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Abstract. Springer’s theory of regular elements in complex reflection groups
is generalized to arbitrary fields. Consequences for the cyclic sieving phenom-

enon in combinatorics are discussed.

1. Introduction

This paper generalizes Springer’s theory of regular elements in complex reflection
groups, extending it to reflection groups over an arbitrary field whose polynomial
invariants form a polynomial algebra. We begin by discussing Springer’s results,
and some of our motivation.

An element g in GLn(C) of finite order is called a reflection if its fixed subspace in
Cn is a hyperplane (codimension 1 linear subspace), called the reflecting hyperplane
for g. A finite subgroup G of GLn(C) is called a complex reflection group if it is
generated by reflections. Shephard and Todd [17] classified such groups. They used
this classification to prove that they are exactly the groups G whose action on the
polynomial ring S := C[x1, . . . , xn] has invariants SG = C[f1, . . . , fn] which form
a polynomial algebra. This was re-proven in a uniform fashion by Chevalley [5].
Chevalley also used the Normal Basis Theorem of Galois Theory to prove a fact
about the induced G-action on the coinvariant algebra

A := S/(f1, . . . , fn) = S ⊗SG C.

Here C is considered as the trivial SG-module C := SG/SG
+ , where SG

+ is the set of

elements of positive degree in SG. His result says that the coinvariant algebra A is
isomorphic to the regular representation C[G] as a (ungraded) C[G]-module.

Springer generalized this isomorphism to incorporate a larger group action. Say
that a vector v in Cn is regular if it lies on none of the reflecting hyperplanes
for reflections in G, and say that an element c in G is regular if it has a regular
eigenvector v, say with eigenvalue ω ∈ C×. The cyclic group C = 〈c〉 generated
by a regular element c acts on S and on the coinvariant algebra A by the scalar
substitution c(xi) = ωxi for all i. Note that this C-action is distinct from the
action by linear substitutions which C inherits as a subgroup of G. In fact, the
C-action by scalar substitutions commutes with the G-action, making A into a
C[G×C]-module. There is also a natural C[G×C]-module structure on the group
algebra C[G], in which G multiplies on the left and C multiplies on the right. One
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of Springer’s main results can be rephrased (following Kraskiewicz and Weyman
[11]; see also [20]) as follows.

Theorem (Springer [19]). The coinvariant algebra A and the group algebra C[G]
are isomorphic as (ungraded) C[G × C]-modules.

Our goal is to extend this result to fields other than C. Let V be an n-dimensional
vector space over an arbitrary field k and G a finite subgroup of GL(V ). Let S
denote the symmetric algebra of V ∗, so that we may identify S = k[x1, . . . , xn]
by choosing a basis x1, . . . , xn for V ∗. In this context, define a reflection to be
an element of GL(V ) of finite order whose fixed subspace is a hyperplane (it is
not assumed that a reflection is semisimple). Our starting point is a result of
Serre [16] that generalizes half of the Shephard-Todd and Chevalley result: if the
invariant ring SG is a polynomial algebra k[f1, . . . , fn], then G must be generated
by reflections. Mitchell [12] proved a result generalizing that of Chevalley in this
context: the coinvariant algebra

A := S/(f1, . . . , fn) = S ⊗SG k

and the regular representation k[G] have the same composition factors as k[G]-
modules.

Given such a reflection group G, define regular vectors and regular elements as
follows. Let k̄ be the algebraic closure of k, let V := V ⊗k k̄, and S̄ := S ⊗k k̄ ∼=
k̄[x1, . . . , xn]. Say that a vector v ∈ V is regular if it lies on none of the reflecting
hyperplanes H̄ := H ⊗k k̄ for reflections in G, that is, if v is not fixed by any
reflection in G. Define c in G to be regular if it has a regular eigenvector v ∈ V , say
with eigenvalue ζ ∈ k̄×. It will be seen below (Corollary 7) that this implies c is also
p-regular, that is, its multiplicative order is invertible in the field k. Consequently
c acts semisimply on V and in any other representation of G over k.

If C := 〈c〉, then as before, both the coinvariant algebra (with scalars extended
to k̄)

Ā := S̄/(f1, . . . , fn) = S̄ ⊗S̄G k̄

and the group algebra k̄[G] can be made into k̄[G × C]-modules:

• G acts on Ā by linear substitutions, and C acts on Ā by the scalar substi-
tution c(xi) = ζxi for all i, while

• G multiplies k̄[G] on the left and C multiplies it on the right.

We comment that for general subgroups C, in order to make k̄[G] into a left k̄[G×C]-
module an element c ∈ C must multiply on the right by c−1. However, since C
is abelian and inversion is a group automorphism, we do not need to introduce an
inverse to obtain a group action, and since k̄[G] is a permutation representation for
C, whether we introduce an inverse or not we obtain isomorphic results.

Theorem 1. Let V be a finite-dimensional vector space over an arbitrary field
k. Let G be a finite subgroup of GL(V ) for which SG is polynomial. Then the
coinvariant algebra Ā and the group algebra k̄[G] have the same composition factors
as k̄[G × C]-modules,

Theorem 1 generalizes a previous result of the authors [13, Theorem 1] where G =
GLn(Fq). The proof of Theorem 1 follows the same outline as Springer’s, with a few
complications due to the field being arbitrary. In Section 3 we review Serre’s result
and some consequences for the reflection groups whose invariants are polynomial.
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Section 4 uses this to generalize the crucial facts about regular elements to arbitrary
fields, and in Section 5 these facts are assembled into a proof of Theorem 1 via a
(Brauer) character computation.

Section 2 discusses one of our main motivations, coming from the cyclic sieving
phenomenon in combinatorics. Springer’s Theorem (over C) immediately implies
that for any subgroup H of a complex reflection group G the H-fixed subspaces
AH and C[G]H are isomorphic as C-representations. This has combinatorial con-
sequences (see [14]), for which we sought a version valid over all fields. Theorem 2,
the other main result of this paper, gives a version valid under some hypotheses
on the subgroup H . We also speculate there (Conjecture 3, Question 4) on more
general versions.

Section 7 discusses regular elements and examples where G = GLn(Fq). Regular
elements in this situation are shown to be exactly the elements in the images of
the embeddings F

×
qn ↪→ GLn(Fq) that arise from identifying Fqn ∼= (Fq)

n. Two
interesting examples of subgroups H in GLn(Fq) are also discussed, one illustrating
Theorem 2 when H is the group of monomial matrices, the other providing evidence
for Conjecture 3 by checking it holds when H is the symplectic group Sp2n(Fq) for
q odd.

Section 8 discusses a consequence (Proposition 22) of Theorem 1 relating to
“sieving” the composition factors of the group algebra k[G] when k has positive
characteristic. It also speculates on the existence of a stronger version of this
phenomenon (Question 23).

Throughout the paper, k, k̄, V, V , S, S̄ will have the same meaning as in this
introduction.

