n−|ν|,ν) , Hi(d−1)(Conf(n,Rd))
〉
Sn

becomes a constant in n for n ≥ |ν| + i (d odd) or n ≥ |ν| + i+ 1 (d even).
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42 P. Hersh and V. Reiner

Question 11.2. For ν with |ν| ≥ 2, is there a threshold value i0(ν) with the property that

for every i ≥ i0(ν), regarding fi,ν(n) as a function of n, it stabilizes sharply at n0 = |ν| + i
for d odd, and sharply at n0 = |ν| + i+ 1 for d even. �

11.3 Sharp stability for βS(�n)?

Some preliminary analysis of βS(�n) led us to make the following conjecture.

Conjecture 11.3. Given a subset S ⊂ {1, 2, . . . ,n−2}with i = max(S), the rank-selected

homology Sn-representation βS(�n) stabilizes sharply at n = 4i− (|S| − 1). �

This would be consistent with the two extreme cases where |S| = 1 or |S| = i:

• When S = {i}, Theorem 1.8 showed βS(�n) stabilizes sharply at n = 4i.

• When S = {1, 2, . . . , i}, Corollary 5.4 showed βS(�n) stabilizes sharply at n =
3i+ 1.

11.4 A precise version of Conjecture 1.5

The Orlik–Solomon algebraA =⊕n−1
i=1 A

i, whichwas discussed following Proposition 9.1,

in conjunction with the Sn-module isomorphism WHi(�n) ∼= Ai, also suggested a sharp-

ening of Wiltshire-Gordon’s Conjecture 1.5. There is a well-studied cochain complex

structure (A•,d) on A

A• = (A0 d→ A1 d→ · · · d→ An−2 d→ An−1)

whose differential dmultiplies by an element
∑

1≤i<j≤n cijaij in A
1. This complex is exact

whenever the coefficients cij are chosen so that
∑

1≤i<j≤n cij lies in C×; see, for example,

Dimca and Yuzvinsky [11, Section 5]. Choosing cij = 1 for all i, j makes d into an Sn-

equivariant cochain complex. One also obtains an Sn-stable cochain complex structure

on Ŵ
•
n as the subcomplex at the bottom of the following decreasing filtration:

A• = F0(A
•) ⊃ F1(A

•) ⊃ · · · ⊃ Fn−1(A•) ⊃ Fn(A
•) ∼= Ŵ

•
n, (55)

where Fp(A•) is the span of the monomials ai1,j1 · · ·ai�,j� for which |{i1, j1} ∪ · · · {i�, j�}| ≥ p.

This perspective leads to a natural candidate for a cochain complex of the type

suggested by Conjecture 1.5 of Wiltshire-Gordon, namely the one that appears in The-

orem 1.6. Indeed it is natural to approach Conjecture 1.5 using the known exactness
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of (A•,d) together with the spectral sequence associated with the filtration (55). After

posting this paper to the arXiv with Theorem 1.6 stated as a conjecture, the authors

together with Steven Sam were able to complete a proof of the theorem, contained here

in Appendix 1.
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Appendix 1. Proof of Theorem 1.6 (Joint with Steven Sam)

A.1 The Orlik–Solomon algebra

Recall from Section 9 that the Orlik–Solomon algebra of type An−1 is the quotient

A(n) := E/I (A.1)

of an exterior algebra E on generators {aij}1≤i<j≤n (for convenience, we will write a{i,j} to

mean either aij or aji depending onwhether i < j or j < i), by the ideal I having generators

aijaik − aijajk + aikajk = 0 for 1 ≤ i < j < k ≤ n.

This gives a skew-commutative graded algebra A(n) =⊕n−1
i=0 A

i. One has a finer grading

on A(n) indexed by set partitions π in �n (see [26, Section 3.1], [11, Section 2.3]) that

comes from the direct sum decomposition E = ⊕π∈�n
Eπ where Eπ is the C-span of all

monomialsai1j1 · · ·ai�j� forwhich the graph on {1, 2, . . . ,n}with edge set {{i1, j1}, . . . , {i�, j�}}
has connected components given by the blocks of the set partition π . One checks that

the ideal I decomposes as a direct sum I = ⊕π∈�n
(I ∩ Eπ ), and hence A(n) inherits the
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same decomposition

A(n) =
⊕
π∈�n

Aπ where Aπ := Eπ/(I ∩ Eπ ),

WHi(�n) ∼= Ai =
⊕

π∈�n with
n−i blocks

Aπ .

