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Abstract. It is shown that there are
`

2n−r−1

n−r

´

noncrossing parti-

tions of an n-set together with a distinguished block of size r, and
`

n

k−1

´`

n−r−1

k−2

´

of these have k blocks, generalizing a result of Bóna

on partitions with one crossing. Furthermore, specializing natural q-
analogues of these formulae with q equal to certain dth roots-of-unity
gives the number of such objects having d-fold rotational symmetry.

Given a partition π of the set [n] := {1, 2, . . . , n}, a crossing in π is a
quadruple of integers (a, b, c, d) with 1 ≤ a < b < c < d ≤ n for which
a, c are together in a block, and b, d are together in a different block. It
is well-known [10, Exercise 6.19(pp)],[4] that the number of noncrossing
partitions of [n] (that is, those with no crossings) is the Catalan number
Cn = 1

n+1

(

2n

n

)

, and the number of noncrossing partitions of [n] into k blocks

is the Narayana number 1
n

(

n
k−1

)(

n
k

)

.

Our starting point is the more recent observation of Bóna [2, Theorem
1] that the number of partitions of [n] having exactly one crossing has the

even simpler formula
(

2n−5
n−4

)

. Bóna’s proof utilizes the fact that Cn is also

well-known to count triangulations of a convex (n+2)-gon; this allows him
to biject 1-crossing partitions of [n] to dissections of an n-gon that use
exactly n−4 diagonals. The proof is then completed by plugging d = n−4
into the formula 1

d+1

(

n+d−1
d

)(

n−3
d

)

of Kirkman (first proven by Cayley; see

[7]) for the number of dissections of an n-gon using d diagonals.
The goal here is to generalize Bóna’s result to count 1-crossing parti-

tions by their number of blocks, and also to examine a natural q-analogue
with regard to the cyclic sieving phenomenon shown in [8] for certain q-
Catalan and q-Narayana numbers. The crux is the observation that 1-
crossing partitions of [n] biject naturally with noncrossing partitions of
[n] having a distinguished 4-element block: replace the crossing pair of
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Figure 1. (a) A 1-crossing partition of the set [18]. (b) Its
corresponding 4-rooted noncrossing partition of [18], which
has 2-fold rotational symmetry. (c) The corresponding 2-
rooted noncrossing partition of the set [9].

blocks {a, c}, {b, d} with a single distinguished root block {a, b, c, d}. Fig-
ure 1(a) gives an example of the 1-crossing partition of [18] having blocks
{1, 10}, {2, 3, 4, 5}, {6, 15}, {7, 8}, {9}, {11, 12, 13, 14}, {16, 17}, {18}, shown
in its circular representation, with the two blocks {1, 10}, {6, 15} respon-
sible for the unique crossing pair. Figure 1(b) shows the corresponding
noncrossing partition of [n] = [18] with distinguished 4-element root block
{a, b, c, d} = {1, 6, 10, 15} that replaced the crossing pair of blocks.

Thus one is motivated to count the following more general objects.

Definition 1. An r-rooted noncrossing partition of [n] is a pair (π, B) of
a noncrossing partition π together with a distinguished r-element block B

of π, which we will call the root block.

Note that the notion of a crossing in a partition is invariant under cyclic
rotations i 7→ i+1 mod n of the set [n]. Consequently the cyclic group C =
Zn acts on the set of r-rooted noncrossing partitions of [n], preserving the
number of blocks. For the sake of stating our result, define these standard
q-analogues:

[n]q :=
1 − qn

1 − q

[n]!q := [n]q[n − 1]q · · · [2]q[1]q
[

n

k

]

q

:=
[n]!q

[k]!q[n − k]!q
.
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Theorem 1. The number of r-rooted noncrossing partitions of [n], and the
number of such partitions with exactly k blocks, are given by the formulae

(1)

a(n, r) :=

(

2n − r − 1

n − r

)

,

a(n, k, r) :=

(

n

k − 1

)(

n − r − 1

k − 2

)

.

Furthermore, for any d dividing n, the number of r-rooted noncrossing
partitions of [n] fixed under a d-fold cyclic rotation, and the number of such
partitions having exactly k blocks, are obtained by plugging in any primitive
dth root-of-unity for q in these q-analogues:

(2)

aq(n, r) :=

[

2n − r − 1
n − r

]

q

,

aq(n, k, r) := q(k−1)(k−2)

[

n

k − 1

]

q

[

n − r − 1
k − 2

]

q

.

Note that taking r = 4 and replacing k by k−1 in (1), one finds agreement
with Bóna’s count of

(

2n−5
n−4

)

, as well as the (new) formula
(

n

k−2

)(

n−5
k−3

)

for
the number of 1-crossing partitions with k blocks.

Proof. (of Theorem 1) Note that the formula for a(n, k) follows from the
one for a(n, k, r):

a(n, r) =
n

∑

k=1

a(n, r, k)

=

n
∑

k=1

(

n

k − 1

)(

n − r − 1

k − 2

)

=

n
∑

k=1

(

n

k − 1

)(

n − r − 1

n − r − k + 1

)

=

n
∑

i+j=n−r

(

n

i

)(

n − r − 1

j

)

=

(

2n − r − 1

n − r

)

where the last equality follows from the Chu-Vandermonde summation for-
mula

(

M+N

ℓ

)

=
∑

i+j=ℓ

(

M

i

)(

N

j

)

specialized to

M := n, N := n − r − 1, ℓ := n − r.