2. Combinatorial motivation: the cyclic sieving phenomenon

One of our motivations was to generalize to other fields an enumerative conse-
quence of Springer’s Theorem (over C), called the cyclic sieving phenomenon, which
we now explain.

Whenever C is a finite cyclic group, X is a finite C-set and X(t) is a polynomial
with integer coefficients, we will say that the triple (X, X(t), C) exhibits the cyclic
sieving phenomenon if either of the following two equivalent conditions (see [14,
§2]) holds:

(i) for all c ∈ C and any ω ∈ C× having the same multiplicative order as c,
one has

|{x ∈ X : c(x) = x}| = [X(t)]t=ω ,

or
(ii) in the expansion

X(t) ≡

|C|−1
∑

`=0

a`t
` mod t|C| − 1,

the coefficient a` counts the number of C-orbits on X in which the C-
stabilizer of an element has order dividing `.

One can interpret the special case of condition (i) asserting |X | = X(1) as saying
that X(t) is a generating function for the set X . In combinatorics, these generating
functions X(t) often already have a combinatorial interpretation when t is special-
ized to a prime power q, enumerating objects associated with the finite field Fq ; it
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is a pleasant surprise to also have an interpretation when t is a root of unity. See
[14] for many instances of this phenomenon, and further motivation.

It is an elementary exercise to show that if the complex characters of C are
labelled χ0, χ1, . . . , χ|C|−1, in such a way that for c ∈ C we have χ`(c) = χ1(c)

`,
then the conditions (i) or (ii) say that a` is the multiplicity of χ` in the permutation
module C[X ], and so C[X ] has character

∑

` a`χ` (see [14, Prop. 2.1]). Thus if we
have a graded C-representation

AX =
⊕

i≥0

AX,i

in which each c ∈ C acts on AX,i by the scalar χi(c) and we put

X(t) = Hilb(AX , t) :=
∑

i≥0

dimC AX,it
i,

then (X, X(t), C) exhibits the cyclic sieving phenomenon if and only if

(2.1) C[X ] ∼= AX

are isomorphic as C-representations.
The comments just made allow us to construct in abstract a triple which exhibits

the cyclic sieving phenomenon starting from any finite C-set X . For applications it
is important that such triples should arise in some natural way allowing an inter-
pretation, invariant theory and Springer’s Theorem provide such triples whenever
whenever X has a transitive action of some group G whose invariant ring SG is
polynomial. In such a situation case, let H be the stabilizer in G of some particular
element of X , so that one can identify X = G/H . Then one has an isomorphism1

of C-representations

(2.2) C[X ] = C[G/H ] ∼= C[G]H .

On the other hand, Springer’s Theorem tells us that the coinvariant algebra A is
isomorphic to C[G] as G × C-representations. Restricting this isomorphism to the
H-fixed subspaces gives

(2.3) C[G]H ∼= AH ,

and the C-action on A (and hence on AH) was defined so that AH can play the
role of the graded C-representation AX above. Hence stringing together (2.2) and
(2.3) yields an isomorphism as in (2.1).

Our second main result, Theorem 2 gives a version of this valid for arbitrary
fields. Let V, V , k, k̄, S, S̄ have the same meaning as in the discussion preceding
Theorem 1, and let G be a finite subgroup of GL(V ) for which SG is a polynomial
algebra. For any subgroup H , define X := G/H and

(2.4) X(t) :=
Hilb(SH , t)

Hilb(SG, t)

(

=
Hilb(S̄H , t)

Hilb(S̄G, t)

)

.

1One should be careful about the left and right actions of the (abelian) group C in this
isomorphism. On G/H one has C acting by left multiplication, while on C[G]H (as on C[G]) one
has C acting by right multiplication. The isomorphism C[G]H ∼= C[G/H] then maps (

P

h∈H h)g 7→

g−1H.
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Provided SH is a free SG-module (that is, SH is Cohen-Macaulay), one has the
interpretation X(t) = Hilb(SH ⊗SG k, t), so that with this extra hypothesis X(t)
is a polynomial with nonnegative integer coefficients. (As will be explained later,
X(t) is always polynomial with integer coefficients). In case |H | is invertible in k,
one can show furthermore that X(t) = Hilb(AH , t).

Theorem 2. Let V be a finite-dimensional vector space over an arbitrary field k.
Let G be a finite subgroup of GL(V ) for which SG is polynomial, and let C be the
cyclic subgroup generated by a regular element in G.

Then under either of the following two conditions on the subgroup H, the triple
(X, X(t), C) exhibits the cyclic sieving phenomenon:

Case (a): the order |H | is invertible in k, or
Case (b): the invariant subring SH is also a polynomial algebra.

Equivalently, since C acts semisimply by Corollary 7, in either Case (a) or (b)
above, the C-representations S̄H ⊗S̄G k̄ and k̄[G/H ] are isomorphic.

It is also worth pointing out a very explicit rephrasing of Case (b). Let H ⊂ G
be subgroups of GL(V ) with both SH , SG polynomial, and let c in G be a regular
element of order d. Suppose

SG = k[g1, . . . , gn], with deg(gi) = dG
i , and aG(d) := |{i : d|dG

i }|

SH = k[h1, . . . , hn], with deg(hi) = dH
i and aH(d) := |{i : d|dH

i }|.

Theorem 2 Case (b) (rephrased). Let V be a finite-dimensional vector space
over an arbitrary field k. Let H ⊂ G be subgroups of GL(V ) with both SH , SG

polynomial, and notation as above. Let c be a regular element in G of order d, and
ω in C× a primitive dth root of unity.

Then there are no cosets gH fixed under left-translation by c unless aH(d) =
aG(d), in which case

(2.5) |{gH : cgH = gH}| = lim
t→ω

n
∏

i=1

1 − td
G
i

1 − td
H
i

=

∏

i:d|dG
i

dG
i

∏

i:d|dH
i

dH
i

Theorem 2 is an immediate consequence of Theorem 1 in Case (a), but not (as
far as we are aware) in Case (b). Section 6 gives a proof using facts about regular
elements. This generalizes the special case where G = GLn(Fq) and H is a parabolic
subgroup that appeared as [13, Theorem 2].

Conjecture 3. The conclusion of Theorem 2 holds under the weaker hypothesis
that SH is Cohen-Macaulay.

We have been led to consider these questions when H is an arbitrary subgroup
of a group G for which SG is polynomial, not just one for which SH is Cohen-
Macaulay. We point out that in general X(t) has the following interpretation.
Since SG is a polynomial algebra, the Hilbert Syzygy Theorem implies that SH has
a (graded) finite free resolution as a (graded) SG-module

0 →
⊕

j

SG(−j)βh,j → · · · →
⊕

j

SG(−j)β0,j → SH → 0,

where here SG(−j) denotes a free SG-module of rank one whose basis element has
degree j. Hence X(t) =

∑

i,j≥0(−1)iβi,jt
j , and this is always a polynomial in t

with integer coefficients.
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Question 4. Does the same conclusion hold (i.e. the cyclic sieving phenomenon
for (X, X(t), C) where X = G/H and X(t) is defined as in (2.4)) without any
hypotheses on the subgroup H?