Each of the above direct sum decompositions also is compatible with the Sn-

representation defined byw(aij) = a{w(i),w(j)}. Multiplication by the Sn-invariant element∑
1≤i<j≤n aij in A1 gives a differential d on A(n) = A• which is Sn-equivariant. As men-

tioned earlier, this differential on A• is exact when n ≥ 2 because its coefficient sum is(n
2

)
, which is non zero in C; see, for example, Dimca and Yuzvinsky [11, Section 5].

A.2 The filtration and its spectral sequence

Recall also the decreasing filtration (55)

A• = F0(A
•) ⊃ F1(A

•) ⊃ · · · ⊃ Fn−1(A•) ⊃ Fn(A
•) ∼= Ŵ

•
n

in which Fp(A•) is the C-span of {ai1,j1 · · ·ai�,j� : |{i1, j1} ∪ · · · ∪ {i�, j�}| ≥ p}, so that

Fp(A
•) :=

⊕
π∈�n with at most
n−p singletons

Aπ ,

Ŵ
•
n = Fn(A

•) ∼=
⊕

π∈�n with
no singletons

Aπ , where Ŵ
i
n
∼=

⊕
π∈�n with
n−i blocks

and no singletons

Aπ .

Associated with the decreasing filtration of A• is a spectral sequence (see, e.g., Spanier

[35, Section 9.4, p. 493]) with differentials Ep,q
r

δr−→ Ep+r,q−r+1
r , converging to Ep,q

∞ = 0 since

A• is exact. We next analyze the first two pages E0,E1 in this spectral sequence.

A.3 The E0 and E1-pages

The spectral sequence starts on its E0 page with

Ep,q
0 = Fp(A

p+q)/Fp+1(Ap+q) ∼=
⊕

π∈�n with
n−(p+q) blocks
n−p singletons

Aπ ∼=
⊕

S⊂{1,2,...,n}:
|S|=n−p

⊕
π∈�n with

singleton blocks S and
−q nonsingleton blocks

Aπ , (A.2)

and vertical differentials δ0 induced from d on A•. One can check that the condition

in (A.2) that π lies in �n with n − (p + q) blocks, and n − p singletons forces Ep,q
0 = 0
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unless p ≥ 0 and q ≤ 0 (so the terms lie in the second quadrant), and that (If p ≥ 1, then

there are some nonsingleton blocks, namely −q of them, and they partition the p many

nonsingleton elements, so one has 1 ≤ −q ≤ p/2.) −1 ≥ q ≥ − p
2 for p ≥ 1.

Example A.1. For n = 6, abbreviating Fp/Fp+1(A�) := Fp(A�)/Fp+1(A�), the E0-page is

q\p 0 1 2 3 4 5 6

0 F0/F1(A0) · · · · · ·

−1 · · F2/F3(A1) F3/F4(A2) F4/F5(A3) F5/F6(A4) F6(A5)

−2 · · · · F4/F5(A2)

��

F5/F6(A3)

��

F6(A4)

��

−3 · · · · · · F6(A3)

��

�

We next move on to analyze the E1-page, which has Ep,q
1 = Hp+q(Fp/Fp+1). In par-

ticular, since Fn+1 = 0 this means that the p = n column is En,q
1 = Hn+q(Fn) = Hn+q(Ŵ •

n).

There are horizontal differentials Ep,q
1

δ1−→ Ep+1,q
1 .

To understand this further, we analyze each column Ep,•
0 using (A.2). We consider

how the differential d0 acts on a typical summand Aπ on the right in (A.2), where π has

S as its set of singleton blocks. Since d0 is induced from multiplying by a =∑1≤i<j≤n ai,j,

only termsai,j with both i, j �∈ S are relevant, and the image has the same set S of singleton

blocks. This leads to isomorphisms for p ≥ 1

Ep,•
0
∼= ⊕

S⊂{1,2,...,n}:
|S|=n−p

Ŵ •
p
∼= Ŵ •

p ↑np

Ep,q
1
∼= Hp+q(Ŵ •

p ↑np) ∼= Hp+q(Ŵ •
p) ↑np ,

where the first line gives isomorphisms of complexes of C-vector spaces and Sn-

representations, respectively, and C• ↑np means
(
C• ⊗ 1Sn−p

) ↑SnSp×Sn−p for C• a complex

of Sp-representations.
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Example A.2. For n = 6 the E1-page is

q\p 0 1 2 3 4 5 6

0 1Sn · · · · · ·

−1 · · H1(Ŵ•2 ) ↑62 �� H2(Ŵ•3 ) ↑63 �� H3(Ŵ•4 ) ↑64 �� H4(Ŵ•5 ) ↑65 �� H5(Ŵ•6 )

−2 · · · · H2(Ŵ•4 ) ↑64 �� H3(Ŵ•5 ) ↑65 �� H4(Ŵ•6 )

−3 · · · · · · H3(Ŵ•6 )

�

A.4 The FI-structures

Theorem 1.6 is equivalent to these two assertions:

• the only nonvanishing entries on the E1-page are the upper-left entry E
0,0
1 and

the q = −1 row {Ep,−1}np=2 = {Hp−1(Ŵp) ↑np}np=2, and
• Hp−1(Ŵp) ∼= χ(2,1p−2) for p ≥ 1.