To prove the formula for a(n, k, r), consider three related sets. Let
A(n, k, r) denote the set of r-rooted noncrossing partitions of [n] with k

blocks, which we wish to count. Let B(n, k, r) denote the set of triples
3
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(π, B, i) in which π is a noncrossing partition of [n] with k blocks, i is
a chosen element of [n], and B is an r-element block of π, with i ∈ B.
Let C(n, k, r) denote the set of noncrossing partitions of [n] in which the
element 1 lies in an r-element block.

Counting |B(n, k, r)| in two ways, one finds

r · |A(n, k, r)| = |B(n, k, r)| = n · |C(n, k, r)|,
and hence

(3) a(n, k, r) = |A(n, k, r)| =
n

r
|C(n, k, r)|.

To count |C(n, k, r)|, note that Dershowitz and Zaks [4] give a bijection
between noncrossing partitions and ordered trees, which restricts to a bi-
jection between C(n, k, r) and the set D(n, k, r) of all ordered trees having
n edges, root degree r, and k internal nodes. On the other hand, the set
D(n, k, r) has been enumerated multiple times in the literature via gener-
ating functions and Lagrange inversion (e.g. in [3, 5]), and can also be done
semi-bijectively (see [1]):

|D(n, k, r)| =
r

n

(

n

k − 1

)(

n − r − 1

k − 2

)

.

Thus the formula for a(n, k, r) follows from combining this with (3):

a(n, k, r) =
n

r
|C(n, k, r)| =

n

r
|D(n, k, r)| =

(

n

k − 1

)(

n − r − 1

k − 2

)

.

For the assertion of the theorem about q-analogues, we first deal with the
case of aq(n, k, r). Note that for any d dividing n, an r-rooted noncrossing
partition of [n] having k blocks has no chance of being d-fold symmetric
unless r is divisible by d and k is congruent to 1 mod d. Furthermore, when
these congruences hold, if one defines n′ := n

d
, r′ := r

d
, k′ := k−1

d
, then the

map [n] ∼= Zn → Zn′
∼= [n′] which reduces modulo n′ gives a natural bijec-

tion between d-fold rotationally symmetric r-rooted noncrossing partitions
of [n] with k blocks, and r′-rooted noncrossing partitions of [n′] with k′ + 1
blocks. For example, in Figure 1(b), one has such a d-fold rotationally
symmetric r-rooted noncrossing partition with d = 2, n = 18, r = 4, k = 7,
and Figure 1(c) depicts the corresponding r′-rooted noncrossing partition
of [n′] with n′ = 9, r′ = 2, k′ = 3.

Hence by the first part of the theorem, there are exactly
(

n′

k′

)(

n′
−r′

−1
k′

−1

)

such d-fold rotationally symmetric r-rooted noncrossing partitions of [n]
having k blocks in this case.

On the other hand, one can easily evaluate aq(n, k, r) when q is a primi-
tive dth root-of-unity for d dividing n, using the q-Lucas theorem (Lemma 2
below). One finds that it vanishes unless r is divisible by d and k is con-

gruent to 1 mod d, in which case it equals
(

n′

k′

)(

n′
−r′

−1
k′

−1

)

, as desired.
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For the assertion about aq(n, r), one can either argue similarly, or use the

identity

[

2n − r − 1
n − r

]

q

=
∑n

k=1 q(k−1)(k−2)

[

n

k − 1

]

q

[

n − r − 1
k − 2

]

q

, which

follows from setting M := n, N := n − r − 1, ℓ := n − r in the q-Chu-
Vandermonde summation (see e.g. [6, (7.6)]):

[

M + N

ℓ

]

q

=
∑

i+j=ℓ

qj(M−i)

[

M

i

]

q

[

N

j

]

q

.

�

The following straightforward lemma used in the above proof has been
rediscovered many times; see [9, Theorem 2.2] for a proof and some history.

Lemma 2. (q-Lucas theorem) Given nonnegative integers n, k, d, with 1 ≤
d ≤ n, uniquely write n = n′d + n′′ and k = k′d + k′′ with 0 ≤ n′′, k′′ < d.
If q is a primitve dth root-of-unity, then

[

n

k

]

q

=

(

n′

k′

) [

n′′

k′′

]

q

.

Lastly we remark that one can derive an explicit formula for the number
of 2-crossing partitions of [n], but it is much messier than a(n, r) above,
and appears to have no q-analogue with good behavior. However, Bóna [2]
does show that for each fixed k, the generating function counting k-crossing
partitions of [n] is a rational function of x and

√
1 − 4x.
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[2] M. Bóna, Partitions with k crossings. The Ramanujan Journal 3 (1999), 215-220.
[3] H. Burgiel and V. Reiner, Two signed associahedra. New York J. Math. (electronic)
4 (1998), 83–95.

[4] N. Dershowitz and S. Zaks, Ordered trees and non-crossing partitions. Disc. Math.
62 (1986), 215–218.

[5] E. Deutsch, Dyck path enumeration. Disc. Math. 204 (1999), 167–202.
[6] V. Kac and P. Cheung, Quantum calculus. Universitext. Springer-Verlag, New York,
2002.

[7] J. Przytycki and A.S. Sikora, Adam S, Polygon dissections and Euler, Fuss, Kirkman,
and Cayley numbers. J. Combin. Theory Ser. A92 (2000), 68–76.

[8] V. Reiner, D. Stanton, and D. White, The cyclic sieving phenomenon. Journal of
Combinatorial Theory, Series A 108 (2004), 17–50.

[9] B. Sagan, Congruence properties of q-analogs. Adv. Math. 95 (1992), 127–143.
[10] R.P. Stanley, Enumerative Combinatorics, Vol. 2. Cambridge Studies in Advanced
Mathematics 62, Cambridge University Press, Cambridge, 1999.

School of Mathematics, University of Minnesota, Minneapolis, MN 55455,

USA

5