An affirmative answer to Question 4 would have useful consequences. Firstly, it
would provide many more examples of the cyclic sieving phenomenon in combina-
torics. Secondly, it is well-known that the general linear group G = GLn(Fq) has SG

polynomial (see Section 7). Therefore, whenever H is a subgroup of G = GLn(Fq)
for which Question 4 has an affirmative answer, version (ii) of the cyclic sieving
phenomenon gives a constraint on Hilb(SH , t) that can save time in its computa-
tion.

3. Serre’s result and some consequences

We begin by recalling a fundamental result of Serre.

Theorem 5. (Serre [16]; see also Bourbaki [3, Chap. V, §5, Exer. 7,8]) Let G be
a finite subgroup of GL(V ) for which SG is a polynomial algebra. Then

(i) G is generated by reflections, and
(ii) for every k-subspace V ′ of V , the pointwise stabilizer

GV ′ := {g ∈ G : g|V ′ = 1V ′}

also has SGV ′ polynomial (and hence GV ′ is generated by reflections).

This has the following consequence, generalizing [19, Proposition 4.1 (i)]. Although
straightforward, we include the proof because it may be not be completely obvious,
due to the fact that Serre’s result refers to k-subspaces, not k̄-subspaces. For a
vector v in V , let Gv denote the pointwise stabilizer of the 1-dimensional subspace
spanned by v.

Corollary 6. A vector v ∈ V avoids all the reflecting hyperplanes for G if and
only if G acts freely on its orbit, i.e. its pointwise stabilizer Gv = 1.

Proof. Assume v avoids all the reflecting hyperplanes for G. Consider the k-
subspace

V ′ =
⋂

g∈Gv

ker(g − 1V ) = ker



V

L

g∈Gv
g−1

−→
⊕

g∈Gv

V



 .

Then v lies in its extension by scalars

V̄ ′ := V ′ ⊗k k̄ =
⋂

g∈Gv

ker(g − 1V ) = ker



V

L

g∈Gv
g−1

−→
⊕

g∈Gv

V



 .

Furthermore, Gv ⊂ GV ′ , so it suffices for us to show that GV ′ = 1. By Serre’s
Theorem, GV ′ is generated by reflections r in G, which must necessarily all satisfy
V ′ ⊂ ker(r − 1V ). But then v ∈ V̄ ′ ⊂ ker(r − 1V ), i.e. r fixes v. Since v avoids all
the hyperplanes for G, there are no such reflections, and GV ′ = 1. �

This last corollary has another important consequence mentioned in the Intro-
duction.

Corollary 7. Let G be a finite subgroup of GL(V ) for which SG is polynomial, and
c a regular element. Then c is p-regular, that is, its multiplicative order is invertible
in k. In particular, c acts semisimply on V .
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Proof. Let v be a regular eigenvector for c with corresponding eigenvalue ζ in k̄.
Let c, ζ have multiplicative orders d, d′, respectively, so that d′ divides d. We claim
that d = d′. To see this, note that

cd′

(v) = ζd′

· v = v

and hence cd′

lies in the pointwise stabilizer Gv . As Gv = 1 by Corollary 6, one
has cd′

= 1, so d divides d′, and hence d = d′.
But d′ is invertible in k. To see this, observe that if k has characteristic p > 0,

then ζ being of finite order implies that it generates a finite extension Fp(ζ) of the
prime field. If |Fp(ζ)| = pr, then ζ has its order d′ dividing |Fp(ζ)×| = pr − 1, and
hence is coprime to p. �

In working over C, Springer’s methods use in a crucial way a classical fact about
the Jacobian determinant

J = det

(

∂fi

∂xj

)

where SG = k[f1, . . . , fn] for homogeneous invariants f1, . . . , fn. For complex re-
flection groups there is a well-known factorization of J into products of powers of
the linear forms that define the reflecting hyperplanes for G. This implies that the
zero set for J in C

n is the union of the reflecting hyperplanes of G, and the same
is known to hold more generally when k has characteristic zero.

A more general result holds over arbitrary fields, and is crucial for the sequel.
The authors thank W. Messing for providing a proof of the following generalization,
using results of Grothendieck on étale coverings.

Theorem 8. When SG = k[f1, . . . , fn] is a polynomial algebra, the zero set of the
Jacobian J in V (or V ) is the union of the reflecting hyperplanes for G.

Proof. The inclusion of rings S̄G ↪→ S̄ corresponds to the quotient map V
π
� V /G.

Because the field extension

Frac(S̄G) = Frac(S̄)G ↪→ Frac(S̄)

is separable of degree |G|, the map π is a separated morphism of schemes which is
quasifinite of degree |G|. Therefore [15, Exposé I, §10, Théorème 10.11] says that
there is a neighborhood of v in V in which π is an étale covering if and only if
the fiber π−1(π(v)) has exactly |G| preimages. By Corollary 6, the latter condition
occurs if and only if v lies on none of the reflecting hyperplanes of G.

On the other hand, since V and V /G are both smooth schemes (the latter because
S̄G is polynomial), one can apply [15, Exposé II, §4, Corollaire 4.6] to assert that π
is étale in a neighborhood of v in V if and only if the mapping of cotangent spaces

Ω1(V /G)π(v)
π∗

−→ Ω1(V )v

is an isomorphism. As this mapping is represented in coordinates by the Jacobian

matrix
(

∂fi

∂xj
(v)

)

i,j=1,...,n
evaluated at v, it will be an isomorphism if and only if

J(v) 6= 0. The theorem follows. �

Remark 9. The above theorem also follows from a recent (independent) result of
Hartmann and Shepler [8], who give an explicit factorization of J into products of
powers of the linear forms `H defining the reflecting hyperplanes H . Given such
a hyperplane H , recall that GH denotes its pointwise stabilizer, and Theorem 5
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implies that SGH is also a polynomial algebra. Let dH denote the sum of the
degrees d1, . . . , dn for any n basic (homogeneous) invariants which generate SGH .
Hartmann and Shepler show that, up to a constant in k×,

J =
∏

H

`dH−n
H

where the product runs through all reflecting hyperplanes H for G.

4. Regular elements

This section generalizes facts on regular elements in reflection groups over the
complex numbers to arbitrary fields. These facts are necessary for the proof of
Theorem 1.

For the remainder of this section, we assume that SG = k[f1, . . . , fn] is a poly-
nomial algebra, with fi homogeneous of degree di. For a positive integer d, let

a(d) := |{i : d|di}|.

For g in G and ζ ∈ k̄, let V (g, ζ) be the ζ-eigenspace for g acting on V . For a
polynomial f ∈ S (or S̄), let Zk̄(f) denote the zero locus of f in V .