We can glue some of these entries together into a complex, which we will denote C•(n),

using the fact that the E2 differential E
p,q
2

δ2→ Ep+2,q−1
2 sends E0,0

2 to ker(E2,−1
2

δ1→ E3,−1
2 ):

0 �� E0,0
2

δ2 �� E2,−1
2

δ1 �� E3,−1
2

δ1 �� · · · δ1 �� En−1,−1
2

δ1 �� En,−1
2

�� 0

0 �� 1Sn �� H1(Ŵ2) ↑n2 �� H2(Ŵ3) ↑n3 �� · · · �� Hn−2(Ŵn−1) ↑nn−1 �� Hn−1(Ŵn)
�� 0

C0(n) C1(n) C2(n) · · · Cn−2(n) Cn−1(n)

A crucial step for us will be to eventually show that the complex C•(n) is exact for n ≥ 2.

The strategy will be to consider FI-module structures on the objects involved, along

with Schur–Weyl duality, in order to identify C•(n) with a known exact sequence.

Recall [6, Definition 1.1] that FI is a category with objects the finite sets [n] :=
{1, 2, . . . ,n} for n = 0, 1, 2, . . ., andwhosemorphisms are the injective functions f : [m] ↪→
[n] for m ≤ n. We denote by FIop its opposite category.
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Returning to the definition of the Orlik–Solomon algebra A(n) = E/I from (A.1),

for each injection f : [m] ↪→ [n], the map on exterior algebras defined by

ai,j 	→
⎧⎨⎩a{i′,j′} if {i, j} ⊂ im(f ) with f (i′) = i, f (j′) = j,

0 if either i �∈ im(f ) or j �∈ im(f ),

will send generators of the Orlik–Solomon ideal for A(n) to those for A(m), and will

commute with the differentials d(n) on the complexes A•(n), preserving the filtration

pieces Fp(A(n)). This gives the following result:

Proposition A.3. {A•(n)}, {F •(A(n))}, {E•,•(F(A(n))}, {C•(n)} are functors from FIop into

complexes, filtered complexes, spectral sequences, and complexes, respectively. �

Hence, we can speak of the (infinite) complex of FIop-modules

C• = (0→ C0→ C1→ C2→ · · · )

and consider their C-duals Di(n) := HomC(Ci(n),C) as a complex of FI-modules

D• = (0← D0← D1← D2← · · · ).

To deduce exactness for C•, we will show that D•(n) is exact for n ≥ 2. We will compare

D• to the complex of FI-modules D′• which is Schur–Weyl dual in the sense of Sam and

Snowden [33, Section 1] to the complex of GL(C∞)-modules

0← A← S(2) ⊗ A← S(2,1) ⊗ A← S(2,1,1) ⊗ A← · · · (A.3)

giving the minimal free resolution (When A = C[x1, . . . ,xn], this resolution (A.3) is a

special case of one discussed by Eisenbud et al. [12] and also a special case of the

Eliahou–Kervaire resolution [13]; see also [25, Section 2.3].) of m2 for the irrelevant ideal

m = (x1,x2, . . .) in the polynomial ring A := C[x1,x2, . . .]; see [33, Example 6.10] with

α = (2). Indexing so that D′i is Schur–Weyl dual to the GL(C∞)-module S(2,1i−1) ⊗ A, then

for n ≥ 2, D′•(n) is the following exact sequence of x1x2 · · ·xn-weight spaces from (A.3):

0 1Sn�� χ(2) ↑n2�� χ(2,1) ↑n3�� · · ·�� χ(2,1n−3) ↑nn−1�� χ(2,1n−2)�� 0��

D′0(n) D′1(n) D′2(n) · · · D′n−2(n) D′n−1(n) D′n(n)

(A.4)
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Lemma A.4. One has an isomorphism of the FI-complexes D• ∼= D′•. In particular, for

n ≥ 2,

(a) Hn−1(Ŵ •
n) = χ(2,1n−2).

(b) C•(n) is exact. �

Proof. We use induction on n to prove assertion (a) together with the following

assertion equivalent to the FI-complex isomorphism D• ∼= D′•:

(b′) For each n ≥ 1, one has an isomorphism of the truncated FI-complexes

0 D0
��

��

D1
��

��

D2
��

��

· · ·�� Dn−2��

��

Dn−1��

��
0 D′0�� D′1�� D′2�� · · ·�� D′n−2�� D′n−1��

.