The following two propositions are proven exactly as in [19, Proposition 3.2,
Theorem 3.4]. The important features are that f1, . . . , fn form a regular sequence
in S or S̄, and that k̄ is algebraically closed so that two points v, v′ in V lie in the
same G-orbit if and only if fi(v) = fi(v

′) for i = 1, 2, . . . , n.

Proposition 10. Let ζ ∈ k̄ be a primitive dth root of unity. Then
⋃

g∈G

V (g, ζ) =
⋂

i:d-di

Zk̄(fi).

Furthermore, the irreducible components of this algebraic set are those eigenspaces
V (g, ζ) which are maximal under inclusion, and each has dimension a(d).

Proposition 11. Let ζ ∈ k̄ be a primitive dth root of unity.
If dim V (g, ζ) = dim V (g′, ζ) = a(d), then there exists h ∈ G with V (g′, ζ) =

h(V (g, ζ)).

The following result is not quite as strong as Springer’s [19, Theorem 2.4 (i),(ii)]
(for k = C) because of its hypothesis that f1, . . . , fn is a system of parameters, and
not just algebraically independent. But it will suffice for our purposes, namely to
prove Proposition 14 below.

Lemma 12. (Smith [18, Prop. 5.5.5]) Let G be a finite subgroup of GL(V ). Sup-
pose that SG contains a homogenous system of parameters f1, . . . , fn with degrees
d1, . . . , dn. Then

(i) |G| ≤ d1 · · · dn, and
(ii) if equality holds in (i) then SG = k[f1, . . . , fn].

Remark 13. Actually [18, Prop. 5.5.5] only states assertion (ii), but Smith’s
method of proof shows assertion (i) also. Specifically, one applies his Proposition
5.5.2 to the finite extension k[f1, . . . , fn] ↪→ SG and reasons using his Theorem
5.5.3.
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The next proposition appears (for k = C) as [19, Proposition 3.5] and lies at
the heart of Springer’s theory. In particular, its assertion (ii) shows that if SG

is polynomial, then elements g having dim V (g, ζ) as large as possible give rise to
a smaller group K acting naturally on V (g, ζ), again with polynomial invariants.
For the sake of stating this, we introduce some notation. Assume g ∈ G achieves
dim V (g, ζ) = a(d). Let

StabG(V (g, ζ)) := {h ∈ G : h(V (g, ζ)) = V (g, ζ)},

GV (g,ζ) := {h ∈ G : h|V (g,ζ) = 1V (g,ζ)}, and

K := StabV (g,ζ)/GV (g,ζ)

CentG(g) := {h ∈ G : hg = gh}

Note that here, StabG(U) denotes the not-necessarily-pointwise stabilizer subgroup
of a subspace U , as opposed to the pointwise stabilizer subgroup GU .

Proposition 14. Assume G is a finite subgroup of GL(V ) having SG a polynomial
algebra. Further assume that dim V (g, ζ) = a(d), and let

StabG(V (g, ζ)), GV (g,ζ), K, CentG(g)

be defined as in the previous paragraph. Then

(i) |K| ≤
∏

i:d|di
di.

(ii) If |K| =
∏

i:d|di
di, then the K-invariant subalgebra of S(V (g, ζ)) is a poly-

nomial algebra on generators {fi|V (g,ζ) : d|di}. That is,

S(V (g, ζ))K = k̄[fi|V (g,ζ) : d|di].

(iii) If GV (g,ζ) = 1 (e.g. if g is a regular element having a regular vector in

V (g, ζ)), then

K ∼= StabG(V (g, ζ)) = CentG(g),

and all these subgroups have cardinality
∏

i:d|di
di.

Proof. Same as the proof of [19, Proposition 3.5]. One needs to note, however, that
Lemma 12 applies because Springer’s argument in the proof of [19, Theorem 3.4
(iii)] shows that {fi|V (g,ζ)}i:d|di

are not only algebraically independent, but also

form a system of parameters in this situation. �

The following result (for k = C) is [19, Theorem 4.2].

Theorem 15. Assume G is a finite subgroup of GL(V ) having SG a polynomial
algebra, with notation as above. Let c in G be a regular element, with regular
eigenvector v having eigenvalue ζ ∈ k̄, a primitive dth root of unity.

(i) cd = 1.
(ii) dimk̄ V (c, ζ) = a(d).
(iii) The centralizer of c in G is isomorphic to a reflection group whose degrees

of basic invariants are the di divisible by d, and whose order is
∏

i:d|di
di.

(iv) The elements g in G satisfying dimk̄ V (g, ζ) = a(d) are all conjugate.
(v) The eigenvalues of c are {ζ1−di}n

i=1.

Proof. Proven exactly as in [19, Theorem 4.2]. A crucial point in the proof of
(v) is the fact that a regular vector v will have J(v) 6= 0, which follows from
Theorem 8. �
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5. Proof of Theorem 1

The proof of Theorem 1 relies on the theory of Brauer characters; see [6, §82].
For a finite group H , a k̄[H ]-module W , and h ∈ H a p-regular element (that is,
one whose multiplicative order is invertible in k̄), let φH

W (h) ∈ C denote the Brauer
character value of h on W . If W =

⊕

m Wm is a graded k̄[H ]-module, define its
graded Brauer character by

φH
W (h; t) :=

∑

m

φH
Wm

(h) tm.

To prove the theorem, we must show that for every p-regular element (g, c) ∈
G × C, there is an equality of the Brauer character values

(5.1) φG×C

k̄[G]
((g, c)) = φG×C

Ā
((g, c)).

We begin by computing the left side of (5.1).

Proposition 16. Let c be a regular element in G of multiplicative order d, and let
g be any element of G. Then

φG×C

k̄[G]
((g, c)) =

{

|CentG(c)| =
∏

i:d|di
di if g−1 is G-conjugate to c,

0 otherwise.

Proof. Note that k̄[G] is a permutation representation of G ×C and therefore lifts
to a representation defined over Z. Hence its Brauer character is its usual character,
namely φG×C

k̄[G]
((g, c)) is the number of points fixed as (g, c) permutes G. Therefore

φG×C

k̄[G]
((g, c)) = |{h ∈ G : ghc = h}|

= |{h ∈ G : c = h−1g−1h}|

=

{

|CentG(c)| if g−1 is G-conjugate to c,

0 otherwise,

where CentG(c) is the centralizer of c in G, whose cardinality was given as
∏

i:d|di
di

in Theorem 15(iii). �

We next turn to computing the right side of (5.1). For this, we need some
notation about the Brauer lifting process. Let µ be a subgroup of roots of unity
inside k̄× that contains the eigenvalues of all p-regular elements of G, and fix an
embedding µ → C

×. Call the image of an element of µ under this embedding its
lift.

Assume that g ∈ G = GL(V ) is p-regular. Since g acts semisimply on V , it will
have eigenvalues λ1, . . . , λn in k̄× corresponding to a complete set of eigenvectors
in V . Denote the lifts of these eigenvalues λ1, . . . , λn ∈ C×. Given c in G a regular
element with a regular eigenvector having eigenvalue ζ, let ω ∈ C× denote the lift
of ζ.