The initial cases n = 1, 2 are not hard to check directly.

In the inductive step, assume the assertions (a), (b′) hold for n − 1, and we will

show that they hold for n. We claim that both FI-complexes D•,D′• have the property

that the truncations to homological degree at most n − 1 shown in (b′) are completely

determined by their values as functors on [n]. For D• this is because Di(n) is dual to

Ci(n) = Hi(Ŵi+1) ↑ni+1, and for D′• this comes from its description in (A.4).

However, we claim that taking the values of the functors on [n] in the diagram

(b′) gives the following diagram with both rows exact, and with all solid vertical arrows

being isomorphisms:

0 1Sn��

��

H1(Ŵ •
2 ) ↑n2��

��

H2(Ŵ •
3 ) ↑n3��

��

· · ·�� Hn−2(Ŵ •
n−1) ↑nn−1��

��

Hn−1(Ŵ •
n)

��

���
�
�

0��

0 1Sn�� χ(2) ↑n2�� χ(2,1) ↑n3�� · · ·�� χ(2,1n−3) ↑nn−1�� χ(2,1n−2)�� 0��

.

(A.5)

In (A.5), the bottom row is the exact sequence (A.4). Its top row is exact in all, except

possibly two, entries

Hn−2(Ŵ •
n−1) ↑nn−1 and Hn−1(Ŵ •

n)

using the inductive hypothesis on isomorphism with the bottom row. To finish arguing

exactness at these two entries, identify the dual of the top row of (A.5) with C•(n), and
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also with the q = −1 row in the E1-page of the spectral sequence as in Example A.2,

where they appear as the two entries En−1,−1
1 and En,−1

1 . Recall that E•,•∞ = 0, and note that

the differentials δr for r ≥ 2 that either map into or out of En−1,−1
r or En,−1

r are all 0 (as

either their source or target is 0), so that En−1,−1
r

∼= En−1,−1
r+1 and En,−1

r
∼= En,−1

r+1 for all r ≥ 2.

These observations combine to yield the desired result that the differential δ1 must be

exact at both En−1,−1
1 and En,−1

1 .

Since both rows in (A.5) are exact, the dotted verticalmap is also an isomorphism,

and both assertions (a), (b′) for n follow, completing the inductive step. �

This now lets us easily complete the proof of the theorem.

Proof of Theorem 1.6. We use induction on n, with easy base cases when n ≤ 2. We

already know from Lemma A.4(a) that Hn−1(Ŵ •
n)
∼= χ(2,1n−2), and so it only remains to

show that Hi(Ŵ •
n) vanishes for i ≤ n − 2. In the inductive step, the known vanishing

shows that the E1-page of the spectral sequence looks like this:

q\p 0 1 2 3 · · · n− 1 n

0 1Sn · · · · · · · ·

−1 · · χ(2) ↑n2 �� χ(2,1) ↑n3 �� · · · �� χ(2,1n−3) ↑nn−1 �� Hn−1(Ŵ •
n)

−2 · · · · · · · · Hn−2(Ŵ •
n)

...
...

−�n2 � · · · · · · · · H �
n
2 �(Ŵ •

n)

· · · · · · · · · ·
(A.6)

But now we also know from Lemma A.4(b) that C•(n) is exact, so that the q = −1 row of

(A.6) is exact after gluing on the E0,0 term via δ2. Thus, most of these entries in the q = 0

and q = −1 rowofE1 do not survive to theE2-page; onlyE
0,0
2 andE2,−1

2 survive, but thendie

at theE3-page.Hence in thep = n column, one finds thatEn,q
r for q ≤ −2have no entries on

the pages Er with r ≥ 1 that can affect them. Therefore Hn+q(Ŵ •
n) = En,q

1 = · · · = En,q
∞ = 0

for each q ≤ −2, as desired. �
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50 P. Hersh and V. Reiner

Appendix 2. Data on L̂ie
i

n, Ŵ
i
n

We present some data on the Sn-irreducible decompositions of L̂ie
i

n for small n, i to give

a sense of the nature of these representations. An irreducible character χλ is represented

by the Ferrers diagram for λ, so 2 in the table means +2χ(4,2).

n\i 0 1 2 3 4

0 ∅

1

2

3

4

5

6

3 3 2 2

7
2

8

(A1)
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We similarly present some data on the Sn-irreducible decompositions of Ŵ
i
n for

small n, i:

n\i 0 1 2 3 4

0 ∅

1

2

3

4

5

6
2 2

3 2

7
2

8

(A2)
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