Lemma 17. With notation as above,

(5.2) φG×C

Ā
((g, c)) = lim

t→ω

n
∏

i=1

1 − tdi

1 − λit
,
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Proof. This is essentially a calculation along the lines of Molien’s Theorem [18,
Proposition 4.3.1]. We start by computing the graded Brauer character for g on
S̄, which we identify with the symmetric algebra Sym(V ). Note that the eigen-

values of g on Symm(V ) will be all the monomials λ
m1

1 · · ·λ
mn

n with
∑

i mi = m.
Consequently,

φG
Symm(V )(g) =

∑

P

i
mi=m

λm1

1 · · ·λmn
n

φG
Sym(V )(g; t) =

n
∏

i=1

1

(1 − λit)
.

Since S̄G = k̄[f1, . . . , fn] and fi has degree di,

φG
S̄G(g; t) = Hilb(S̄G, t) =

n−1
∏

i=0

1

1 − tdi
.

Let g ∈ G be a p-regular element. Observe the following three facts

• Sym(V ) = k̄[x1, . . . , xn] is a free S̄G-module (see [18, Cor. 6.7.13]),
• Ā is a semisimple k̄[〈g〉]-module, and
• g acts trivially on S̄G.

From these three facts it follows that there is an isomorphism of graded k̄[〈g〉]-
modules

Sym(V ) ∼= Ā ⊗k̄ S̄G.

This implies

φG

Sym(V )
(g; t) = φG

Ā
(g; t) φG

S̄G(g; t).

Therefore

(5.3) φG
Ā

(g; t) =
φG

Sym(V )
(g; t)

φG
S̄G(g; t)

=

n
∏

i=1

1 − tdi

1− λit
.

To understand φG×C

Ā
((g, c)) from (5.3), note that c acts on the mth-graded piece

Ām by the scalar ζm. Hence φG×C

Ām
((g, c)) is ωm times the coefficient of tm in (5.3).

Then φG×C

Ā
(g, c) comes from summing this over all m, which is the same as setting

t = ω in (5.3). �

Theorem 1 will now follow by comparing Proposition 16 with the following propo-
sition.

Proposition 18. Let c be a regular element in G of multiplicative order d, and let
g be any element of G. Then

φG×C

Ā
(g, c) =

{

∏

i:d|di
di if g−1 is G-conjugate to c,

0 otherwise.

Proof. Let ζ be the eigenvalue for c on a regular eigenvector v, and ω ∈ C× its lift.
The numerator of the rational function in (5.2) has t = ω as a root with multiplicity

a(d) = |{i : d|di}|. Hence φG×C

Ā
(g, c) will vanish unless the denominator also has

t = ω as a root with this same multiplicity, that is, unless dimk̄ V (g, ζ−1) = a(d).
By Theorem 15(iv), this requires g to be conjugate in G to c−1.
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When g is conjugate to c−1, Theorem 15(v), implies that the eigenvalues of g
lift to {ωdi−1}n

i=1. Hence

φG×C

Ā
(g, c) = lim

t→ω

n
∏

i=1

1 − tdi

1 − tωdi−1

=
∏

i:d|di

lim
t→ω

1 − tdi

1 − tωdi−1
·

∏

i:d-di

lim
t→ω

1 − tdi

1 − tωdi−1

=
∏

i:d|di

−diω
di−1

−ωdi−1
·

∏

i:d-di

1 − ωdi

1 − ω · ωdi−1

=
∏

i:d|di

di.

�

6. Proof of Theorem 2

Proof for case (a). The result will follow from Theorem 1 when |H | is invertible in
k̄. The fact that Ā and k̄[G] have the same k̄[G × C]-composition factors implies,
by restriction, that they have the same k̄[H × C]-composition factors. Then they
are isomorphic as k̄[H × C]-modules, because |H × C| = |H ||C| is invertible in k,
so the action is semisimple. Restricting to the H-invariant subspaces of each gives
the desired isomorphism of k̄[C]-modules, which is equivalent to the cyclic sieving
phenomenon for (X, X(t), C). �

Proof for case (b). Here we will show the rephrased version directly, using the same
notation. Note cgH = gH if and only if g−1cg lies in H , that is, if and only if c is
conjugated by g into H . Proposition 10 and Theorem 15(iv) imply that there exists
an element h in H conjugate in G to c if and only if aH(d) = aG(d). When this
occurs, by conjugation within G, we may assume without loss of generality that c
lies in H . Applying Theorem 15(iii) to both G and H , it remains to show that

(6.1) |{gH ∈ G/H : g−1cg ∈ H}| =
|CentG(c)|

|CentH(c)|
.

Beginning with the left side of (6.1), one has

|{gH ∈ G/H : g−1cg ∈ H}|

=
1

|H |
|{g ∈ G : g−1cg ∈ H}|

=
1

|H |
|{h ∈ H : h is G-conjugate to c}| · |CentG(c)|

Note that if h in H is G-conjugate to c, then

dimk̄ V (h, ζ) = aG(d) = aH(d)

and hence h is also H-conjugate to c by Theorem 15(iv). Thus the last expression
above can be rewritten as

1

|H |
|{h ∈ H : h is H-conjugate to c}| · |CentG(c)| =

|CentG(c)|

|CentH(c)|
,

as desired. �
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7. The case of G = GLn(Fq)

In this section, we examine more closely the case G = GLn(Fq).
The fact that

SG = Fq[Dn,0, Dn,1, . . . , Dn,n−1]

is a polynomial algebra is a well-known result of Dickson [7]. The Dickson polyno-
mials Dn,i can be described explicitly, and deg(Dn,i) = qn − qi; see [18, §8.1].

We begin by characterizing the regular elements in GLn(Fq), and then study
two interesting examples of subgroups H in G.

Theorem 19. The following are equivalent for c in G = GLn(Fq).

(i) c is regular.
(ii) The minimal polynomial for c is irreducible in Fq[x].
(iii) c coincides with one of the Fq-linear maps that come from scalar multipli-

cations by α ∈ F
×
qn , after identifying Fqn with (Fq)

n as Fq-vector spaces2.

Proof. Note that the reflecting hyperplanes for GLn(Fq) are exactly the zero sets of

all (non-zero) linear forms `(x) having Fq-coefficients. Hence a vector v ∈ V = F
n

q

is regular if and only if there is no such linear form vanishing on v, that is, if v lies
in no proper subspaces defined over Fq.

(i) implies (ii): When c is regular, it is semisimple (by Corollary 7), and hence
its minimal polynomial f(x) is a product of distinct irreducible factors. If there
were more than one such factor of f(x), then Fn

q would decompose into a nontrivial
direct sum of proper c-stable Fq-subspaces. Furthermore, after extending scalars,
one of these subspaces will contain the regular eigenvector for c. But regularity
implies that this eigenvector lies in no proper subspaces defined over Fq .

(ii) implies (iii): When c has irreducible minimal polynomial f(x) of degree d,
its rational canonical form over Fq, and hence its GLn(Fq)-conjugacy class, is com-
pletely determined by f(x). Furthermore, this rational canonical form will coincide
with that of scalar multiplication by any root α of f(x) lying in the extension Fqd .
Since the characteristic polynomial of c is a power of f(x), one must have d|n, and
hence α ∈ Fqn .

(iii) implies (i): Given α ∈ F
×
qn , we must show that the Fq-linear map c which is

multiplication by α has a regular eigenvector. Since F
×
qn is cyclic, without loss of

generality we may assume that α is a cyclic generator of F
×
qn , so that α has minimal

polynomial f(x) over Fq which is irreducible of degree n. Then c acts in the Fq-
basis {1, α, α2, . . . , αn−1} for Fqn by the companion matrix of f(x), and hence has
α as an eigenvalue, say with eigenvector v.

Let F denote both the Frobenius endomorphism on Fq, and also the endomor-

phism on F
n

q that acts by F simultaneously in each component. Then

α, F (α), F 2(α), . . . , F n−1(α)

are the eigenvalues of c, which are all distinct by the separability of the extension
Fqn/Fq. Their corresponding eigenvectors

v, F (v), F 2(v), . . . , F n−1(v)

2Such Fq-linear maps are sometimes called Singer cycles in the case where α is a generator for

the cyclic group F×

qn , and when one considers α as permuting the set of Fq-lines in Fqn .
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therefore form a Fq-basis for F
n

q . Thus v must be regular: if it were to lie in some

proper subspace of F
n

q defined over Fq, the same would be true for all its Frobenius

images F i(v), and they would not span Fn
q . �

We next examine two interesting examples of families of subgroups H in G =
GLn(Fq). We should also mention that the original motivating example for Theo-
rem 2(b) (and [13, Theorem 2]), namely the case where H is a parabolic subgroup
of G = GLn(Fq), is discussed already in [14, §9].

Example 20. An Fq-frame in F
n
q is an unordered set {L1, . . . , Ln} of lines (1-

dimensional Fq-subspaces) Li giving rise to an Fq-vector space decomposition Fn
q =

⊕n

i=1 Li. Let H = F×
q o Sn be the group of monomial matrices in G = GLn(Fq),

that is, the matrices with exactly one non-zero entry in each row and each column.
Note that H is the (not-necessarily-pointwise) stabilizer of the particular Fq-frame
given by the coordinate axes in Fn

q . Hence since G acts transitively on frames, the
collection of cosets G/H is identified with the set X of all such frames.

Here SH is a polynomial algebra, as it consists of the symmetric functions in the
powers of the variables xq−1

1 , . . . , xq−1
n . Consequently,

X(t) :=
Hilb(SH , t)

Hilb(SG, t)
=

∏n−1
i=0 (1 − tq

n−qi

)
∏n

i=1(1 − t(q−1)i)
.

What does Theorem 2(b) tell us in this case? We demonstrate its utility by com-
paring calculations of the two sides of equation (2.5): the right side by a painless
substitution of a root of unity, the left side by reasoning geometrically about the
action of a regular element on frames.

By Theorem 19, a regular element in G corresponds to some α ∈ F
×
qn . Assume α

has multiplicative order d. Assume the field extension Fq(α) generated by α within
Fqn has Fq(α) = Fqr , so that r|n, and r is the smallest positive integer for which
d|qr − 1.

Theorem 2(b)(rephrased) tells us that the number of Fq-frames preserved under
multiplication by α will be zero unless the two quantities

aG(d) =
n

r
and aH(d) =

n

d/ gcd(d, q − 1)

coincide. Thus there should be no Fq-frames preserved by α unless d
gcd(d,q−1) = r,

in which case the right side of (2.5) tells us that the number of such frames should
be

(7.1)

∏

0≤i≤n−1
i≡0 mod r

(qn − qi)
∏

1≤i≤n
i≡0 mod r

(q − 1)i
=

|GLn
r
(Fqr )|

(

n
r

)

!(q − 1)
n
r r

n
r

.

To see how the left side of (2.5) gives an answer equivalent to (7.1), we must
reason geometrically about how multiplication by α can preserve an Fq-frame
{L1, . . . , Ln}. This would require that α permutes the lines in the frame, and hence
the set of lines decomposes into cycles O1, . . . ,Om for this permutation. Each such
cycle Oj must consist of exactly r of these Fq-lines, because the Fq-span of Oj must
be an Fq(α)(= Fqr )−subspace of Fq(α)-dimension at most 1 (as it is Fq(α)-spanned
by any line Li in Oj). Since each cardinality |Oj | = r, one must have m = n

r
. Also

the cyclic subgroup C = 〈α〉 of order d must have the C-stabilizer of any particular
Fq-line Li in this frame of order d

r
. On the other hand, this stabilizer subgroup
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should be of order gcd(d, q − 1), since it is the intersection of the cyclic groups C
and F×

q inside the larger cyclic group F
×
qn . Thus one recovers the requirement that

r = d
gcd(d,q−1) in order for α to preserve any Fq-frames at all.

If r = d
gcd(d,q−1) , then the preceding discussion indicates how to parametrize all

Fq-frames in Fn
q preserved by α. To choose one, first choose an Fqr -frame in Fn

q ,
and then within each of the Fqr -lines in this Fqr -frame, pick an Fq-frame to be one

of the sets Oj . Because r = d
gcd(d,q−1) , it follows that α will have every orbit of

Fq-lines of size r. Since each Fqr -line contains [r]q := qr−1
q−1 different Fq-lines, there

will be
[r]q
r

C-orbits from which to choose Oj . Thus there are a total of

|
{

Fqr − frames in F
n
q

}

| ·

(

[r]q
r

)
n
r

=
|GLn

r
(Fqr )|

n
r
!(qr − 1)

n
r

·

(

[r]q
r

)
n
r

choices, which agrees with (7.1).

The next example verifies directly a non-trivial instance of Conjecture 3.

Example 21. Let G = GL2n(Fq) with q odd, and H = Sp2n(Fq) the symplectic
group that preserves some particular symplectic form on F2n

q . Since G acts transi-
tively on symplectic forms, the collection of cosets G/H is identified with the set
X of all symplectic forms.

The invariant ring SH is not a polynomial algebra. Nevertheless, it was described
by Carlisle and Kropholler (see [2, §8.3]). It is a complete intersection ring with
the following presentation:

Fq[ξ1, ξ2, . . . , ξ2n−1, D2n,n, D2n,n+1, . . . , D2n,2n−1]/(r1, . . . , rn−1)

where the D2n,i are the Dickson polynomials, ξi are homogeneous of degree qi + 1,
and ri is a homogeneous relation of degree q2n + qi. Consequently, SH is a Cohen-
Macaulay ring with Hilbert series

Hilb(SH , t) =

∏n−1
i=1 (1 − tq

2n+qi

)
∏2n−1

i=n (1 − tq2n−qi)
∏2n−1

i=1 (1 − tqi+1)

and

X(t) :=
Hilb(SH , t)

Hilb(SG, t)
=

∏n−1
i=1 (1 − tq

2n+qi

)
∏n−1

i=0 (1 − tq
2n−qi

)
∏2n−1

i=1 (1 − tqi+1)
.

This gives an opportunity to verify directly Conjecture 3, (the cyclic sieving phe-
nomenon) for this particular G and H . For any regular element c in G, we must
compare the number of symplectic forms fixed by c with the substitution X(ω) ,
where ω is a complex root of unity of the same multiplicative order as c.

Again by Theorem 19, a regular element in G corresponds to some α in F
×
q2n ,

say of multiplicative order d. Assume α generates the extension Fq(α) = Fqr inside
Fq2n , so that r|2n, and r is the smallest positive integer for which d|qr − 1.

Let ω in C× be a primitive dth root of unity. We begin by computing X(ω). The
numerator of X(t) has t = ω as a zero of order at least 2n

r
≥ 1, due to its factors of

the form 1 − tq
2n−qri

. Hence X(ω) = 0 unless t = ω is a root of the denominator,
that is, unless d|qi + 1 for some i. Let i0 be the smallest positive integer for which
d|qi0 + 1. Since d|qr − 1, one can check that d|qj + 1 if and only if j ≡ i0 mod r.
Thus we may assume i0 lies in the range [1, r]. Furthermore, the fact that d divides
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both qr −1 and qi0 +1 forces d to divide qr +qi0 = qi0(qr−i0 +1). Hence d|qr−i0 +1
because gcd(d, qi0 ) = 1. Thus either

• i0 = r, and d|qr−i0 + 1 = 2, so that d = 1 or d = 2, or
• i0 = r − i0, so that r ≥ 2 is even and i0 = r

2 .

In the former case where d = 1 or 2, one has ω = +1,−1, and one can see that
X(1) = X(−1) = [G : H ] (using the fact that q is odd).

In the latter case where r ≥ 2 is even and i0 = r
2 , one calculates that

(7.2)

lim
t→ω

X(t) =

∏

1≤i≤n−1
i≡ r

2
mod r

(q2n + qi)
∏

0≤i≤n−1
i≡0 mod r

(q2n − qi)

∏

1≤i≤2n−1
i≡ r

2
mod r

(qi + 1)

=

∏bm
2
c−1

j=0 (Q2m + Q2j+1)
∏dm

2
e−1

j=0 (Q2m − Q2j)
∏m−1

j=0 (Q2j+1 + 1)

= Q(m
2 )(Q − 1)(Q2 + 1)(Q3 − 1)(Q4 + 1) · · · (Qm + (−1)m)

where Q := qi0 = q
r
2 and m := 2n

r
. Denote the last quantity appearing in (7.2) by

fm(Q).
Summarizing these calculations, we have

(7.3) X(ω) =











[G : H ](= |X |) if d = 1, 2,

f 2n
r

(Q) if r is even,

0 otherwise.

Thus to verify the cyclic sieving phenomenon, it remains to check that the right-
hand side of (7.3) coincides with the number of symplectic forms on F2n

q fixed under
multiplication by α, that is, satisfying

(7.4) 〈αx, αy〉 = 〈x, y〉.

To this end, consider the Fq-linear map c on Fq2n which is multiplication by
α. Its eigenvalues are α, F (α), . . . , F 2n−1(α), where F denotes the Frobenius en-
domorphism on Fq2n . Since α ∈ Fqr , one has F r(α) = α and if one extends the

scalars to Fqr , there will be an α-eigenspace for c which is 2n
r

-dimensional with

basis v1, . . . , v 2n
r

in F2n
qr . The remaining eigenvectors for c are the images F j(vi)

under powers of the Frobenius map F .
How can an Fq-bilinear symplectic form 〈·, ·〉 on F2n

q be preserved by α? Ex-

tending it to an Fqr -bilinear symplectic form on F
2n
qr , one notes that it will have the

following invariance with respect to the Frobenius map F :

(7.5) 〈F (x), F (y)〉 = F (〈x, y〉)

Furthermore, if w1, w2 are c-eigenvectors in F2n
qr with eigenvalues λ1, λ2 in Fqr , then

(7.4) forces

(7.6) 〈w1, w2〉 = 〈c(w1), c(w2)〉 = λ1λ2〈w1, w2〉

so that either λ2 = λ−1
1 or 〈w1, w2〉 = 0. Thus nondegeneracy of the symplectic

form implies that the eigenvalues of c are closed under taking reciprocals. There
are two ways this can happen.
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If r = 1, so that α ∈ Fq , then α must be self-reciprocal. Thus α = ±1, so d = 1
or 2. In this case, α preserves every symplectic form, in agreement with the right
side of (7.3).

If r > 1, then F i0(α) = α−1 for some smallest positive integer i0. This means

αqi0+1 = 1 or d|qi0 + 1, forcing r = 2i0 to be even (again in agreement with the
right side of (7.3)). In this case, (7.5) and (7.6) imply that the symplectic form is
completely determined by a choice of the matrix of values aij = 〈vi, F

r
2 (vj)〉 for

i, j = 1, . . . , 2n
r

. Furthermore, note that

aji = 〈vj , F
r
2 (vi)〉 = 〈F

r
2 F

r
2 vj , F

r
2 (vi)〉 = F

r
2 (〈F

r
2 vj , vi〉) = −F

r
2 (aij).

Thus aij is skew-Hermitian of size 2n
r

with entries in FQ2 , where Q := q
r
2 and F

r
2

is the conjugation that generates the Galois group of FQ2/FQ. Nondegeneracy of
the symplectic form forces (aij) to be nonsingular, and it is not hard to check that
the converse holds: every such nonsingular skew-Hermitian matrix of size 2n

r
over

FQ2 gives rise to a symplectic form on F2n
qr which is the extension of a symplectic

form on F2n
q invariant under multipication by α.

It remains to show that the previously defined function fm(Q) counts nonsingular
skew-Hermitian matrices of size m over FQ2 . It is known [4, Theorem 3, (4.4)] that
fm(Q) counts nonsingular Hermitian matrices of size m over FQ2 . On the other

hand, multiplication by any scalar β ∈ FQ2 which satisfies F
r
2 (β) = −β (that is, β

is a root of xq−1 + 1 = 0) gives a rank-preserving bijection between Hermitian and
skew-Hermitian matrices.

8. Filtrations of projective modules

In this section we explore further the relationship between the module structure
of the coinvariant algebra and the regular representation.

Proposition 22. Let G be a finite subgroup of GL(V ) for which SG is polynomial,
and let C be the cyclic subgroup generated by a regular element c in G. Let d = |C|
be the order of c.

Then for each integer n, the direct sum

(8.1)
⊕

m ≡ n mod d

Ām

has the same composition factors as a projective k̄[G]-module.

Proof. The regular element c acts on the mth homogeneous component Ām by the
scalar ζm. Thus the direct sum (8.1) is the ζn-eigenspace of c acting on Ā. By
Theorem 1 this direct sum has the same k̄[G]-module composition factors as the
ζn-eigenspace of c acting on k̄[G].

The group algebra k̄[C] contains d primitive orthogonal idempotents e0, . . . , ed−1

so that for any right k̄[C]-module M the subspace Mei is the ζi-eigenspace of
c. We have k̄[G] = k̄[G]e0 ⊕ · · · ⊕ k̄[G]ed−1, and these summands of the regular
representation are projective modules for k̄[G]. The result follows. �

We illustrate Proposition 22 by means of an example. Let G = S4 be the sym-
metric group of degree 4, acting on a 4-dimensional vector space V with basis
v1, v2, v3, v4 by permuting the basis vectors in the faithful permutation representa-
tion. In all characteristics the invariants SG are a polynomial ring on the elementary



18 V. REINER, D. STANTON, AND P. WEBB

symmetric polynomials in degrees 1, 2, 3 and 4. According to Springer [19] the reg-
ular elements when k has characteristic zero are the powers of 3-cycles or 4-cycles.
We next work out explicitly the regular elements in S4 when k has characteristic 2
or 3.

When k has characteristic 2, regular elements must have order prime to 2 (by
Corollary 7) so 3-cycles are the only possibility. The eigenvector v1 + ζv2 + ζ2v3

of the 3-cycle (1, 2, 3) (where ζ is a primitive cube root of 1) does not lie in any
reflecting hyperplane, and from this we see that (1, 2, 3) and the other 3-cycles are
indeed regular.

Similarly in characteristic 3 we see that any regular element must be a 4-cycle or
the square of a 4-cycle. If ζ is a primitive fourth root of 1 then v1+ζv2 +ζ2v3+ζ3v4

is an eigenvector of (1, 2, 3, 4) which does not lie in any reflecting hyperplane and
we see from this that the 4-cycles are indeed regular in characteristic 3. In fact
the squares of 4-cycles are also regular in characteristic 3, but we will not mention
them further since the sieving phenomenon they provide is deducible from that of
the 4-cycles.

We claim that in characteristic 2 the module structures of the homogeneous
components of A are given by

Degree 0 1 2 3 4 5 6

Module Structure 1 1
2

1⊕2
2

1
2 ⊕ 2

1
2

1⊕2
2
1 1

and in characteristic 3 they are

Degree 0 1 2 3 4 5 6

Module Structure 1 3 1
−1 ⊕ 3 3 ⊕−3 1

−1 ⊕−3 −3 -1

In characteristic 2, S4 has two simple modules, of dimensions 1 and 2, and we denote
these modules by their dimensions. In characteristic 3, S4 has 4 simple modules
which we denote 1,−1, 3,−3. These are, respectively, the trivial module, the sign
representation, the 3-dimensional module which is a direct summand of V ∗, and
3 ⊗−1. These latter 3-dimensional modules are projective and injective (they are
blocks of defect zero) and appear as direct summands of any module of which they
are a composition factor. In these tables we indicate a module by presenting its
composition factors in certain positions relative to one another. Where a module is
the direct sum of two submodules this is indicated with a ⊕ sign. Where a module
is a non-split extension of one module by another, this fact is indicated by writing
the submodule underneath the factor module.

It is well-known that the indecomposable projective S4-modules in characteristic
2 have the structure

1
2
1⊕ 1

2
1

,
2

2⊕ 1
1

2

and in characteristic 3 they are

1
−1

1
,

−1
1

−1
, 3, −3.
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We refer here to [1] for such calculations. We see in our example that in character-
istic 2 the composition factors of A in degrees which form a residue class modulo 3
are always the composition factors of a projective module, as predicted by Proposi-
tion 22. To be explicit, these residue classes of degrees are {0, 3, 6}, {1, 4} and {2, 5}
and in each case the composition factors of A in these degrees are the composition
factors of an indecomposable projective module. In characteristic 3 the composition
factors which occur in degrees {0, 4}, {1, 5}, {2, 6} and {3} (these being the residue
classes modulo 4, the order of a regular element) are in each case also composition
factors of a projective module.

More than this is true for this example. In each characteristic, and for each of
these residue classes of degrees, there is a filtration of a projective module such
that the factors in the filtration taken in ascending order are isomorphic to the
homogeneous terms of A with degrees in that residue class, taken in ascending
order. Such calculations suggest the following question.

Question 23. Let G be a finite subgroup of GL(V ) for which SG is polynomial
and let C be the subgroup generated by a regular element in G.

Does there always exist a filtration of k̄[G] by k̄[G × C]-modules so that the
factors, taken in ascending order, are isomorphic as k̄[G × C]-modules to the ho-
mogeneous terms of Ā, taken in ascending order of degree?

An affirmative answer would imply that each eigenspace of C in its action on
k̄[G] has a filtration whose factors are the terms of Ā in a residue class modulo |C|,
which is the phenomenon we have been observing. We have been able to answer in
the affirmative a weaker question, in which only the action of k̄[G] is considered,
but have been unable to extend this to an action of k̄[G × C].

We conclude by explaining how the above tables may be obtained. It is compar-
atively easy to obtain the multiplicities of the composition factors, and this may
be done in several ways. One way is to compute for each simple module U the
generating function of composition factor multiplicities

PU (S, t) =
∞
∑

n=0

[Symn(V ) : U ] tn

of the homogeneous terms of S = Sym(V ) using Molien’s theorem [18]. Here
[Symn(V ) : U ] denotes the composition factor multiplicity of U in Symn(V ). We
now use Mitchell’s observation [12, Proposition 1.3] which implies that

PU (S, t) = PU (A, t) Hilb(SG, t).

Computing the precise module structure of the terms in the coinvariant algebra
is more delicate. We may exploit the fact that it is a Poincaré duality algebra [18],
so that in this case An

∼= (A6−n)∗ ⊗ A6. This means that we only need determine
the module structure up to degree 3.

In characteristic 2 the permutation module V has the structure 1
2

1

, which we

may confirm by Brauer characters and Frobenius reciprocity (the adjoint property of
induction and restriction) to show that the module has no 2-dimensional submodule

or quotient. Factoring out the invariants gives 1
2 as claimed. In degree 2 one may

employ similar but more elaborate arguments, but in degree 3 the determination of
the module structure was ultimately done by computer calculation using software
written in the package GAP. This can also be used to handle the degree 2 case.
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In characteristic 3 the composition factors 3 and −3 which occur are all projective
and so appear as direct summands. The only question is to determine whether
or not the 1 and −1 composition factors occur in a non-split extension. From
knowledge of the projective modules we see that there is no non-split extension of
1 by itself in characteristic 3, and that if the degree 2 module of A were semisimple
it would imply that the polynomial ring has more invariants in degree 2 than it
actually has.
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